
Feature Selection via Block-Regularized Regression

Seyoung Kim

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Eric Xing

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Identifying co-varying causal elements in very
high dimensional feature space with inter-
nal structures, e.g., a space with as many
as millions of linearly ordered features, as
one typically encounters in problems such as
whole genome association (WGA) mapping,
remains an open problem in statistical learn-
ing. We propose a block-regularized regres-
sion model for sparse variable selection in a
high-dimensional space where the covariates
are linearly ordered, and are possibly sub-
ject to local statistical linkages (e.g., block
structures) due to spacial or temporal prox-
imity of the features. Our goal is to iden-
tify a small subset of relevant covariates that
are not merely from random positions in the
ordering, but grouped as contiguous blocks
from large number of ordered covariates. Fol-
lowing a typical linear regression framework
between the features and the response, our
proposed model employs a sparsity-enforcing
Laplacian prior for the regression coefficients,
augmented by a 1st-order Markovian process
along the feature sequence that “activates”
the regression coefficients in a coupled fash-
ion. We describe a sampling-based learning
algorithm and demonstrate the performance
of our method on simulated and biological
data for marker identification under WGA.

1 INTRODUCTION

Recent advances in high-throughput genotyping tech-
nology have allowed researchers to generate a high vol-
ume of genotype data at a relatively low cost. An as-
sociation study involves examining genotype data of
individuals in a population and phenotype data for
the same individuals such as disease status, gene ex-

Figure 1: An illustration of linkage disequilibrium in
chromosomes in an association study.

pression, and physiological measurements in order to
discover genetic markers that affect the phenotype of
the individual possessing a particular variation of the
marker. Variations in a single nucleotide called sin-
gle nucleotide polymorphisms (SNPs) provide a useful
set of genetic markers since they are relatively com-
mon across the genome. The whole-genome associa-
tion study has become feasible because of the relatively
low cost involved in typing a large number of SNPs.
The challenge in this type of study is to identify a small
subset of SNPs associated with the phenotype among
the full set of SNPs that can be as large as 8 million
(the International HapMap Consortium, 2005).

A simple single-marker test has been widely used for
detecting an association (Stranger et al. 2005, Che-
ung et al. 2005). Using this approach, one examines
the correlation between the given phenotype and fre-
quencies of each polymorphic allele of one SNP marker
at a time to compute p-value of the SNP, and finds
the SNPs with low p-values to be significant. The
single-marker test assumes that SNPs are indepen-
dent of each other, ignoring an important correlation
structure due to the linkage disequilibrium present in
the sequence of SNPs. In reality, the states of SNPs
that are adjacent in the genome can be tightly cou-
pled (i.e., in linkage disequilibrium). This is because
when an individual inherites a chromosomal material
from each of the parents, a recombination event can
break the parental chromosomes into non-random in-
heritable segment, causing SNPs within the segment
to be inherited with high probability, and prevent-
ing random combinations of all possible SNP states
within the segment. Since the recombination sites are
non-uniformly distributed across the genome, recom-
bination events in chromosomes in a population over
generations lead to a block structure in SNPs on the



chromosome. As illustrated in Figure 1, each chro-
mosome is a mosaic of ancestor chromosomes, where
segments of SNPs of the same color have been inher-
ited from the same ancestor chromosome. The true
association SNPs called causal SNPs are indicated as
circles in Figure 1. Since a chromosome segment car-
rying causal alleles can be inherited as a block, we can
take advantage of this block structure to increase the
power of the study for detecting association by con-
sidering a block of linked SNPs jointly rather than a
single SNP at a time.

A multi-marker approach takes into account this link-
age disequilibrium pattern by testing a short segment
of SNP markers called a haplotype for an association
(Zailen et al. 2007, Zhang et al. 2002). In this case,
a haplotype instead of a single SNP acts as a proxy
for untyped causal SNPs. However, they test a hap-
lotype of a fixed length for an association, scanning
the genome using a sliding window. Most of these
approaches do not explicitly make use of the block
structure with possibly varying block lengths in the
sequence of SNPs.

In this paper, we propose a model for association map-
ping that explicitly incorporates the linkage disequi-
librium pattern. We focus on continuous valued phe-
notypes, and base our method on a linear regression
model, where the SNPs are predictors and the phe-
notypes are response variables. The SNPs with large
regression coefficients are found to be significant. The
number of SNPs involved in a typical association study
is very large, and we are interested in extracting a
small number of causal SNPs that are grouped into
blocks due to linkage disequilibrium. Thus, we can
view this problem as 1) identifying relevant covariates
when the covariates lie in a high-dimensional space and
2) learning a block structure in those relevant covari-
ates at the same time.

To enforce sparsity in the regression model, we use
the Laplacian prior on the regression coefficients, sim-
ilar to the L1 penalty in the lasso (Tibshirani 1996).
However, the lasso does not provide any mechanism to
incorporate the correlation structure in covariates into
the model to address the second problem. In this pa-
per, we propose to encode the information of the corre-
lation pattern in the SNPs as a Markov chain, and use
this Markov chain as a prior in the regression model.
The block boundaries for chromosome regions with a
high level of association are determined probabilisti-
cally through transition probabilities in the Markov
chain. A regression-based association has been used
previously (Servin and Stephens 2007), but they did
not address the problem of taking into account the
block structure in the genome in a high dimensional
space to improve the power of the study.

There is a large body of literature on variable selec-
tion methods such as the lasso (Tibshirani 1996) and
Bayesian variable selection algorithms (George and
McCulloch 1993, Ishwaran and Rao 2005, Yuan and
Lin, 2005). Most of these works did not consider situa-
tions in which the covariates are structured in a certain
manner. Nott and Green (2004) used the correlation
information in the covariates to improve the conver-
gence of sampling algorithm, but the model itself did
not assume any structure in the covariates. In the
fused lasso (Tibshirani et al. 2005), covariates were
assumed to be ordered, and adjacent regression coeffi-
cients tended to be fused to take the same value, en-
couraging sparsity in the difference between adjacent
coefficients. However, it used only the ordering infor-
mation, and did not take into account the additional
information on the structure in covariates such as the
linkage disequilibrium pattern in the case of associa-
tion study. In the group lasso (Yuan and Lin 2005),
the group structure in covariates was assumed to be
known, whereas in our proposed model we determine
the block structure of relevant covariates during learn-
ing given prior knowledge on the correlation structure.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the proposed model for association
mapping and the learning algorithm. In Section 3, we
apply the model to simulated data and mouse data,
and compare the performance of the proposed model
with that of existing methods. In Section 4, we con-
clude with a brief discussion of future work.

2 GENOME-WIDE ASSOCIATION

VIA BLOCK-REGULARIZED

REGRESSION

2.1 THE MODEL

The Association Model Let us assume that a set
of J SNP markers have been typed for N individuals.
The genotype of each SNP in an individual consists of
two alleles corresponding to each of a pair of chromo-
somes in the case of diploid organisms such as humans
and mice. For our regression analysis, we construct an
N × J design matrix X, where each element xij takes
values from {0, 1, 2} according to the number of minor
alleles in the genotype of the jth SNP of the ith in-
dividual, assuming a strictly additive genetic effect of
the minor allele. Note that in our analysis the J SNP
markers are assumed to be ordered in terms of their
positions on chromosome. In addition, a measurement
of phenotype yi is available for each individual i, and
we let y be an N × 1 vector of such measurements for
the N individuals. In particular, the covariates in X

lie in a high dimensional space with only a small sub-



set of the J SNPs influencing the output y. In this
setting, we assume a standard linear regression model
as follows:

y = Xβ + ǫ, ǫ ∼ N(0, σ2),

where β is a vector of J regression coefficients
{β1, . . . , βJ}, and the noise ǫ is modeled as having
a normal distribution with mean 0 and variance σ2.
Taking a Bayesian approach, we set the prior for σ2 to
Inv-gamma(ν0/2, (ν0s

2
0)/2).

We use a prior on β that enforces sparsity in the co-
efficients. We model each regression coefficient βj as
coming from a mixture of two components, one com-
ponent representing irrelevant covariates (non-causal
SNPs) and the other for relevant covariates (causal
SNPs). We introduce a random variable cj that takes
values from {0, 1} to indicate the mixture component
label for βj . If cj = 0, the jth SNP is non-causal,
and βj is set to 0. If cj = 1, then we model βj as
coming from a Laplacian distribution. The complete
probability distribution for βj given cj is given as

βj |cj ∼
{

I(βj = 0) if cj = 0
1

2(2λσ2)exp
(

− |βj|
2λσ2

)

if cj = 1,
(1)

where λ is the parameter that controls the amount of
sparsity. We use Inv-gamma(α, γ) as a prior distri-
bution on λ, and sample λ from its posterior during
learning (Park and Casella 2008).

The Laplacian prior in Equation (1) is the same as the
L1 penalty used in the lasso (Tibshirani 1996), and
has been shown to be useful in a more general problem
of learning a sparse model in high-dimensional space
(Wainwright et al. 2006). In a Bayesian setting, mod-
els similar to the one described above have been used
in the literature of Bayesian variable selection with
various different distributions in Equation (1) (George
and McCulloch 1993, Ishwaran and Rao, 2005, Yuan
and Lin, 2005). In almost all of these works, cj ’s were
modeled as coming from a Bernoulli distribution with
parameter p, assuming that cj ’s are independent of
each other. This independence assumption is not ap-
propriate in the case of genetic data since nearby SNP
markers are known to be highly correlated due to the
linkage disequilibrium. In the next section, we pro-
pose to use a Markov chain prior for cj ’s that takes
advantage of this dependency.

Markov Chain Prior for Block Structure Be-
cause of the linkage disequilibrium, individual chromo-
somes tend to have a block structure in the sequence of
genetic markers, and such blocks of genetic markers are
shared across individuals in a population. Recombina-
tion rate summarizes the degree of correlation between

tightly linked SNPs. In a region with a high recom-
bination rate, the previously linked SNPs are likely to
be decoupled, resulting in a weak correlation, whereas
a segment of tightly linked SNPs is preserved in the
absence of recombination during inheritance. Becuase
of the linkage disequilibrium structure, considering a
block of highly correlated SNPs instead of a single SNP
for an association with the phenotype can potentially
increase the power of the association study for detect-
ing causal SNPs.

In this section, we propose to use a Markov chain
prior on the indicator variable c to take into account
the block structure due to the linkage disequilibrium
in SNP markers by incorporating the recombination
rate information in the prior. There is a large body
of literature on estimating recombination rates given
genotype data of unrelated individuals from a popula-
tion (Fearnhead and Donnelly 2001, Li and Stephens
2003, Sohn and Xing, 2007). Any of these methods
can be used to estimate recombination rates as part of
a preprocessing step prior to the association analysis
through the proposed method.

Given the estimated recombination rates, we assume
that the J covariates are ordered in their positions to
have a chain structure and that there is an implicit
block structure in the chain where the block bound-
aries are defined stochastically in terms of the distance
and recombination rate between each pair of covari-
ates. In this setting, a group of SNPs within a block
can be assigned together to be either causal or non-
causal.

We model the sequence of indicator variables c =
{c1, . . . , cJ} as a Markov chain as follows:

P (c) = P (c1)

J
∏

j=2

P (cj |cj−1).

For P (cj |cj−1), we use a Poisson process model, a
model commonly used for recombination process (Li
and Stephens 2003),

P (cj |cj−1) = exp(−djρj) δ(cj , cj−1)

+(1 − exp(−djρj)) Πcj−1,cj
, (2)

where Π is a transition matrix

(

π0 1 − π0

1 − π1 π1

)

,

dj is the distance between two adjacent SNPs at posi-
tions (j − 1) and j on chromosome, and ρj is the re-
combination rate for the same interval. The first term
on the right-hand side of Equation (2) corresponds to
the probability of no recombination events between the
(j − 1)th and the jth SNPs. On the other hand, the
second term models a transition in the presence of a
recombination event between the two SNPs. At re-
combination, the model can either transition to the



same state, or to a different state. If the distance dj

between the (j − 1)th and jth SNPs is small or the
recombination rate ρj is low, the two SNPs are tightly
linked, and it is likely that both SNPs will receive the
same assignment for cj−1 and cj . Thus, the cj ’s for
causal SNPs are set to 1 in a coupled manner, acti-
vating the corresponding covariates to take non-zero
regression coefficients. We place a prior Beta(a00, b00)
on π0, and Beta(a10, b10) on π1.

Our model differs from the fused lasso (Tibshirani et
al. 2005) in that it encourages adjacent correlated co-
variates to take on the same assignment of whether
they are relevant or not, while allowing each covari-
ate to have its own regression coefficient. In the fused
lasso, the adjacent regression coefficients themselves
are encouraged to have the same values. In addition,
our method directly makes use of the additional infor-
mation in covariates such as the distance and recom-
bination rate between two SNPs, whereas the fused
lasso only uses the ordering information in covariates
to fuse coefficients.

2.2 PARAMETER ESTIMATION

Because of the non-differentiability of the function
used in Equation (1) for βj when cj = 0, it is not
possible to learn parameters of the model using an
EM style algorithm commonly used for hidden Markov
models. Instead, we use the Gibbs sampling to learn
the parameters Θ = {β, c, σ2, Π} of the model. In this
section, we derive conditional posterior distributions
of the parameters for Gibbs sampling.

For each of the J covariates, we sample βj and cj from
their joint posterior distribution

p(βj , cj |β−j , c−j ,y,X, σ2) = p(βj |β−j , c,y,X, σ2)

P (cj |β−j, c−j ,y,X, σ2). (3)

We first sample cj from the marginal distribution, the
second term on the right-hand side of Equation (3),
after integrating out βj . Conditional on the sampled
cj , we sample βj from its conditional posterior, the
first term on the right-hand side of Equation (3).

In order to sample cj , we re-write the second term on
the right-hand side of Equation (3) as

P (cj = k|β−j, c−j ,y,X, σ2)

∝p(y|β−j , cj = k,X, σ2)P (cj = k|cj−1)P (cj+1|cj = k)

Sampling from the above equation requires to com-
pute the marginal likelihood p(y|β−j , cj ,X, σ2) after
integrating out βj when cj = 0 and cj = 1. When
cj = 0, the jth covariate is irrelevant, and we set
βj = 0. Thus, the marginal likelihood is simply given

as

p(y|β−j , cj = 0,X, σ2)

=

(

1√
2πσ2

)N

exp

(

−
∑

i(yi − xiβ)2

2σ2

)

.

When cj = 1, we compute the integral as below.

p(y|β−j , cj = 1,X, σ2)

=

∫ ∞

−∞

(

1√
2πσ2

)N

exp

(

−
∑

i(yi −
∑

k xikβk)2

2σ2

)

· 1

2(2λσ2)
exp

(

− |βj |
2λσ2

)

dβj

= K

∫ ∞

−∞

exp

(

−
∑

i(zi − xijβj)
2 +

|βj |
λ

2σ2

)

dβj

= K

(

∫ 0

−∞

exp

(

−
∑

i(zi − xijβj)
2 − βj

λ

2σ2

)

dβj

+

∫ ∞

0

exp

(

−
∑

i(zi − xijβj)
2 +

βj

λ

2σ2

)

dβj

)

, (4)

where zi = yi − ∑

k/j xikβk, and K =

(1/2πσ2)
N
2 /(2(2λσ2)).

Let A(−) denote the first integral and A(+) the second
integral in Equation (4). Then, using a straightfor-
ward algebra, it can be shown that A(−) and A(+) are
given as

A(−) = exp

(

−
(

∑

i

z2
i − (

∑

i zixij + 0.5/λ)2
∑

i x2
ij

)

/(2σ2)

)

·
√

2πσ2

∑

i x2
ij

∫ 0

−∞

N(−) dβj

A(+) = exp

(

−
(

∑

i

z2
i − (

∑

i zixij − 0.5/λ)2
∑

i x2
ij

)

/(2σ2)

)

·
√

2πσ2

∑

i x2
ij

∫ ∞

0

N(+) dβj ,

where

N(−) = N

(

βj |
∑

i zixij + 1
2λ

∑

i x2
ij

, σ2(
∑

i

x2
ij)

−1

)

N(+) = N

(

βj|
∑

i zixij − 1
2λ

∑

i x2
ij

, σ2(
∑

i

x2
ij)

−1

)

.

Once we sample cj as described above, we sample
βj from p(βj |β−j , c,y,X, σ2) in Equation (3). When
cj = 0, we set βj to 0. If cj = 1, we re-write the
conditional probability distribution as

p(βj |β−j , c,y,X, σ2) =
p(y|β, c,X, σ2)p(βj)

∫

p(y|β, c,X, σ2)p(βj)dβj
. (5)



We find that the denominator of Equation (5) is the
same as what we computed in Equation (4). In fact,
sampling from Equation (5) is equivalent to sampling
from a mixture distribution of two components given
as

mj ∼ Bernoulli

(

A(−)

A(−) + A(+)

)

βj ∼
{

N(−),βj<0 if mj = 0
N(+),βj>0 if mj = 1.

(6)

Using Equation (6), we augment βj with mj , and
sample (βj , mj) by first drawing the mixture com-
ponent label mj from the Bernoulli distribution and
then drawing βj conditional on the mj .

The conditional posterior for σ2 is given as an inverse
gamma distribution

σ2|β, c,y,X ∼ Inv-gamma
(

(N + 2J + ν0)/2,

(

∑

i

(yi − Xiβ)2 +
1

λ

∑

j

|βj | + ν0s
2
0

)

/2
)

.

Next, we sample the parameters π0 and π1 of the tran-
sition matrix Π. The conditional posterior for π0 is

p(π0|c) ∝ P (c|π0)p(π0)

=
∏

k∈S00

(e−dkρk + (1 − e−dkρk)π0)

·
∏

k∈S01

((1 − e−dkρk)(1 − π0))

· πa00−1
0 (1 − π0)

b00−1

∝
(

πn00+a00−1
0 (1 − π0)

n01+b00−1
)

(7)

where Sml = {k|ck−1 = m, ck = l} and nml is the
number of transitions from cj−1 = m to cj = l in c.
We approximate n00 as

n00 =
∑

j

(1 − e−djρj )π′
0

e−djρj + (1 − e−djρj )π′
0

I(cj−1 = 0, cj = 0),

where π′
0 is the value from the previous sampling it-

eration, assuming that the number of events (cj−1 =
0, cj = 0) due to e−djρj and (1 − e−djρj )π0 are pro-
portional to their probabilities. In Equation (7), the
conditional posterior for π0 is Beta(n00+a00, n01+b00)
for π0. Similarly, we obtain the conditional posterior
for π1 as Beta(n11 + a10, n10 + b10).

Finally, we sample λ of the Laplacian prior from its
conditional posterior

p(λ|β, σ2, α, γ) = Inv-gamma
(

J ′ + α,

∑

j∈SJ′
|βj |

2σ2
+ γ
)

,

where J ′ is the number of covariates with cj = 1 in the
current sampling iteration, and SJ′ is the set of such
covariates.

3 EXPERIMENTS

We demonstrate our proposed model on simulated
data and mouse data, and compare the performance
with those from the model with independent Bernoulli
prior for cj ’s, ridge regression, and the lasso. We use
ridge regression instead of ordinary least squares re-
gression to prevent the singularity in matrix inversion,
since often J > N in our experiments. The regulariza-
tion parameter in the ridge regression is set to a small
value 0.1. The regularization parameter of the lasso is
selected using a cross-validation.

In all of our experiments, for the block-regularized re-
gression and the model with Bernoulli prior, we run
the sampling algorithm for 5000 iterations after 2000
burn-in iterations. Samples are taken every 10 itera-
tions. In the block-regularized regression, the priors
for π0 and π1 are set to Beta(10,2), weakly encourag-
ing the cj ’s to stay in the same state as the cj−1’s.
Similarly, in the model with Bernoulli prior, the prior
for the parameter p of the Benoulli distribution is set
to Beta(10,2).

3.1 SIMULATION

We generate 360 haplotypes of a 40kb region with mu-
tation rate 0.8/kb and recombination rate 0.1/kb us-
ing the software ms (Hudson 2002), and retain only
those SNPs whose minor allele frequency is greater
than 0.01. In the haplotypes generated under this set-
ting, there are 108 SNPs in the region and 23 blocks
in which no recombination events occurred. Then,
we randomly pair two haplotypes to obtain genotypes
of 180 individuals. We run the widely used software
Phase 2.1.1 (Li and Stephens 2003) on these data to
estimate the recombination rate ρ between each pair
of adjacent SNPs. We select 10 SNPs as relevant vari-
ables that are grouped into three blocks of 3, 2, and 5
SNPs respectively such that the SNPs within a group
are located within a block of no recombination given
by ms. Based on these selected causal SNPs, we gen-
erate a phenotype for each individual with βj = 2.5
for causal SNPs and βj = 0 for non-causal SNPs. The
random noise generated from N(0, 1) is added to the
simulated phenotype. The true parameters used in
this simulation are shown in Figure 2(a). The dots
show values for βj ’s, and the line indicates the loca-
tions of the causal SNPs, where 1’s represent causal
SNPs, and 0’s non-causal SNPs.

Using the data simulated from the true parameters
in Figure 2(a), we fit our proposed model, the model
with independent Bernoulli prior, ridge regression and
the lasso, and plot the estimated β in Figures 2(b)-
(e). For the block-regularized regression and the model
with independent Bernoulli prior, we show the sam-
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Figure 2: Simulation results with ρ=0.1/kb and βj =
2.5 for relevant variables. True parameters are shown
in (a), and the estimated parameters are shown for (b)
the block-regularized regression, (c) the model with
independent Bernoulli prior, (d) ridge regression, and
(e) the lasso. Dots indicate βj ’s at each position, and
the lines in (a), (b), and (c) represent cj ’s.

ple corresponding to the lowest train error, and plot
the estimated c for the same sample as a line. The
block-regularized regression in Figure 2(b) discovers
the block structure in covariates with four groups of
relevant variables, three of which roughly correspond
to the three groups in the true parameters. Through-
out our simulation experiments, we found that the
groups of causal SNPs indicated in cj’s estimated by
the block-regularized regression tend to extend to a
slightly larger interval than in the true parameters,
and that a subset of such SNPs with cj = 1 has a
large value for βj . Thus, we can view cj’s as suggest-
ing regions of relevant variables, and βj ’s as deciding
how relevant the variables with cj = 1 are. As we see
in Figures 2(c)-(e), the block structure is not obvious
in the results from the other three methods.

Figures 3(a) and (b) show the estimated P (cj)’s for the
block-regularized regression and the model with inde-
pendent Bernoulli prior respectively, using the same
data as in Figure 2. Each P (cj) is estimated as the
proportion of the number of times that the cj is set to

(a)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

Position

P
(c

)

(b)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

Position

P
(c

)

Figure 3: Estimated P (cj)’s for (a) block-regularized
regression and (b) the model with independent
Bernoulli prior, corresponding to the results in Fig-
ure 2(b) and (c) respectively. The ×’s indicate the
locations of true relevant variables.

Table 1: Summary Statistics of Simulated Data

ρ Number of SNPs Average number

Min Max Mean of SNPs per block

0.05/kb 86 260 150.8 5.59
0.1/kb 103 226 147.2 5.53
0.5/kb 99 214 151.0 1.18
1.0/kb 110 197 152.2 0.57

1 in samples for the cj . The locations of the true causal
SNPs are marked with ×’s. The block-regularized re-
gression encourages a block structure among relevant
and irrelevant covariates, leading to a smoother varia-
tion in P (cj)’s between adjacent covariates compared
to the model with independent Bernoulli prior.

In order to quantify the performance of the block-
regularized regression and various other regression
methods in the presence of different level of correla-
tion among SNPs, we repeat the above procedure of
simulating data for four different recombination rates
ρ=0.05/kb, 0.1/kb, 0.5/kb, and 1/kb, using βj = 2.0
for causal SNPs and βj = 0 for non-causal SNPs.
A lower recombination rate results in a more tightly
linked SNPs and a stronger block structure in covari-
ates. For each recombination rate, we generate 50
datasets of 180 individuals, and report the results aver-
aged over these 50 datasets for the given recombination
rate. Because of the random nature in the data genera-
tion process of the simulation software ms, the number
of SNPs vary in each dataset even if the same parame-
ters are used in simulation. The minimum, maximum,
and average number of covariates in the 50 datasets for
each recombination rate are shown in Table 1 as well
as the average number of SNPs within a block given
by ms during simulation. As the recombination rate
gets higher, the correlations between adjacent SNPs
become weaker, leading to only less than 1 SNP per
block in the case of ρ = 1.0/kb.

Given these datasets generated as described above, we
estimate β with the block-regularized regression, the
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Figure 4: Precision-recall graphs for simulated data.
(a) ρ = 0.05, (b) ρ=0.1, (c) ρ=0.5, and (d) ρ=1.0/kb.

model with independent Bernoulli prior, ridge regres-
sion, and the lasso, and plot precision-recall graphs
in Figure 4(a)-(d) for recombination rates ρ=0.05/kb,
0.1/kb, 0.5/kb, and 1.0/kb respectively. To obtain
each precision-recall curve in Figure 4, we estimate
βj ’s given a dataset and a regression method, and rank
the SNPs according to the absolute values of βj ’s. The
SNP with the largest value of |βj | is considered as the
most relevant. We compare the rankings of SNPs given
by each regression method to the list of true causal
SNPs, and compute the precisions and recalls shown
in Figure 4. As can be seen in Figures 4(a) and (b), the
block-regularized regression clearly outperforms other
methods, since the correlations among SNPs are rela-
tively high, and the block-regularized regression takes
advantage of this correlation structure. As the recom-
bination rate increases in Figures 4(c) and (d), the
advantage of having a block model decreases. When
ρ=1/kb, the average number of SNPs per block is less
than 1 as shown in Table 1, and the block-regularized
regression, the model with independent Bernoulli prior
and the lasso perform similarly. We can use P (cj)’s
instead of |βj |’s to rank the SNPs. When we plotted
the precision-recall graphs according to the P (cj)’s, we
obtained similar results to the ones in Figure 4.

In Figure 5, we fit the block-regularized regression
model to the dataset simulated with different values of
βj for relevant variables and the noise distributed as
N(0, 1), and plot the precision-recall graphs. The re-
combination rate ρ is set to 0.5/kb, and each precision-
recall curve is the result averaged over 50 datasets. We
see that as the signal to noise ratio increases, the per-
formance increases.
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Figure 5: Precision-recall graphs for block-regularized
regression, using simulated data with varying βj ’s for
relevant variables.
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Figure 6: Results for the mouse haplotype data (chro-
mosome 4) and the measurements of drinking prefer-
ence. (a) −log(p value), (b) block-regularized regres-
sion, (c) the model with independent Bernoulli prior,
(d) the lasso.

3.2 MOUSE DATA

We apply the block-regularized regression to the in-
bred laboratory mouse haplotype map publicly avail-
able from BROAD institue website1. We use the mea-
surements for the sodium intake of 25% NaCl concen-
tration for female mice (Tordoff et al. 2007) as pheno-
type. The data for 33 strains are available for both the
genotype and phenotype dataset. Thus, the number of
individuals in this experiment is 33. We consider the
8217 SNPs in chromosome 4 of length 154Mb as covari-
ates. We are interested in scanning the chromosome
and discovering the SNPs with high genetic effects on
the phenotype.

1http://www.broad.mit.edu/mouse/hapmap



The most commonly used method for discovering
SNPs highly associated with the phenotype is to per-
form a statistical test for the phenotype and one SNP
at a time and report the SNPs with high p-values as
significant. The result for the mouse data using one
such test, the Wald test, is shown in Figure 6(a). The
y-axis shows −log(p-value) for each SNP. In Figure
6(b)-(d), we show the estimated β using the block-
regularized regression, the model with independent
Bernoulli prior, and the lasso respectively. For these
three regression models, we divide the whole sequence
into segments of 200 SNPs, and fit the model to one
segment at a time. We see that the SNPs with high
values of −log(p-value) in Figure 6(a) roughly corre-
spond to the SNPs with high βj values in Figure 6(b).

4 CONCLUSIONS

In this paper, we considered the problem of finding a
subset of covariates in a high-dimensional space that
affect the output variable when there is a block struc-
ture in the covariates. In the context of association
mapping, we proposed a regression-based model with
a Markov chain prior that encodes the information
in the correlation structure such as distance and re-
combination rate between adjacent SNP markers. We
demonstrated on the simulated and mouse data that
our proposed algorithm can be used to identify groups
of SNP markers as a relevant block of causal SNPs.

The idea of representing the correlation structure as a
Markov chain in a variable selection method to learn
grouped relevant variables can be generalized to use a
graphical model as a prior in a variable selection prob-
lem to represent an arbitrary correlation structure in
variables in a high-dimensional space. Another inter-
esting extension of the model is to model a structure
in output variables as well when measurements of mul-
tiple output variables are available.
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