
Speeding Up Planning in Markov Decision Processes
via Automatically Constructed Abstractions

Alejandro Isaza and Csaba Szepesvári and Vadim Bulitko and Russell Greiner
Department of Computing Science, University of Alberta

Edmonton, Alberta, T6G 2E8, CANADA
{isaza,szepesva,bulitko,greiner}@cs.ualberta.ca

Abstract

In this paper, we consider planning in stochastic
shortest path (SSP) problems, a subclass of
Markov Decision Problems (MDP). We focus on
medium-size problems whose state space can be
fully enumerated. This problem has numerous
important applications, such as navigation and
planning under uncertainty. We propose a new
approach for constructing a multi-level hierarchy
of progressively simpler abstractions of the
original problem. Once computed, the hierarchy
can be used to speed up planning by first finding
a policy for the most abstract level and then re-
cursively refining it into a solution to the original
problem. This approach is fully automated and
delivers a speed-up of two orders of magnitude
over a state-of-the-art MDP solver on sample
problems while returning near-optimal solutions.
We also prove theoretical bounds on the loss
of solution optimality resulting from the use of
abstractions.

1 Introduction and Motivation

We focus on planning in stochastic shortest path problems
(the problem of reaching some goal state under uncertainty)
when planning time is critical — a situation that arises, for
instance, in path planning for agents in commercial video
games, where map congestions are modeled as uncertainty
of transitions. Another example is path planning for
multi-link robotic manipulators, where the uncertainty
comes from unmodeled dynamics as well as sensor and
actuator noise. More specifically, we consider the problem
of finding optimal policies in a sequence of stochastic
shortest-path problems (Bertsekas & Tsitsiklis, 1996),
where the problems share the same dynamics and transition
costs, and differ only in the location of the goal-state.

When the state space underlying the problems is suf-
ficiently large, exact planning methods are unable to
deliver a solution within the required time, forcing the
user to resort to approximate methods in order to scale to
large domains. Exploiting the fact that multiple planning

problems share the same dynamics and transition costs, we
build an abstracted representation of the shared structure
where planning is faster, then map the individual planning
problem into the abstract space and derive a solution there.
The solution is then refined back into the original space.

In a related problem of path planning under real-time
constraints in deterministic environments (e.g., Sturtevant,
2007), a particularly successful approach is implemented
in the PR LRTS algorithm (Bulitko, Sturtevant, Lu, & Yau,
2007), which builds an abstract state space by partitioning
the set of states into cliques (i.e., each state within each
cluster is connected to each other state in that cluster
with a single action). Each such cluster becomes a single
abstract state. Two abstract states are connected by an
abstract transition if there is a pair of non-abstract states
(one from each abstract state) connected by a single
action. The resulting abstract space is smaller and simpler,
yet captures some of the structure of the original search
problem. Thus, an abstract solution can be used to guide
and constrain the search in the original problem, yielding
a significant speed-up. Further speed-ups can be obtained
by building abstractions on top of abstractions, which
creates a hierarchy of progressively smaller abstract search
spaces. PR LRTS can then be tuned to meet strict real-time
constraints while minimizing solution suboptimality.

Note that state cliques produced by PR LRTS make good
abstract states because landing anywhere in such a cluster
puts the agent a single action away from any other state in
the clique. This also means that the costs of the resulting
actions are similar, and that the cost of a single action
is negligible compared with the cost of a typical path.
Finally, any (optimal) path in the original problem can
be closely approximated at the abstract level, as an agent
following an (optimal) path has to traverse from cluster to
cluster. Since all neighboring clusters are connected in the
abstract problem, it is always possible to find a path in the
abstract problem that is “close” to the original path.

Given the attractive properties or PR LRTS, it is natural
to ask whether the ideas underlying it can be extended
to stochastic shortest path problems, with arbitrary cost
structures.

In a stochastic problem, the result of planning is a closed
loop policy that assigns actions to states. A successful ab-

straction must be suitable for approximating the execution
trace of an optimal policy. Imagine that clustering has been
done in some way. The idea is again to have abstract ac-
tions that connect neighboring clusters cheaply — that is,
the system should not produce expensive connections.

Intuitively, we want to connect one cluster to another if,
from any state of the first cluster, we can reliably get to
some state of the second cluster at roughly a fixed cost (the
same for any state in the first cluster). This way, “simu-
lating” a policy of the original problem becomes possible
at a small additional cost (the meaning of simulation will
become clear later). This means that a connection between
clusters is implemented by a policy with a specific set
of initial states that brings the agent from any state of
the source cluster to some state of the target cluster. We
will use options (Sutton, Precup, & Singh, 1999) for such
policies, and choose clusters to allow such policies for any
two neighboring clusters. Thus, it is natural to look for
clusters of states that allow one to reliably simulate any
trajectory from any of the states to any other state.

Finally, we need an extra mechanism, the “goal approach”,
that deals with the challenge of reaching the base-level
goal itself from states that are close to the goal. Thus, our
planner first plans in the abstract space to reach the “goal
cluster”. After arriving at some state of the “goal approach
region”, the planner then uses the “goal-approach policy”
that, with high probability, moves the agent to the goal
state itself. These ideas form the core of our algorithm.

The three major contributions of the paper are: (i) a
novel theoretical analysis of option-based abstractions,
(ii) an effective algorithm for constructing high-quality
option-based abstractions, and (iii) experimental results
demonstrating that our algorithm performs effectively over
a range of problems of varying size and difficulty.

Section 2 formally describes our problem, and provides
the theoretical underpinning of our approach. Section 3
then presents our algorithm for automatically building
options-based abstractions, and Section 4, our planning
algorithm that uses these abstractions. Section 5 empiri-
cally evaluates this approach, in terms of both efficiency
and effectiveness (suboptimality). Finally, Section 6
summarizes related work.

2 Problem Formulation and Theory

This section formally defines stochastic shortest path
problems and the abstractions that we will consider. It
also presents a theoretical result that characterizes the
relationship between the performance of abstract policies
and policies of the original problem.

Definition 1 A Markov Decision Process (MDP) is de-
fined by a finite state space X = {1, . . . , n}; a finite set of
actions A(x) for each state x ∈ X; transition probabilities
p(y|x, a) ∈ [0, 1] that correspond to the probability that
the next state is y when action a is applied in state x;
immediate cost c(x, a, y) ∈ ℜ for all x, y ∈ X and all
a ∈ A(x) and a discount factor γ ∈ (0, 1].

The MDP is undiscounted if γ = 1. An action
a ∈ ∪x∈XA(x) is called admissible in state x if a ∈ A(x).

Definition 2 A (generic) policy is a mapping that assigns
to each history (x0, a0, c0, . . . , xt−1, at−1, ct−1, xt) an
action admissible in the most recent state xt. In general, a
mapping that maps possible histories to some set is called
a history dependent mapping.

Under mild conditions, it suffices to consider only station-
ary, deterministic policies (Bertsekas & Tsitsiklis, 1996),
on which we will focus:

Definition 3 A stationary and deterministic policy π is a
mapping of states to actions such that π(x) ∈ A(x) holds
for any state x ∈ X .

In what follows, we will use “policy” to mean stationary
and deterministic policies, unless otherwise mentioned.

The expected cost of policy π when the system starts
in state x0 is vπ(x0) = E [

∑∞

t=0 γ
tc(Xt, π(Xt),Xt+1)]

where Xt is a Markov chain with P (Xt+1 = y|Xt = x) =
p(y|x, π(x)). The function vπ is called the value-function
underlying policy π.

One “solves” an MDP by finding a policy that minimizes
the cost from every state, simultaneously. In this paper
we deal only with stochastic shortest path problems, a
subclass of MDPs. In these MDPs the problem is to get to
a goal state with the least cost:

Definition 4 A finite stochastic shortest path (SSP)
problem is a finite undiscounted MDP that has a special
state, called the goal state g, such that ∀a ∈ A(g), we have
p(g|g, a) = 1 and c(g, a, g) = 0 and the immediate costs
for all the other transitions are positive.

Consider a finite SSP (X,A, p, c). Let π be a stationary
policy. We say that this policy is proper if it reaches the
goal state g with probability one, regardless of the initial
state. Let Tπ : R

X → R
X be the policy’s evaluation

operator:

(Tπv)(x) =
∑

y∈X

p(y|x, π(x)) [c(x, π(x), y) + v(y)] .

Bertsekas and Tsitsiklis (1996) prove that Tπ is a con-
traction with respect to a weighted maximum norm,
‖·‖w,∞, with some positive weights, w ∈ R

X
+ , where

‖v‖w,∞ = maxx |v(x)|/w(x). In particular, w(x) can be

chosen to be the expected number of steps until π reaches
the goal state when started from x. The contraction coef-
ficient of Tπ , γπ , satisfies 1/(1 − γπ) = maxx∈X w(x).
Thus, 1/(1 − γπ) is the maximum of the expected number
of steps to reach the goal state, or in other words, the
maximum expected time policy π spends in the MDP (cf.
Prop 2.2 in Bertsekas & Tsitsiklis, 1996).

We adopt the notion of options from Sutton et al. (1999):

Definition 5 An option is a triple (π, I, ψ), where I ⊂ X
is the set of initial states, π is a (generic) policy that is

defined for histories that start with a state in I and ψ is
a history dependent mapping with range {0, 1}, called
the terminating condition. We say that the terminating
condition fires when ψ(ht) = 1. Let T > 0 denote the
random time when the terminating condition fires for the
first time while following π. (Note that T = 0 is not
allowed.) We assume that P (T < +∞) = 1, independent
of the initial state when the policy π is started (i.e., the
option terminates in finite time with probability one).

As suggested in the introduction, an abstraction is a way to
group states and the abstract actions correspond to options:

Definition 6 We say that the MDP (X̃ , Ã, p̃, c̃) is an
option-based abstraction of (X,A, p, c), if there exists a

mapping, S : X̃ → 2X specifying the states S(x̃) ⊂ X

that correspond to an abstract state x̃ ∈ X̃ , a set Π of
options abstracting the actions of the MDP and a mapping

Ψ : ∪x̃∈X̃
Ã(x̃) → Π such that for any ã ∈ Ã(x̃), if

Ψ(ã) = (I, π, ψ) then S(x̃) ⊂ I .1

Henceforth we will use “abstraction” instead of “option-

based abstraction” and will call (X̃ , Ã, p̃, c̃) the “abstract

MDP”, X̃ the set of abstract states, Ã the set of abstract
actions, etc. Notationally, we call (X,A, p, c) the ground
level MDP, and we will identify quantities related to the

abstract MDP by using a tilde (˜). For simplicity, we
will identify the abstract actions with their corresponding
options. In particular, we will call ã both an abstract action
and an option, depending on the context.

In the following, we will assume that {S(x̃) | x̃ ∈ X̃} is

a partition of X; we can then let x̃ : X → X̃ denote the

(unique) abstract state that includes x: x̃(x) ∈ X̃ such that

x ∈ S(x̃(x)), and say that (X̃ , S) is an aggregation of the
states in X . We also define S(x) = S(x̃(x)) as the set of
states in X that are in the same partition with x.

The restriction on Ψ in the above definition ensures that
the execution of any policy π̃ in the abstract MDP is
well-defined and proceeds as follows. Initially, there is
no active option. In general, whenever there is no active
option, we look up the abstract state x̃ = x̃(x) based on
the current state x and activate the option Ψ(π̃(x̃)). When
there is an active option, the option remains active until
the corresponding terminating condition fires. When an
option is active, the option’s policy selects the actions in
the ground level MDP. This way a policy π̃ in the abstract
MDP induces a policy in the ground level MDP.

Our goal now is to characterize what makes an abstraction
accurate. The following theoretical analysis is novel as it
considers abstractions where the action set is changed. In
particular, the action set can potentially be reduced and
the abstract actions can be options. To our knowledge,
such options-based abstractions have not been analyzed
previously; the closest results are probably Theorem 2 of
Kim and Dean (2003) and Theorem 4 of Dean, Givan, and
Leach (1997). The proof is rather technical and is given

12X denotes the power set of X: the set of all subsets of X .

in the extended version of our paper (Isaza, Szepesvári,
Bulitko, & Greiner, 2008).

Consider a proper policy π of the ground level MDP. We
want abstractions such that one can always find a policy in

the abstract MDP (X̃ , Ã, p̃, c̃) that approximates π well, no
matter how π was chosen. Clearly, this depends on how the

action set Ã and the corresponding transitions and costs
are defined in the abstract MDP. Quantifying this requires a
few definitions: Let p̃π(x̃, ỹ) be the probability of landing
in some state of S(ỹ) when following policy π until it
leaves the states of S(x̃), when the initial state is selected
at random from the states of S(x̃) based on the distribution
µS(x̃). Let c̃π(x̃) denote the corresponding expected
“immediate” cost. Now pick a proper policy π̃ of the
abstract MDP. Let w̃ be the weight vector that makes Tπ̃ a
contraction in the abstract MDP. Further, define p̃π̃(x̃, ỹ) =
p̃(ỹ|x̃, π̃(x̃)) and c̃π̃(x̃) =

∑
ỹ∈X̃

p̃π̃(x̃, ỹ)c̃π̃(x̃, ỹ) and the

mixed ℓ1/ℓ∞ norm ‖·‖w̃,1/∞:

‖p̃1 − p̃2‖w̃,1/∞ = max
x̃∈X̃

∑

ỹ∈X̃

|p̃1(x̃, ỹ) − p̃2(x̃, ỹ)|
w̃(ỹ)

w̃(x̃)
.

Let

επ,π̃ = ‖c̃π − c̃π̃‖w̃,∞ + cmax ‖p̃π − p̃π̃‖w̃,1/∞ , (1)

where cmax is the maximum of the immediate costs in the
ground level MDP. Hence, επ,π̃ measures how well the
costs and the transition probabilities induced by π “after
state aggregation” match those of π̃. Introduce c(x, π) as
the expected total cost incurred, conditioned on that policy
π starting in state x and stopping when it exits S(x). Fur-
ther, introduce p(ỹ|x, π) as the probability that, given that
policy π is started in state x, when it exits S(x) it enters

S(ỹ) (ỹ 6= x̃(x)). Now fix an abstract state x̃ ∈ X̃ . If the
costs {c(x, π)}x∈S(x̃) and probabilities {p(ỹ|x, π)}x∈S(x̃),
ỹ 6= x̃, have a small range then we can model closely the
behavior of π locally at S(x̃) by introducing an option
with initial states in S(x̃) which mimics the “expected”
behavior of π as it leaves S(x̃), assuming, say, that the
initial state in S(x̃) is selected at random according to
the distribution µS(x̃). If we do so for all abstract states

x̃ ∈ X̃ then we can make sure that minπ επ,π̃ is small. If
the above range conditions hold for all policies π of the

ground level MDP and all abstract states x̃ ∈ X̃ then by
introducing a sufficiently large number of abstract actions
it is possible to keep maxπ minπ̃ επ,π̃ small. Further,
notice that maxπ p(ỹ|x, π) is zero unless there exists a
transition from some state of S(x) to some state of S(ỹ),
in which case we say that S(x) is connected to S(ỹ).
Hence, no abstract action is needed “between” x̃ and ỹ,
unless S(x̃) is connected in the ground level MDP to S(ỹ).

Define T̃π : B(X̃) → B(X̃), (T̃π ṽ)(x̃) =
c̃π(x̃) +

∑
ỹ p̃π̃(x̃, ỹ)ṽ(ỹ). Since π is proper in the

ground level MDP, it is not difficult to show that T̃π is
a contraction with respect to an appropriately defined
weighted supremum norm.

The next result gives a bound on the difference of value
functions of π and π̃ in terms of επ,π̃:

Theorem 1 Let π be a proper policy in the ground level
MDP and let π̃ be a proper policy in the abstract MDP. Let
wπ (resp., w̃π) be the weight vector that makes Tπ (resp.,

T̃π) a contraction and let the corresponding contraction
factor be γπ (resp., γ̃π). Let vπ be the value function of π
and ṽπ̃ be the value function of π̃. Then

‖vπ − Eṽπ̃‖w,∞ ≤
‖Avπ − vπ‖w,∞

1 − γπ
+ λπ

επ,π̃

1 − γ̃π
,

where the operator E extends functions defined over X̃
to functions defined over X in a piecewise constant man-

ner: E : B(X̃) → B(X), (Eṽ)(x) = ṽ(x̃(x)), and
A : B(X) → B(X) is the aggregation operator defined by

(AV)(x) =
∑

z∈S(x)

µS(x)(z)V (z),

and λπ = maxx∈X w̃π(x̃(x))/wπ(x).

The factor λπ measures how many more steps are needed
to reach the goal if the execution of policy π is modified
such that, whenever the policy enters a new cluster x̃, the
state gets perturbed, by choosing a random state according
to µS(x̃).

The theorem provides a bound on the difference between
the value function of a ground-level policy π and the value
function of an abstract policy when its value function is
extended to the ground-level states. The bound has two
terms: The first bounds the loss due to state abstraction,
while the second bounds the loss due to action abstraction.
When a similar range condition holds for the abstract
actions, too, then it is possible to bound the difference
between the value function of the policy induced in the
ground level MDP by π̃ and Eṽπ̃ , yielding a difference on
the value functions of π and the policy induced by π̃. Isaza
et al. (2008) provides further details.

If we apply this result to an optimal policy π∗ of the
ground level MDP, we immediately get a bound on the
quality of the abstraction. We may conclude then that
the quality of abstraction is determined by the following
factors: (i) whether states with different optimal values are
aggregated; (ii) whether the random perturbation described
in the previous paragraph can increase the number of steps
to the goal substantially; and (iii) whether the immediate
costs c̃π∗ and transition probabilities p̃π∗ can be matched
in the abstract MDP.

Since we want to build abstractions that work inde-
pendently of where the goal is placed, the knowledge
of the optimal policy with respect to a particular goal
cannot be exploited when constructing the abstractions.
In order to prevent large errors due to (i) and (ii), we
restrict aggregation such that only a few states are grouped
together. This makes the job of creating an aggregation
easier. Fortunately, we can achieve higher compression by
adding additional layers of abstractions. We can address
(iii) by creating a sufficiently large number of abstract
actions. Here, we use the simplifying assumption that we
only create abstract actions that bring the agent from some
cluster of states to some neighboring cluster. These can

serve as a “basis” for matching any complex next-state
distribution over the clusters by choosing an appropriate
stochastic policy in the abstract MDP. We also want to
ensure that the initial state within a cluster has a small
influence on the probability of transitioning to some
neighboring cluster and the associated costs. We use two
constants, ε and µ, to bound the amount of variation with
respect to initial states; note this allows us to control the
difference between the value function of a policy induced
in the ground level MDP by some abstract policy π̃ and the
extension of the value function of π̃ defined in the abstract
MDP to the ground level states, Eṽπ̃ . This is necessary to
ensure that a good policy in the abstract MDP produces a
good policy in the ground-level MDP, ultimately assuring
that the optimal policy of the abstract MDP will give rise
to a close to optimal policy in the ground-level MDP. The
resulting procedure is described in the next section.

3 Abstracting an SSP

This section describes our algorithm BuildAbstraction
for automatically building options-based abstractions.
These abstractions are goal-independent and thus apply
to a series of SSPs that share the state space and transi-
tion dynamics. The process consists of four main steps
(Figure 1): (1) Cluster proposes candidates for abstract
states; (2) GenerateLinkCandidates proposes candidates
for abstract actions (or “links”); (3) Repair validates and, if
necessary, repairs the links in order to satisfy the so-called
(ε, µ)-connectivity property (the formal definition is given
later) and Prune discards excessive links.

Once an abstraction is built, we use a special-purpose
planning procedure (described in Section 4) to solve
specific SSPs. The rest of this section describes the four
steps of our BuildAbstraction algorithm in detail.

Step 1: Cluster. A straightforward cluster-er will cluster a
state with some of its immediate neighbors. Unfortunately,
this approach may group states with diverging trajectories
(the trajectories from one state can differ from those of the
other state). By looking for the peers of a state (predeces-
sors of its successors, line 2, Figure 1) we hope to find a
peer whose trajectories are similar to the trajectories of the
first state. Note that the clustering routine creates minimal
clusters. This is advantageous as it means the subsequent
steps, which connect clusters, is more likely to succeed.
Unfortunately, it also means relatively low reduction in the
number of states. Several layers of abstractions can help
increase this reduction.

Step 2: Generate Link Candidates. After forming the
initial clusters (i.e., the initial abstract states), BuildAb-
straction generates candidates for abstract actions. One
approach is simply to propose abstract actions for all pairs
of abstract states, in the hope that only important ones will
remain after pruning. We use a less expensive strategy and
propose abstract action candidates only for “nearby” clus-
ters (line 8). For each such pair we add two candidate links:
one in the forward and another in the backward direction —
this heuristic quickly generates reasonable link candidates.
We typically use k = 1. Our experiments confirm this is

BuildAbstraction(k, p, M) // M – ground level MDP
–Cluster–

1 for each unmarked ground state x do
2 Find P (x), all the predecessors of successors of x
3 Find y ∈ P (x) that has the most successors

in common with x

4 Add x̃ to X̃ with S(x̃) = {x, y}
5 Mark states {x, y}
6 end for
–GenerateLinkCandidates–
7 repairQ← ∅
8 for every x̃, ỹ ∈ X̃ , where any state in S(ỹ) is

within k ground transitions of some state in S(x̃) do
9 repairQ← repairQ ∪ {(x̃, ỹ), (ỹ, x̃)}

10 end for
–Repair–

11 while repairQ 6= ∅ do
12 (x̃, ỹ)← pop an element from repairQ
13 set up an SSP, S, with domain R ⊂ X

where S(x̃)∪S(ỹ) ⊂ R with states in S(ỹ) as goals
14 attempt to find an optimal policy πS in S with IPS
15 if no policy found then
16 continue
17 else if πS does not meet the (ε, µ) conditions then
18 split the cluster adding both parts to repairQ
19 else

20 add ã to Ã(x̃) with Ψ(ã) = (S(x̃), πS , IS(ỹ))
2

21 set c̃(x̃, ã) to be the expected cost of
executing ã from a random state of x̃

22 set p̃(ỹ|x̃, ã) = 1, p̃(ỹ′|x̃, ã) = 0 for ỹ′ 6= ỹ.
23 end if
24 end while
–Prune–

25 for each state x̃ do

26 find Ã∗(x̃) = {ã1, . . . , ãm}, all abstract actions
that connect clusters that are neighbors in M

27 order Ã(x̃) \ Ã∗(x̃) to create [ãm+1, . . . , ãn] such
that c̃(x̃, ãi) ≤ c̃(x̃, ãi+1), i = m + 1, . . . , n− 1

28 let Ã(x̃) = {ã1, . . . , ãp}
29 end for

30 return (X̃, Ã, p̃, c̃).

Figure 1: The abstraction algorithm.

sufficient; increasing k results in slightly better quality, but
slower running times when solving the planning problems.

Step 3: Repair. For each candidate abstract action connect-
ing abstract states x̃ and ỹ, we first need to derive an option
that, starting in any state in cluster x̃ leads the agent to some
state in cluster ỹ with a minimum total expected cost. We
derive this option by setting up a shortest path problem S,
whose domain includes S(x̃) and S(ỹ). We set the domain
of S to be sufficiently large that a policy within this domain
can reliably take the agent from any state of S(x̃) to some
state of S(ỹ). BuildAbstraction builds this domain by
performing a breadth-first search from S(ỹ), proceeding
backwards along the transitions, stopping at depth D +m,
whereD is the search depth from S(ỹ) andm is the margin
to leave after all states of S(x̃) were added to the domain.
If there is any state of S(x̃) that was not included at depth
D, the Repair routine reports ‘no solution’. The transitions,
actions and costs of S are inherited from the MDPM . We
also add a new terminating state, which is the destination

2Here IS is the characteristic function of S: IS(x) = 1 iff
x ∈ S and IS(x) = 0 otherwise.

of transitions leaving the region — i.e., those transitions
are redirected to this new terminal, with a transition cost
that exceeds the maximum of the total expected costs of the
ground level MDP. The high cost discourages the solutions
to enter the extra terminating state. The optimal solution
to S is obtained by using the Improved Prioritized Sweep-
ing (IPS) algorithm of McMahan and Gordon (2005),
(line 14). We selected this algorithm based on its excellent
performance and known optimality properties (IPS reduces
to Dijkstra’s method in deterministic problems). The
resulting policy π is checked against (ε, µ)-connectivity,
defined as follows: we first compute the expected total
cost of reaching some states in S(ỹ) for all states of S(x̃);
let the resulting costs be c(x, π). Similarly, we compute
the probabilities p(S(ỹ)|x, π) for every x ∈ S(x̃). Then
we check if maxx,x′∈S(x̃) |c(x, π) − c(x′, π)| ≤ ε and

maxx,x′∈S(x̃) |p(S(ỹ)|x, π) − p(S(ỹ)|x′, π)| ≤ µ both
hold. If these constraints are met, a new abstract action
is created and is added to the set of admissible actions
at x̃ and the policy is stored as the option corresponding
to this new abstract action (lines 20–22). Otherwise, the
cluster is split (since every cluster has two states, this is
trivial) and the appropriate link candidates are added to the
repair queue so that no link between potentially connected
clusters is missed.

Step 4: Prune. After step 3, we have an abstract SSP whose
abstract states are (ε, µ)-connected. However, our abstract
action generation mechanism may produce too many
actions, which may slow down the planning algorithm (see
Section 4). We address this problem using a pruning step
that leaves only the “critical” and cheapest abstract actions.
An action is “critical” if it connects clusters that are
connected at the ground level with a single transition; these
actions are important to keep the structure of the ground
level MDP. We also keep the cheapest abstract actions
as they are likely to help achieve high quality solutions.
The “pruning parameter”, p, specifies the total number of
actions to keep. (If p is smaller or equal than the number of
ground actions, then only the “critical” actions are kept.)

BuildAbstraction runs in time linear in the size of the
input MDP, as every step is restricted to some fixed size
neighborhood of some state (i.e., every step is local). Fur-
ther, employing a suitable data structure, the memory re-
quirements can also be kept linear in the size of the input.
These properties are important when scaling up to realistic,
real-world problem sizes.

4 Planning with an Abstraction

After building an abstraction, we can use it to solve
particular SSP problems. When we specify a new goal,
our abstraction planner, AbsPlanner, then creates a
goal-approach region in the abstract MDP that includes
the goal and is large enough to include all states of the
cluster containing the goal. AbsPlanner builds this region
by starting with the ground goal and adding states and
transitions in a breadth-first fashion to a certain depth,
proceeding backwards along the transitions, stopping only
after adding all states of the goal-cluster. After building the
region, AbsPlanner produces an SSP. The domain of this

SSP includes the states found in the breadth-first search,
and also a new terminal state that becomes the destination
of transitions leaving the region — i.e., those transitions
are redirected to this new terminal, with a high transition
cost. All other costs and transitions of this SSP are inher-
ited from the ground level MDP. AbsPlanner uses IPS to
solve the local MDP, and saves the resulting goal-approach
policy. It then solves the abstract MDP, where the goal
cluster is set as the goal. When executing the resulting
policy π̃, AbsPlanner proceeds normally until reaching a
state of the goal-approach region; it then switches to the
goal-approach policy, which it follows until reaching the
goal or leaving the region. When this latter event happens
and the state is x, execution switches to the option π̃(x̃(x)).

When using multiple levels of abstraction, AbsPlanner’s
execution follows a recursive, hierarchical strategy. Note
that the size of the goal-approach region is independent of
the size of the MDP. Thus, the planning time will depend
on the size of the top-level abstract MDP. For an MDP of
size n, by using log n levels of hierarchy, in theory it is then
possible to achieve planning times that scale withO(log n).
However, depending on the problem, it might be hard to
guarantee high quality solutions when using many levels
of abstraction. Furthermore, in practice (over the problems
used in our tests), the computation time is dominated by the
time needed to set up and solve the goal-approach SSPs,
which is required for even one layer of abstraction. This
is partly because our abstractions result in deterministic
shortest path problems, whose solutions can be found
significantly faster than those of stochastic problems.

5 Empirical Evaluation

This section summarizes our empirical evaluation of this
approach, in terms of the quality (suboptimality) of the
solutions and the solution times. Here we report the trade-
offs of using different levels of abstraction as well as the
dependence on the “stochasticity” of the transitions. (Note
that stochasticity makes it difficult to build abstractions.)
We also tested the performance of the algorithm on more
practical problems. In addition to the results presented
here, we conducted extensive experiments, studying the
trade off between solution quality and solution time as a
function of the various parameters of our algorithm (e.g.,
the values of p, k, or the number of abstraction levels), the
scaling behavior of our algorithm in terms of its resource
usage, the quality of solutions and the solution time. These
results, appearing in (Isaza et al., 2008), confirm that the
algorithm is robust to the choices of its parameters and
scales as expected by increasing problem sizes.

We run experiments over three domains: noisy gridworlds,
a “river” and congested game maps. The gridworlds are
empty and have four actions: up, down, left, and right,
each with cost 1. The probability that an action leaded to
the expected position (e.g., the action up moves the agent
up one cell) is 0.7, while the probability of reaching any of
the other three adjacent cells is 0.1.

The river is similar to the gridworld: its dimensions are
w × h, but there is a current flowing from left to right

and a fork corresponding to a line connecting the points
(w/2, h/2) and (w, h/2).3 The flow is represented by
modifying both the cost structure and the transition prob-
abilities of the actions: action forward costs 1, backward
costs 5, diagonally-up-and-forward and diagonally-down-

and-forward each cost
√

2. These actions are also stochas-
tic: For the backward action, the probabilities are 0.7 for
going back and 0.1 for each of the other actions. For the
other three actions, the anticipated move occurs with prob-
ability 0.6 and the other moves except backwards occur
each with probability 0.2, and backwards has probability
0. We include the river domain to determine whether our
system can deal with non-uniform structures and because
the fork complicates the task of creating abstractions. We
empirically found the time to build abstractions for the
n-state gridworld was close to n/100 seconds, and around
n/50 for an n-state river domain. The build time for the

maps, using k = 1, was between 75 and 100 seconds.4

The congested game maps are again similar to gridworlds,
but with obstacles and with transitions probabilities that
depend on the congestion. The obstacle layout comes
from commercial game maps, and the stochastic dynamics
simulate what happens if multiple units traverse the same
map: in narrow passages, the units to become congested,
which means an agent trying to traverse such a passage
is likely to be blocked. We model this by modifying
each action by including a probability that the action will
“fail” and cause the agent to stay at the same position.
This “failure probability” depends on the position on the
game map, calculated by simulating many units randomly
traversing the game maps and measuring the average occu-
pation of the individual cells, then turning the occupation
numbers into probabilities. The optimal policy of an agent
in a congested game map will then try to avoid narrow
passages, since the higher probability of traffic congestion
in such regions means an agent takes much longer to get
through those regions.

The baseline performance measures are obtained by
running the state-of-the-art SSP solver algorithm IPS. For
each study, we generate the abstraction and then use it
to solve 1,000 problems, whose start and goal locations
are selected uniformly at random. For each problem we
measure the solution time in seconds and the total solution
cost for both IPS and our method, then compute the
geometric average of the individual suboptimalities and
the individual solution time ratios.

5.1 Abstraction level trade-offs

We used a 100× 100 gridworld to analyze the trade-offs of
different abstraction levels, with several different parame-
ter configurations. We say a configuration is “dominant” if
it was a Pareto optimal — i.e., if no other configuration is
better in both time and suboptimality.

Figure 2 presents properties of the dominant configurations

3See (Isaza et al., 2008) for more details, including relevant
pictures.

4We ran all experiments on a 2GHz AMD Opteron(tm)
Processor with 4GB of RAM running Linux with kernel 2.6.18.

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

S
u
b
o
p
ti
m

a
lit

y

Solution time ratio

Suboptimality vs. Speed-up on a 100x100 gridworld

level 0
level 1
level 2
level 3
level 4
level 5

Figure 2: Subobtimality versus the solution time ratio as
compared to IPS for different parameter configurations.
The dominant configurations are shown for different levels
of abstraction.

for various abstraction levels. We see that using a smaller
number of abstractions required more time but produced
better solutions (i.e., lower suboptimality), and higher
levels of abstractions required less solution time but
produced inferior solutions (i.e., increased suboptimality).
Note that there are dominant configurations for every level
of abstraction, from 0 to 5.

We obtain a “level 0” abstraction by converting the given
ground-level SSP to deterministic shortest path problem
with the same states. (Recall that our abstraction process
abstracts the state space and produces a deterministic SSP;
here we just used the original state space.) Figure 2 shows
that this transformation provides solutions whose quality
is slightly inferior to the original problem, but it finds this
solution significantly faster (e.g., in 0.005 to 0.0073 of
the time). We also see that these “level 0” solutions are
superior to those based on higher abstraction levels, but
one can obtain these level-i solutions in yet less time.

5.2 Sensitivity to Stochasticity of the Dynamics

As the environment becomes noisier, it becomes more dif-
ficult to construct a high quality abstraction. This section
quantifies how the solution quality and construction time
relate to noise in the dynamics. In general, we consider an
action “successful” if the agent moves to the appropriate
direction; our gridworld model set the success probability
to P = 0.7, leaving a probability of (1 − P)/3 to moving
in each of the other three directions. Here, we vary the
value of P . All of these experiments use a 50 × 50
gridworld with k = 2 and p = 4 (which means we keep
only the “critical” actions; see Section 3).

Figure 3 plots the suboptimality and the speed-up of
finding a solution using our method, as compared to IPS,
for different values of P . We see that our method loses
optimality as the dynamics becomes noisier (i.e., when P
gets smaller). This is because our abstract actions, trying
to move the agent from one abstract state to the next will
fail with higher probability for noisier dynamics. Note

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0.02 0.03 0.04 0.05

S
u
b
o
p
ti
m

a
lit

y

Solution time ratio

Suboptimality vs. speed-up on a 50x50 gridworld

0.40

0.46

0.52

0.55
0.58

0.64 0.76
0.82

0.85

0.88
0.94

Figure 3: Subobtimality versus the solution time ratio as
compared to IPS for different values of P .

that the advantage of our method, in terms of planning
time, becomes larger with increased stochasticity. This is
because our abstractions are deterministic and planning in
a deterministic system is much faster than planning with a
stochastic system.

Figure 4, plotting the absolute values of cost and time
for both our method and IPS, provides another insight: It
shows that for increasing stochasticity both methods are
slowed down, but our method can cope better with this
situation. This figure also confirms that this leads to a loss
in solution quality.

For our method the typical parameters produce a subop-
timality of around 1.4 for the river, and around 1.25 for
the gridworld domain. The speed-up for the gridworld is
around 30, while for the river it is around 800.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.01 0.1 1 10 100

C
o

s
t

Solution time (s)

Cost vs. solution time trade-off in a 50x50 gridworld

IPS
Abstraction

0.94
0.76

0.64
0.58

0.52

0.46

0.40

0.94
0.76

0.64
0.58

0.52

0.46

0.40

Figure 4: Cost versus solution time for IPS and abstraction
at different values of P .

5.3 Congested Game Maps

To test the performance of our approach in a more practical
application, we used maps modeled after game environ-
ments from commercial video games. We first created
simplified gridworlds that resemble some levels from a

Figure 5: A congested game map. Darker/redder
color refers to high congestion. Dark blue regions are
impassable obstacles.

popular role-playing and real-time-strategy game. We then
converted the gridworlds into congested maps as described
earlier. This produced maps with state space sizes of
6176 (BG1), 5672 (BG2), 5852 (BG3), 20249 (WC1) and
9848 (WC2). Figure 5 provides one such map, where
each state’s color indicates the associated congestion:
warmer/redder colors indicates high congestion (i.e.,
low probability of success P) while colder/bluer colors
indicates low congestion (i.e., high value of P). Very dark
blue indicates impassable obstacles. We see that many
of the states in cluttered regions are highly congested and
should therefore be avoided.

Figure 6 shows the solution time and the solution subopti-
malities for both our method and IPS, for two maps from
WarCraft (Blizzard Entertainment, 2002) and three maps
from Baldur’s Gate (BioWare Corp., 1998), including
Figure 5, using only a single layer of abstraction. We see
that our approach is indeed successful in speeding up the
planning process, while keeping the quality of the resulting
solutions high.

6 Related Work

Due to space constraints we review only the most relevant
work; references to other related works can be found in the
extensive bibliography lists of the cited works. Dean et al.
(1997) introduced the notion of ε-homogeneous partitions
and analyzed its properties, but without giving explicit
loss bounds. Kim and Dean (2003) developed some loss
bounds. Their Theorem 2 can be strengthened with our
proof method to ‖v∗ − v∗P ‖∞ ≤ ‖Tv∗P − v∗P ‖∞ /(1 − γ)
(using our notation), basically dropping the first term
in their bound. Here v∗ is the optimal value function
in the original MDP, v∗P is the optimal value function
of the aggregated MDP extended back to the original
state space in a piecewise constant manner and T is the
Bellman-optimality operator in the original MDP. This
bound is problematic as it does not show how the quality of

partitions influences the loss. Our bound improves on this
bound in this respect, and also by extending it to the case
when the abstract actions correspond to options. While
Asadi and Huber (2004) also considered such options-
based abstractions, they assume that the abstract actions
(options) are given externally (possibly by specifying goal
states for each of them) and they do not develop bounds.
In a number of subsequent papers, the authors refined
their methods. In particular, they became increasingly
focussed on learning problems. For example, in the recent
follow-up work, Asadi and Huber (2007) provide a method
to learn an abstract hierarchical representation that uses
state aggregation and options. Since they are interested
in skill transfer through a series of related problems that
can differ in their cost structure, they introduce a heuristic
to discover subgoals based on bottleneck states. They
learn options for achieving the discovered subgoals and
introduce a partitioning that respects the learned options
(in the clusters typically there are many states). The
success of the approach relies critically on the existence of
meaningful bottleneck states. This leads to a granularity
issue: identifying the bottleneck states requires computing
a statistic for each state visited, meaning bottlenecks
will not be pronounced if resolution is increased in
narrow pathways. Nevertheless, the approach has been
successfully tested in a non-trivial domain of 20,000 states.

Hauskrecht, Meuleau, Kaelbling, Dean, and Boutilier
(1998) introduce a method that also uses options, but the
abstract states correspond to boundary states of regions.
The regions are assumed to be given a priori. The idea is
similar to using bottleneck states. In contrast to that work,
we do not assume any prior knowledge, but construct
the abstractions completely autonomously. Further, we
deal with undiscounted SSPs, while Hauskrecht et al.
(1998) dealt with discounted MDPs (but this difference is
probably not crucial).

7 Discussion and Future Directions

In the approach presented, options serve as closed-loop
abstract actions. Another way to use an abstract solution
would be to use the abstract value function to guide local
search initiated from the current state. These ideas has
proven successful in pattern-database research where
the cost of an optimal solution of an abstract problem
is used as a powerful heuristic for the original problem.
Such a procedure has the potential to improve solution
quality, while keeping low the cost of the planning steps
interleaved with execution. Another idea is to use the ab-
straction to select the amount of such local search (i.e., the
depth of the rollouts); these ideas has proven successful in
deterministic environments (Bulitko, Björnsson, Luštrek,
Schaeffer, & Sigmundarson, 2007; Bulitko, Luštrek,
Schaeffer, Björnsson, & Sigmundarson, 2008).

Presently, our abstractions are deterministic. This suggests
two avenues for future work. First, applying advanced
heuristic search methods to such abstractions may lead to
performance gains. Second, in highly stochastic domains,
the abstraction’s determinism may lead to a poor quality
of solution, as the cost of ensuring arrival at an abstract

 0.01

 0.1

 1

 10

WC 1 WC 2 BG 1 BG 2 BG 3

S
o

lu
ti
o

n
 t

im
e

 (
s
)

Map

Solution time for different game maps

IPS
Abstraction

 1

 1.01

 1.02

 1.03

 1.04

 1.05

WC 1 WC 2 BG 1 BG 2 BG 3

S
u

b
o

p
ti
m

a
lit

y

Map

Solution suboptimality for different game maps

Figure 6: Solution times (left) and suboptimalities (right) for several game maps.

state with certainty (or very high probability) can lead to
very conservative and costly paths. Thus, it would be of
interest to investigate stochastic abstractions. One idea
is to modify the way abstract actions are defined: When
planning to connect to abstract states after a solution of the
local SSP is found, with a little extra work we can compute
the probabilities of reaching various neighboring abstract
states under the policy found when the policy leaves the
region of interest.

Yet another avenue for future work would be to move
from a state-based problem formulation to a feature-based
one, assuming that the features describe the states. The
challenge is to design an algorithm that can construct an
abstraction without enumerating all the states, as ours
currently does. Although this paper has not attempted
to address this problem, we believe that the approach
proposed here (i.e., incremental clustering and defining
options by solving local planning problems) is applicable.

Finally, although the present paper dealt only with undis-
counted, stochastic shortest path problems, the approach
can be extended to work for discounted problems. This
holds because a discounted problem can always be viewed
as an undiscounted stochastic shortest path problem where
every time step a transition is made to some terminal state
with probability 1 − γ, where 0 < γ < 1 is the discount
factor.

8 Conclusions

This paper has explored ways to speed up planning in
SSP problems via goal-independent state and action
abstraction. We strengthen existing theoretical results, then
provide an algorithm for building abstraction hierarchies
automatically. Finally, we empirically demonstrate the
advantages of this approach by showing that it works
effectively on SSPs of varying size and difficulty.

Acknowledgements

We gratefully acknowledge the insightful comments by the
reviewers. This research was funded in part by the National
Science and Engineering Research Council (NSERC), iCore and
the Alberta Ingenuity Fund.

References

Asadi, M., & Huber, M. (2004). State space reduction for hierar-
chical reinforcement learning. In FLAIRS, pp. 509 – 514.

Asadi, M., & Huber, M. (2007). Effective control knowl-
edge transfer through learning skill and representation
hierarchies. In IJCAI, pp. 2054 – 2059.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-Dynamic
Programming. Athena Scientific, Belmont, MA.

BioWare Corp. (1998). Baldur’s Gate. November 30, 1998.

Blizzard Entertainment (2002). Warcraft III: Reign of Chaos.
July 3, 2002.

Bulitko, V., Björnsson, Y., Luštrek, M., Schaeffer, J., & Sig-
mundarson, S. (2007). Dynamic Control in Path-Planning
with Real-Time Heuristic Search. In ICAPS, pp. 49–56.

Bulitko, V., Luštrek, M., Schaeffer, J., Björnsson, Y., & Sig-
mundarson, S. (2008). Dynamic Control in Real-Time
Heuristic Search. JAIR. In press.

Bulitko, V., Sturtevant, N., Lu, J., & Yau, T. (2007). Graph Ab-
straction in Real-time Heuristic Search. JAIR, 30, 51–100.

Dean, T., Givan, R., & Leach, S. (1997). Model reduction
techniques for computing approximately optimal solutions
for Markov decision processes. In UAI, pp. 124–131.

Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean, T., &
Boutilier, C. (1998). Hierarchical solution of Markov deci-
sion processes using macro-actions. In UAI, pp. 220 – 229.

Isaza, A., Szepesvári, C., Bulitko, V., & Greiner, R. (2008).
Speeding up planning in Markov decision processes
via automatically constructed abstraction. Tech. rep.,
Computing Science, U. Alberta. http://www.cs.
ualberta.ca/˜szepesva/RESEARCH/PRMDP.

Kim, K., & Dean, T. (2003). Solving factored MDPs using
non-homogeneous partitions. Artificial Intelligence, 147,
225–251.

McMahan, H. B., & Gordon, G. J. (2005). Fast exact planning in
Markov decision processes. In ICAPS, pp. 151–160.

Sturtevant, N. (2007). Memory-efficient abstractions for
pathfinding. In AIIDE, pp. 31–36.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs
and semi-MDPs: a framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112(1–2),
181–211.

