
Cumulative distribution networks and
the derivative-sum-product algorithm

Jim C. Huang and Brendan J. Frey
Probabilistic and Statistical Inference Group, University of Toronto

10 King’s College Road, Toronto, ON
M5S 3G4, Canada

Abstract
We introduce a new type of graphical model
called a ‘cumulative distribution network’
(CDN), which expresses a joint cumulative
distribution as a product of local functions.
Each local function can be viewed as pro-
viding evidence about possible orderings, or
rankings, of variables. Interestingly, we find
that the conditional independence properties
of CDNs are quite different from other graph-
ical models. We also describe a message-
passing algorithm that efficiently computes
conditional cumulative distributions. Due to
the unique independence properties of the
CDN, these messages do not in general have a
one-to-one correspondence with messages ex-
changed in standard algorithms, such as be-
lief propagation. We demonstrate the appli-
cation of CDNs for structured ranking learn-
ing using a previously-studied multi-player
gaming dataset.

1 Introduction
Probabilistic graphical models are widely used for
compactly representing joint probability density func-
tions (PDFs)1. While such models have been success-
fully applied to a variety of problems, there are many
tasks in which the joint probability density does not
arise naturally and other representations may be more
appropriate. In particular, the cumulative distribution
function (CDF) is a probabilistic representation which
arises frequently in a wide variety of applications such
as ranking learning [9], survival analysis and data cen-
suring [3]. In the setting of ranking learning, the goal
is to model an ordinal variable y given an input set
of features x while accounting for noise in the ranking
process. The conditional CDF here accounts for the
ordinal nature of y in addition to model uncertainty.

1We use PDF in reference to either the probability den-
sity function in the case of continuous random variables or
the probability mass function in the case of discrete ran-
dom variables

For problems of ranking learning that exhibit structure
in the form of predicting multiple ordinal variables, a
more flexible representation is required. Examples of
this type of problem include predicting movie ratings
for multiple movies or predicting multiplayer game
outcomes with a team structure [4]. In such settings,
we may wish to model not only stochastic ordering
relationships between variable states, but also pref-
erences between model variables and stochastic inde-
pendence relationships between variables. This re-
quires representing the joint CDF of many variables
whilst explicitly accounting for both marginal and con-
ditional independencies between variables.

Motivated by the above two problems, we present
the cumulative distribution network (CDN), a novel
graphical model which describes the joint CDF of a set
of variables instead of the joint PDF. We show that
CDNs provide a compact way to represent stochas-
tic ordering relationships amongst variables and that
the conditional independence properties of CDNs are
quite different from previously studied graphical mod-
els describing PDFs (Bayesian networks [12], Markov
random fields [6], factor graphs [7] and chain graphs
[1]). In contrast to those, marginalization in CDNs in-
volves tractable operations such as computing deriva-
tives of local functions. We derive relevant theorems
and lemmas for CDNs and describe a message-passing
algorithm called the derivative-sum-product algorithm
(DSP) for performing inference in such models. Fi-
nally we present results on an application to structured
ranking learning in a multiplayer online game setting.

1.1 Example: Expressing conditional
dependencies between variables

To illustrate a situation in which we have a set of con-
ditional dependence relationships that cannot be rep-
resented by either a Markov random field or a Bayesian
network, consider the following probability model with
4 binary variables X1, X2, X3, X4.

From the above probability model, we can establish

x1 x2 x3 x4 P (x1, x2, x3, x4)
0 0 0 0 343/1800
0 0 0 1 392/1800
0 0 1 0 105/1800
0 0 1 1 168/1800
0 1 0 0 105/1800
0 1 0 1 120/1800
0 1 1 0 87/1800
0 1 1 1 120/1800
1 0 0 0 49/1800
1 0 0 1 56/1800
1 0 1 0 15/1800
1 0 1 1 24/1800
1 1 0 0 63/1800
1 1 0 1 72/1800
1 1 1 0 33/1800
1 1 1 1 48/1800

Table 1: Example probability model over 4 binary vari-
ables X1, X2, X3, X4.

that X1 /⊥⊥X3|X2 (i.e.: X1 is dependent of X3 given
X2), as P (x1, x3|x2) 6= P (x1|x2)P (x3|x2):

P (x1, x3|x2) P (x1|x2)P (x3|x2)
x1, x3 x2 = 0 x2 = 1 x2 = 0 x2 = 1
0,0 245/384 75/216 245/384 80/216
0,1 91/384 69/216 91/384 64/216
1,0 35/384 45/216 35/384 40/216
1,1 13/384 27/216 13/384 32/216

One can also verify that X2 /⊥⊥X4|X3, X1 /⊥⊥X2,
X2 /⊥⊥X3, X3 /⊥⊥X4, X1 ⊥⊥ X4, X1 ⊥⊥ X3, X2 ⊥⊥ X4

from the above joint probability. In fact, we cannot
represent the above set of conditional independence
and dependence relationships using either a Markov
random field, a Bayesian network or a factor graph,
as X1 /⊥⊥X3|X2 and X1 ⊥⊥ X3 cannot be simultane-
ously satisfied under such frameworks (similarly for
X2 /⊥⊥X4|X3 and X2 ⊥⊥ X4). Attempting to construct
a directed model would lead to the introduction of di-
rected cycles (Figure 1(a)) and would not be valid as
a Bayesian network. However, the probability model
in this example can be represented in compact form
as a CDN (Figure 1(b)), which we will now proceed to
define.

2 Cumulative distribution networks
(CDNs)

Let X = {X1, · · · , XK} denote a collection of K
real-valued ordinal random variables. Let x =
(x1, · · · , xK) denote a vector of assignments for these
variables under a joint PDF given by P (x) =

(a)

(b)

x y φ(x, y)
0 0 7

10
0 1 8

10
1 0 8

10
1 1 1

(c)

Figure 1: a) Attempting to construct a directed model
that encodes all conditonal independence and depen-
dence relationships in the model of Table 1 leads to di-
rected cycles, which are improper; b) The correspond-
ing cumulative distribution network (CDN) over the 4
variables X1, X2, X3, X4; c) Function φ(x, y) used to
construct the CDN in Table 1.

P (x1, · · · , xK) = Pr{X1 = x1, · · · , XK = xK}. Sim-
ilarly, let X \ Xk denote the set X with Xk deleted.
Let Xs denote some subset of the set of variables X.
We will often resort to the differentiation or finite dif-
ference operator with respect to a set of variables Xs:

we will use the notation ∂xs

[

·
]

to denote this.

Our analysis here assumes the existence of the joint
PDF P (x) over a set of variables. The joint CDF
F (x) = F (x1, · · · , xK) = Pr{X1 ≤ x1, · · · , XK ≤
xK} is defined as a function over {x1, · · · , xK} such

that ∂x

[

F (x)
]

= P (x) and

sup
x

F (x) = 1 (1)

inf
xk

F (xk,x \ xk) = 0 ∀k = 1, · · · , K (2)

∂xs

[

F (xs,x \ xs)
]

≥ 0 ∀Xs ⊆ X (3)

We will now define the concept of a cumulative dis-
tribution network as a graphical model that efficiently
expresses a CDF as a product of local functions, each
of which captures a local cumulative distribution func-
tion.

Definition. For K random variables X1, · · · , XK, the
cumulative distribution network (CDN) is an undi-
rected bipartite graphical model consisting of a set of
variable nodes corresponding to variables in X, cu-
mulative function nodes defined over subsets of these
variables, a set of undirected edges linking variables to
functions and a specification for each cumulative func-
tion. More precisely, let C denote the set of cumula-
tive functions so that for c ∈ C, φc(xc) is a cumulative
function defined over neighboring variables Xc. Let
N(Xi) = {c ∈ C|Xi ∈ Xc} denote the set of all neigh-
boring functions for variable Xi and let N(φc) = Xc be
the set of variable nodes that φc is connected to. Simi-

larly, let N(Xs) =
⋃

Xi∈Xs
N(Xi) denote the set of all

neighboring functions for variable set Xs. For a CDN
with K variable nodes, the joint CDF of X1, · · · , XK

is given by

F (x) = F (x1, · · · , xK) =
∏

c∈C

φc(xc). (4)

As an example CDN, consider a joint CDF over 3 vari-
ables X, Y, Z which can be expressed as

F (x, y, z) = φa(x, y)φb(x, y, z)φc(y, z)φd(z). (5)

This can be represented using the undirected graph
shown in Figure 2, where each function node corre-
sponds to one of the functions φc(xc).

Figure 2: A cumulative distribution network (CDN)
over 3 variables and 4 functions.

In order for the CDN to describe a joint CDF that cor-
responds to a valid PDF, we require that each of the
cumulative functions satisfy φc(xc) ≥ 0. Furthermore,
we will assume in the sequel that the derivatives/finite
differences of each φc(xc) with respect to all of its ar-
gument variables can be properly computed. Finally,
to satisfy the basic properties (1) to (3), the functions
φc(xc) must satisfy the following conditions.

Positive convergence For all c ∈ C, (1) holds if

sup
xc

φc(xc) = 1. (6)

We note that the former condition (6) is a sufficient,
but not a necessary condition for (1) to hold, as we
could allow for functions to converge to different limits
whilst retaining the property that sup

x
F (x) = 1.

Negative convergence For any Xi ∈ X, (2) holds
if and only if at least one of its neighboring functions
φc(xc) goes to zero as xi goes to zero, i.e.

∀Xi, ∃c ∈ N(Xi) | inf
xi

φc(xc) = 0. (7)

This can be proven as follows. For any Xi ∈ X, c ∈
N(Xi), if infxi

φc(xc) = 0, then infxi
F (x) = 0, as

inf
xi

F (x) = inf
xi

∏

c∈N(Xi)

φc(xi,xc \ xi)
∏

c/∈N(Xi)

φc(xc)

=
∏

c/∈N(Xi)

φc(xc)
∏

c∈N(Xi)

inf
xi

φc(xi,xc \ xi)

= 0.

Conversely,

inf
xi

F (x) = inf
xi

∏

c∈N(Xi)

φc(xi,xc \ xi)
∏

c/∈N(Xi)

φc(xc) = 0

⇒ ∃c ∈ N(Xi)| inf
xi

φc(xc) = 0.

Monotonicity For any x such that F (x) > 0 and for

any Xi ∈ X, ∂xi

[

F (x)
]

≥ 0 holds if and only if

∑

c∈N(Xi)

∂xi

[

φc(xc)
]

φc(xc)
≥ 0. (8)

To prove this, since F (x) =
∏

c∈C φc(xc), we have

∂xi

[

F (x)
]

= ∂xi

[

∏

c∈N(Xi)

φc(xc)
∏

c/∈N(Xi)

φc(xc)
]

=
∏

c∈C

φc(xc)
∑

c∈N(Xi)

1

φc(xc)
∂xi

[

φc(xc)
]

= F (x)
∑

c∈N(Xi)

1

φc(xc)
∂xi

[

φc(xc)
]

≥ 0

⇒
∑

c∈N(Xi)

∂xi

[

φc(xc)
]

φc(xc)
≥ 0.

Conversely,

∑

c∈N(Xi)

1

φc(xc)
∂xi

[

φc(xc)
]

= ∂xi

[

log
∏

c∈N(Xi)

φc(xc)
]

= ∂xi

[

log
F (x)

∏

c/∈N(Xi)
φc(xc)

]

= ∂xi

[

log F (x)
]

=
1

F (x)
∂xi

[

F (x)
]

≥ 0⇒ ∂xi

[

F (x)
]

≥ 0.

The above result points to a sufficient condition for the
CDN to correspond to a valid PDF, as demonstrated
by the following lemma.

Lemma For all φc, Xi ∈ N(φc), ∂xi

[

F (x)
]

≥ 0 if

∂xi

[

φc(xc)
]

≥ 0. To prove this, since φc(xc) ≥ 0 ∀c ∈

C, we see that ∂xi

[

φc(xc)
]

≥ 0 immediately satisfies

∑

c∈N(Xi)

∂xi

[

φc(xc)

]

φc(xc)
≥ 0.

More generally, the above also holds for derivatives
with respect to subsets of variables xs. That is, for all
c ∈ C, Xc = N(φc) and all possible subsets of variables
Xs ⊆ Xc such that F (xs,x \ xs) is strictly positive,

∂x

[

F (x)
]

≥ 0 holds if ∂xs

[

φc(xc)
]

≥ 0. This can be

proven by noting that computing higher-order deriva-
tives of F (x) yields sums over products of derivatives,

so if φc(xc) and all higher-order derivatives with re-
spect to each of their arguments are non-negative, then
the resulting joint CDF must be monotonically non-
decreasing and so (3) is satisfied.

3 Marginal and conditional
independence properties of CDNs

In this section, we will highlight the marginal and con-
ditional independence properties of CDNs, the latter of
which significantly differ from those of graphical den-
sity models such as Bayesian networks, Markov ran-
dom fields and factor graphs.

Theorem (Marginal Independence). Two disjoint
sets of variables Xs and Xt are marginally independent
if there are no cumulative functions c ∈ C connecting
variable nodes in Xs and Xt.

Figure 3: Marginal independence property of CDNs: un-

less two variables X and Y are connected to a common

function node, they are marginally independent.

Proof. Intuitively, Xs and Xt are marginally indepen-
dent if they have no neighboring functions in common.
We can thus write

F (x) =
∏

c∈N(Xs)

φc(xc)
∏

c∈N(Xt)

φc(xc)
∏

c/∈N(Xs)
S

N(Xt)

φc(xc).

(9)

Marginalizing over other variables X \ {Xs,Xt}, we
obtain

F (xs,xt) = sup
x\{xs,xt}

F (x)

=

(

sup
x\xs

∏

c∈N(Xs)

φc(xc)

)(

sup
x\xt

∏

c∈N(Xt)

φc(xc)

)

·

(

sup
x\{xs,xt}

∏

c/∈N(Xs)
S

N(Xt)

φc(xc)

)

=

(

sup
x\xs

∏

c∈N(Xs)

φc(xc)

)(

sup
x\xt

∏

c∈N(Xt)

φc(xc)

)

= g(xs)h(xt),

where sup
xs

g(xs) = sup
xt

h(xt) = 1 follows from (6),
so F (xs) = g(xs) and F (xt) = h(xt). Thus, we have
F (xs,xt) = F (xs)F (xt) and so Xs ⊥⊥ Xt.

An example of the marginal independence property for
a 3-variable CDN is shown in Figure 3. Another inter-
esting property of CDNs is that conditioning on vari-
ables in the network corresponds to computing deriva-
tives or finite differences of the joint CDF, as we will
now show.

Theorem (Conditioning). Conditioned on a set of
variables Xs = xs, we have

F (xt|xs) =
∂xs

[

F (xt,xs)
]

sup
xt

∂xs

[

F (xt,xs)
] ∝ ∂xs

[

F (xt,xs)
]

.

(10)

Proof. Note that ∂xs

[

F (xt,xs)
]

= F (xt|xs)P (xs) =

F (xt|xs) sup
xt

∂xs

[

F (xt,xs)
]

and so

F (xt|xs) =
∂xs

[

F (xt,xs)
]

sup
xt

∂xs

[

F (xt,xs)
] .

Equation (10) establishes the key operation of condi-
tioning in CDNs: there is one-to-one correspondence
between conditioning on a set of variables and com-
puting the derivative/finite difference of the joint CDF
with respect to these variables. This is a property we
will exploit shortly when we are confronted with the
problem of performing inference in a CDN.

Theorem (Conditional Independence). Let
Xs,Xt and Xu be three disjoint sets of variables with
no cumulative functions c ∈ C connecting any two
variables in Xs,Xt. Then Xs ⊥⊥ Xt|Xu if every path
between any two variables in Xs and Xt contains no
variables in Xs,Xt,Xu.

Proof. We can marginalize over other variables X \
{Xs,Xt,Xu}. If this results in a CDN in which there
is no path between any two variables in Xs and Xt

such that all variable nodes in that path are in Xu,
then the sets {Xs,Xa}, {Xt,Xb} consist of two dis-
joint subgraphs, with no cumulative functions φc con-
necting the two subgraphs and Xa,Xb being two dis-
joint partitions of Xu. Thus we can write

F (xs,xt,xu) =
∏

c∈N(Xa)
S

N(Xs)

φc(xc)
∏

c∈N(Xb)
S

N(Xt)

φc(xc)

⇒ F (xs,xt|xu) ∝ ∂xu

[

F (xs,xt,xu)
]

= g̃(xs,xa)h̃(xt,xb)

and so Xs ⊥⊥ Xt|Xu.

In summary, we have Xs ⊥⊥ Xt|Xu if all paths linking
Xs to Xt are blocked by unobserved variables not in
Xs,Xt,Xu. An example of conditional dependence
and independence is given in Figure 4.

Figure 4: Conditional independence property of CDNs.

Two variables X and Y become conditionally dependent

given that the variable Z is observed and no unobserved

variables block the path from X to Y (top). When an

unobserved variable W blocks the path, X and Y are con-

ditionally independent given Z (bottom).

4 The derivative-sum-product
algorithm for inference in
cumulative distribution networks

(a)

(b)

Figure 5: Messages in the derivative-sum-product

algorithm: a) Computation of the messages

µφc→Xk
(xk), λφc→Xk

(xk) from a function node φc to

a variable node Xk; b) Computation of the messages

µXk→φc (xk), λXk→φc(xk) from a variable node Xk to a

function node φc

In this section we derive a derivative-sum-product al-
gorithm for computing conditional CDFs efficiently in
CDNs. We assume that the CDN has a tree struc-
ture to allow for exact inference, with the root vari-
able node of the tree denoted by Xr. We also assume
that the functions φc(xc) obey all of the necessary and

sufficient conditions presented above: in particular we
assume that all the functions φc in the network are
differentiable with respect to all of their arguments.
In the case in which variables are discrete, we can in-
terchange differentiation with the simpler operation of
finite differences. Without loss of generality, we can
marginalize over all unobserved variables in the CDN
by deleting them from the network and modifying their
neighboring cumulative functions appropriately: thus,
we assume that the network consists of fully observed
variables. In the case we are differentiating (or com-
puting finite differences) with respect to a set of vari-
ables which are observed with values xs, we implicitly
assume that the resulting derivative is evaluated at the
observed scalar values xs.

Before proceeding, it is worth asking whether there is
a connection between message-passing in a CDN and
message-passing in a density model such as a Bayesian
network, Markov random field or a factor graph. As
noted in Section 1.1, CDNs in general will not have
a one-to-one corresponding representation in one of
these graphical forms due to the unique conditional
independence properties of the CDN. Thus in gen-
eral, messages passed by the DSP algorithm will there-
fore be distinct from those exchanged under standard
message-passing algorithms such as Pearl’s belief prop-
agation [12] or the sum-product algorithm [7] and will
not generally correspond to computing the same suffi-
cient statistics.

Our derivation of the DSP algorithm is analogous
to that of Pearl’s belief propagation algorithm [12].
The intuition here is similar in that we can distribute
the differentiation operation to local functions such
that each one computes the derivatives with respect
to local variables and passes the result to its neigh-
bors in the form of messages µφc→Xk

(xk) from func-
tion nodes to variables nodes and µXk→φc

(xk) from
variable nodes to function nodes. Since we assume
that the derivatives/finite differences of the functions
φc(xc) can be computed, we can apply the prod-
uct rule of differential calculus to expand the mes-
sages in the DSP algorithm in terms of derivatives
of the functions φc(xc) and derivatives of the mes-

sages. If we denote ∂xk

[

µφc→Xk
(xk)

]

= λφc→Xk
(xk)

and ∂xk

[

µXk→φc
(xk)

]

= λXk→φc
(xk), we can write

DSP using two sets of messages µ and λ, as shown in
Figure 6.

The joint PDF is then given at the root node Xr by
P (x) = λXr→∅(xr). We need only to pre-compute the
derivatives of the φc’s with respect to all their argu-
ments and combine these locally. Note that to com-
pute the joint PDF P (x) from F (x) by brute force for
K variables over N functions would require a summa-

• For each leaf variable node Xl and for all functions c ∈ N(Xl), propagate µXl→φc
(xl) = λXl→φc

(xl) = 1.

For each leaf function node φl(xl), send the messages µφl→Xl
(xl) = φl(xl), λφl→Xl

(xl) = ∂xl

[

φl(xl)
]

.

• For each non-leaf variable Xk and neighboring functions c ∈ N(Xk),

µXk→φc
(xk) =

∏

c′∈N(Xk)\c

µφc′→Xk
(xk) (11)

λXk→φc
(xk) = ∂xk

[

µXk→φc
(xk)

]

= µXk→φc
(xk)

∑

c′∈N(Xk)\c

λφc′→Xk
(xk)

µφc′→Xk
(xk)

(12)

• For each non-leaf function c and neighboring variables Xk ∈ N(φc),

µφc→Xk
(xk) =

∑

s,t|Xs

S

Xt=Xc\Xk

Xs

T

Xt=∅

∂xs

[

φc(xc)
]

∏

j|Xj∈Xs

µXj→φc
(xj)

∏

j|Xj∈Xt

λXj→φc
(xj) (13)

λφc→Xk
(xk) = ∂xk

[

µφc→Xk
(xk)

]

=
∑

s,t|Xs

S

Xt=Xc\Xk

Xs

T

Xt=∅

∂xs,xk

[

φc(xc)
]

∏

j|Xj∈Xs

µXj→φc
(xj)

∏

j|Xj∈Xt

λXj→φc
(xj) (14)

• Repeat the 2nd and 3rd steps above from root to leaf nodes and fuse messages at each variable node to get
the conditionals.

Figure 6: The derivative-sum-product message-passing algorithm for computing conditionals in a cumulative
distribution network.

tion with a number of product terms of O(NK). How-
ever with derivative-sum-product, we have reduced
this to O(max{maxv(deg(v) − 1), maxφ(2deg(φ)−1)}),
where v represents any variable node in the CDN and
φ represents any function node.

5 Application: Structured ranking
learning using CDNs

In structured ranking learning, we are interested in
performing inference on multiple ordinal variables
subject to a set of ordinal and stochastic indepen-
dence/dependence relationships. While it is possi-
ble to formulate the problem under the framework of
graphical density models, it is quite easy to specify
both ordinal and statistical independence/dependence
relationships between ordinal variables using the CDN
framework while allowing for both a flexible model and
tractable inference. To demonstrate the application of
CDNs to structured ranking learning, we focus on the
problem of rank prediction in multiplayer online gam-
ing.

We downloaded the Halo 2 Beta Dataset2 con-
sisting of player performance scores for 4 game
types (“LargeTeam”,“SmallTeam”,“HeadToHead’ and

2Credits for the use of the Halo 2 Beta Dataset are given
to Microsoft Research Ltd. and Bungie.

“FreeForAll”) over a total of 6465 players and thou-
sands of games. For each game, an outcome is defined
by the performances of teams once the game is over,
where team performances are determined by adding
players performances together. Recently, [4] presented
the TrueSkill algorithm for skill rating, whereby each
player is assigned a distribution over skill levels which
are inferred from individual player performances over
multiple games using expectation propagation [10].

Our model is designed according to two principles:
firstly, that the relationship between player scores and
game outcomes is stochastic, and secondly, that game
outcomes are determined by teams competing with one
another on the basis of team performances. To ad-
dress the first point, we will require a set of CDN
functions which link player scores to team perfor-
mance. Interpreting team performances as outputs,
we will make use of the cumulative model [9], which
relates a function f(x) of the input variables x to
the output ordinal variable y ∈ {r1, · · · , rK} so that
Pr{y = ri} = Pr{θ(ri−1) < f(x) + ǫ ≤ θ(ri)} =
Fǫ(θ(ri) − f(x)) − Fǫ(θ(ri−1) − f(x)), where ǫ is ad-
ditive noise and we define θ(r0) = −∞, θ(rK) = ∞.
Here, we will choose x as the set of player scores for
a given team and so the team performance is given by
f(x) = 1Tx. So if for any given game, there are N
teams, then each team is assigned a function gn such

that

gn(xn, rn) =

∫

xn

−∞

F
(

θ(rn);1Tu, β2
)

P
(

u
)

du (15)

where F
(

θ(rn);1Tu, β2
)

is a cumulative model relat-
ing player scores to team performance, θ(rn) are “cut-
points” which define contiguous intervals in which the
team performance is assigned as yn = ri and P (u) is
a density over the vector of player scores u. We will
model these functions as

F
(

θ(rn);1Tu, β2
)

= Φ
(

θ(rn);1Tu, β2
)

, (16)

P (u) = N (u; µ1, σ2I), (17)

where Φ(·; m, s2) is the cumulative distribution func-
tion for a univariate Gaussian with mean m and vari-
ance s2, andN (·; m,S) is a multivariate Gaussian den-
sity.

To address the fact that teams compete for higher
rank, we model ordinal relationships between team
performance so that for two teams with performances
RX , RY , RX � RY if FRX

(α) ≥ FRY
(α)∀α, where

FRX
(·), FRY

(·) are the marginal CDFs of RX , RY .
Given N ranked teams, we can thus define N−1 func-
tions hn,n+1 so that

hn,n+1(rn, rn+1) = Φ

(

[

rn

rn+1

]

;

[

r̃n

r̃n+1

]

,Σ

)

where

Σ =

[

β2 ρβ2

ρβ2 β2

]

and r̃n ≤ r̃n+1 so as to enforce Rn � Rn+1 in the
overall model. The CDN corresponding to our model
is shown in Figure 7(a): one can verify for any given
game that indeed the relationship R1 � R2 � · · · �
RN is enforced by marginalizing over player scores.
Our model includes a function sk(xk) for each player
k which represents that player’s skill. The goal is
then to learn the player skills: we used an online
learning method for updating the functions sk(xk),
whereby for each game we perform message-passing
followed by the update sk(xk) ← sk(xk)µgn→Xk

(xk)
for each player. Before each game, we predict the
outcome using the player skills learned thus far via

x∗
k = arg maxxk

∂xk

[

sk(xk)
]

= argmaxxk
λXk→sk

(xk).

Since all of the CDN functions are themselves multi-
variate Gaussian CDFs, the derivatives ∂xs

[

φc(xc)
]

in

the corresponding message-passing algorithm can be
easily evaluated w.r.t. variables Xs as

∂xs

[

Φ
(

x; µ,Σ
)

]

= N
(

xs; µs,Σs

)

Φ
(

xt; µ̃t, Σ̃t

)

where

x =

[

xs

xt

]

, µ =

[

µs

µt

]

, Σ =

[

Σs Σs,t

ΣT
s,t Σt

]

,

µ̃t = µt + ΣT
s,tΣ

−1
s (xs − µs),

Σ̃t = Σt −ΣT
s,tΣ

−1
s Σs,t.

To learn the model, we set the cutpoints θ(rn) in the
above model using ordinal regression of team perfor-
mances on team scores, with µ set to the minimum
player score. A plot showing the total prediction error
rate of our method is shown in Figure 7(b), along with
the error rates reported by [4] for TrueSkill and ELO
[2], which is a statistical rating system used in chess.

6 Discussion and future work

We proposed a novel class of probabilistic graphical
models, the cumulative distribution network (CDN).
We demonstrated that the CDN has distinct statisti-
cal independence properties from Bayesian networks,
Markov random fields and factors graphs. This also
differs from convolutional factor graphs [8], which re-
place products of functions with convolutions whilst
retaining the same conditional independence and de-
pendence structure, albeit in the Fourier domain.

The task of computing marginals in CDNs is achiev-
able in constant time. We proposed the derivative-
sum-product (DSP) algorithm for computing these
conditional distributions and demonstrated it to be
a distinct from standard message-passing algorithms
such as Pearl’s belief propagation or the sum-product
algorithm. We focused here on the application of
CDNs to the problem of ranking learning in a mul-
tiplayer gaming setting. A list of other potential ap-
plications (which is by no means exhaustive) would
include ranking webpages, collaborative filtering, in-
ference of censured data [3] and generalized hypothe-
sis testing in which one could both model statistical
dependencies between multiple hypotheses.

While we have presented the DSP algorithm for com-
puting conditionals given a set of cumulative func-
tions, we have not addressed here the issue of how
to learn these cumulative functions from data. An ob-
vious method would be to run derivative-sum-product
to obtain the joint PDF and then maximize this with
respect to model parameters, but this approach has
yet to be worked out in detail. Another issue we have
not addressed is how to perform inference in graphs
with cycles: an interesting future direction would be
to investigate exact or approximate methods for doing
so and connections to methods in the literature [5, 11]
for doing this in traditional graphical models.

(a)

FreeForAll SmallTeams HeadToHead LargeTeams
0

5

10

15

20

25

30

35

40

45

50

P
re

di
ct

io
n

er
ro

r 32.14
30.82

10.26

34.92 35.23

18.2

33.24
32.44

31.24

39.49
38.15 38.36

ELO
TrueSkill
CDN

(b)

Figure 7: a) An example CDN corresponding to a multiplayer game with 3 teams of 2, 2 and 3 players with stochastic

team rankings R1 � R2 � R3. The first layer of functions sk(xk) correspond to distributions over player performances

(or skills). The functions gn, hn relate team ranks to to one another as well as player performances; b) Prediction error

(computed as the fraction of team predicted incorrectly before each game) achieved by our method, compared to ELO [2]

and TrueSkill error [4].

7 Acknowledgements

We would like to thank anonymous reviewers, Radford
Neal and Frank Kschischang for helpful comments.
J.C.H. was supported by a National Science and En-
gineering Research Council postgraduate scholarship.
This research was supported by an NSERC Discovery
Grant.

References

[1] Buntine, W. (1995) Chain graphs for learning. In
Proceedings of Conference on Uncertainty in Artifi-
cial Intelligence 11 (UAI 1995), 46-54.

[2] Elo, A.E. (1978) The rating of chess players: Past
and present. Arco Publishing, New York.

[3] Gelman, A., Carlin, J.B., Stern, H.S. and Rubin,
D.B. (2004) Bayesian data analysis, Second edition.
Texts in Statistical Science, Chapman & Hall.

[4] Herbrich, R., Minka, T.P. and Graepel, T. (2007)
TrueSkillTM : A Bayesian skill rating system. In
Proceedings of Neural Information Processing Sys-
tems 2007 (NIPS 2007), 569-576.

[5] Jordan, M.I., Ghahramani, Z., Jaakkola, T.S. and
Saul, L.K. (1999) An introduction to variational
methods for graphical models. Machine Learning
37(2), 183-223.

[6] Kinderman, R. and Snell, J. L. (1980) Markov ran-
dom fields and their applications. American Mathe-
matical Society.

[7] Kschischang, F.R., Frey, B.J. and Loeliger, H.-
A. (2001) Factor graphs and the sum-product algo-
rithm. IEEE Trans. Inform. Theory 47(2), 498-519.

[8] Mao, Y., Kschischang, F.R. and Frey, B.J. (2004)
Convolutional factor graphs as probabilistic mod-
els. In Proceedings of Conference on Uncertainty in
Artificial Intelligence 20 (UAI 2004), 374-381.

[9] McCullagh, P. (1980) Regression models for or-
dinal data. J. Royal Statistical Society, Series B
(Methodological) 42(2), 109-142.

[10] Minka, T.P. (2001) Expectation propagation for
approximate Bayesian inference. In Proceedings of
Conference on Uncertainty in Artificial Intelligence
17 (UAI 2001), 362-369.

[11] Neal, R. M. (1993) Probabilistic Inference Us-
ing Markov Chain Monte Carlo Methods, Technical
Report CRG-TR-93-1, Dept. of Computer Science,
University of Toronto, 144 pages.

[12] Pearl, J. (1988) Probabilistic reasoning in intelli-
gent systems. Morgan Kaufmann.

