
Sparse Stochastic Finite-State Controllers for POMDPs

Eric A. Hansen
Dept. of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu

Abstract

Bounded policy iteration is an approach to solv-
ing infinite-horizon POMDPs that represents
policies as stochastic finite-state controllers and
iteratively improves a controller by adjusting the
parameters of each node using linear program-
ming. In the original algorithm, the size of the
linear programs, and thus the complexity of pol-
icy improvement, depends on the number of pa-
rameters of each node, which grows with the size
of the controller. But in practice, the number
of parameters of a node with non-zero values
is often very small, and does not grow with the
size of the controller. Based on this observation,
we develop a version of bounded policy iteration
that leverages the sparse structure of a stochas-
tic finite-state controller. In each iteration, it im-
proves a policy by the same amount as the origi-
nal algorithm, but with much better scalability.

1 Introduction

Partially observable Markov decision processes (POMDPs)
provide a framework for decision-theoretic planning prob-
lems where actions need to be taken based on imperfect
state information. Many researchers have shown that a pol-
icy for an infinite-horizon POMDP can be represented by a
finite-state controller. In some cases, this is a deterministic
controller in which a single action is associated with each
node, and an observation results in a deterministic transi-
tion to a successor node (Kaelbling, Littman, & Cassandra,
1998; Hansen, 1998; Meuleau, Kim, Kaelbling, & Cassan-
dra, 1999a). In other cases, it is a stochastic controller in
which actions are selected based on a probability distribu-
tion associated with each node, and an observation results
in a probabilistic transition to a successor node (Platzman,
1981; Meuleau, Peshkin, Kim, & Kaelbling, 1999b; Baxter
& Bartlett, 2001; Poupart & Boutilier, 2004; Amato, Bern-
stein, & Zilberstein, 2007).

Bounded policy iteration(BPI) is an approach to solving
infinite-horizon POMDPs that represents policies as sto-
chastic finite-state controllers and iteratively improves a
controller by adjusting the parameters of each node us-
ing linear programming, where the parameters specify
the action selection and node transition probabilities of
the node (Poupart & Boutilier, 2004). BPI is related to
an exact policy iteration algorithm for POMDPs due to
Hansen (1998), but differs from it by providing an elegant
and effective approach to approximation in which bounding
the size of the controller allows a tradeoff between planning
time and plan quality. Originally developed as an approach
to solving single-agent POMDPs, BPI has also been gen-
eralized for use in solving decentralized POMDPs (Bern-
stein, Hansen, & Zilberstein, 2005).

In BPI, the complexity of policy improvement depends on
the size of the linear programs used to adjust the parameters
of each node of the controller. In turn, this depends on the
number of parameters of each node (as well as the size of
the state space). In the original algorithm, each node of the
controller has|A|+|A||Z||N | parameters, where|A| in the
number of actions,|Z| is the number of observations, and
|N | is the number of nodes of the controller. This assumes
a fully-connected stochastic controller. In practice, how-
ever, most of these parameters have zero probabilities, and
the number of parameters of a node with non-zero proba-
bilities remains relatively constant as the number of nodes
of the controller increases. Based on this observation, we
propose a modified version of BPI that leverages a sparse
representation of a stochastic finite-state controller. In each
iteration, it improves the controller by the same amount
as the original algorithm. But it does so by solving much
smaller linear programs, where the number of variables in
each linear program depends on the number of parameters
of a node with non-zero values. Because the number of
parameters of a node with non-zero values tends to remain
relatively constant as the size of the controller grows, the
complexity of each iteration of the modified version of BPI
tends to grow only linearly with the number of nodes of a
controller, which is a dramatic improvement in scalability
compared to the original algorithm.



2 Background

We consider a discrete-time infinite-horizon POMDP with
a finite set of states,S, a finite set of actions,A, and a
finite set of observations,Z. Each time period, the envi-
ronment is in some states ∈ S, the agent takes an action
a ∈ A, the environment makes a transition to states′ ∈ S
with probabilityP (s′|s, a), and the agent observesz ∈ Z
with probabilityP (z|s′, a). In addition, the agent receives
an immediate reward with expected valueR(s, a) ∈ <.
We assume the objective is to maximize expected total dis-
counted reward, whereβ ∈ (0, 1] is the discount factor.

Since the state of the environment cannot be directly ob-
served, we letb denote an|S|-dimensional vector of state
probabilities, called abelief state, whereb(s) denotes the
probability that the system is in states. If actiona is taken
and followed by observationz, the successor belief state,
denotedba

z , is determined using Bayes’ rule.

2.1 Policy representation and evaluation

A policy for a POMDP can be represented by a finite-state
controller (FSC). A stochastic finite-state controller is a tu-
ple < N , ψ, η > whereN is a finite set of nodes,ψ is
an action selection function that specifies the probability,
ψn(a) = P (a|n), of selecting actiona ∈ A when the FSC
is in noden ∈ N , andη is a node transition function that
specifies the probability,ηn(a, z, n′) = P (n′|n, a, z), that
the FSC will make a transition from noden ∈ N to node
n′ ∈ N after taking actiona ∈ A and receivingz ∈ Z.

The value function of a policy represented by a FSC is
piecewise linear and convex, and can be computed exactly
by solving the following system of linear equations, with
one equation for each pair of noden ∈ N and states ∈ S:

Vn(s) =
∑

a∈A

ψn(a)R(s, a) + (1)

β
∑

a,z,s,n′
ηn(a, z, n′)P (s′|s, a)P (z|s′, a)Vn′(s′).

In this representation of the value function, there is one
|S|-dimensional vectorVn for each noden ∈ N of the
controller. The value of any belief stateb is determined as
follows,

V (b) = max
n∈N

∑

s∈S

b(s)Vn(s), (2)

and the controller is assumed to start in the node that maxi-
mizes the value of the initial belief state. The value function
of an optimal policy satisfies the optimality equation,

V (b) = max
a∈A

{
R(b, a) + β

∑

z∈Z

P (z|b, a)V (ba
z)

}
, (3)

where R(b, a) =
∑

s∈S b(s)R(s, a) and P (z|b, a) =∑
s∈S b(s)

∑
s′∈S P (s′|s, a)P (z|s′, a).

Variables: ε; ψn(a), ∀a; ηn(a, z, n′), ∀a, z, n′

Objective: Maximizeε
Improvement constraints:
Vn(s) + ε ≤ ∑

a ψn(a)R(s, a) +
γ

∑
a,z,n′ ηn(a, z, n′)P (s′|s, a)P (z|s′, a)Vn′(s′),∀s

Probability constraints:∑
a ψ(a) = 1∑
n′ ηn(a, z, n′) = ψ(a), ∀a, z

ψ(a) ≥ 0, ∀a
ηn(a, z, n′) ≥ 0, ∀a, z, n′

Table 1: Linear program for improving a noden of a
stochastic finite-state controller.

2.2 Bounded policy iteration

Policy iteration algorithms iteratively improve a policy by
alternating between two steps: policy evaluation and policy
improvement. Hansen (1998) proposed a policy iteration
algorithm for POMDPs that represents a policy as a deter-
ministic finite-state controller. In the policy improvement
step, it uses the dynamic programming update for POMDPs
to add, merge and prune nodes of the controller. The algo-
rithm is guaranteed to converge to anε-optimal controller
and can detect convergence to an optimal policy.

A potential problem is that the number of nodes added in
the policy improvement step can be large, and the controller
can grow substantially in size from one iteration to the next.
Because the complexity of the policy improvement step in-
creases with the size of the controller, allowing the size
of the controller to grow too fast can slow the rate of fur-
ther improvement and limit scalability. The same problem
occurs in value iteration, where the number of vectors in
the piecewise linear and convex representation of the value
function can grow too fast from one iteration to the next.
Feng and Hansen (2001) describe a method for performing
approximate dynamic programming updates that has the ef-
fect of reducing the number of vectors added to a value
function in value iteration, or the number of nodes added to
a controller in policy iteration.

For policy iteration, Poupart and Boutilier (2004) propose
another approach that also has the benefit of avoiding an
expensive dynamic programming update. Theirbounded
policy iterationalgorithm controls growth in the size of the
controller in two ways. First, a policy is represented as a
stochastic finite-state controller that can be improved with-
out increasing its size, by adjusting the action and node-
transition probabilities of each node of the controller using
linear programming. Second, when the controller cannot
be improved further in this way,k nodes are added to the
controller, wherek is some small number greater than or
equal to one. In the rest of this background section, we
review each of these two steps in further detail.



Algorithm 1 Bounded policy iteration
repeat

repeat
{Policy evaluation}
Solve the linear system given by Equation (1)
{Policy improvement without adding nodes}
for each noden of the controllerdo

solve the linear program in Table 1
if ε > 0 then

update parameters and value vector of node
end if

end for
until no improvement of controller
{Policy improvement by adding nodes}
find belief states reachable from tangent points
createk new nodes that improve their value

until no new node is created

Improving nodes The first step attempts to improve a
controller while keeping its size fixed. For each noden of
the controller, the linear program in Table 1 is solved. The
linear program searches for action probabilities and node
transition probabilities for the node that improve the value
vectorVn associated with the node by some amountε for
each state, whereε is the objective maximized by the linear
program. If an improvement is found, the parameters of the
node are updated accordingly. (The value vector may also
be updated, and will be further improved during the policy
evaluation step.)

Poupart and Boutilier (2004) show that the linear program
can be interpreted as follows: it implicitly considers the
vectors of the backed-up value function that would be cre-
ated by performing a dynamic programming update. In
particular, the linear program searches for a convex com-
bination of these backed-up vectors that pointwise domi-
nates the value vector currently associated with the node.
If an improvement is found, the parameters of the convex
combination become the new parameters of the node. This
interpretation is illustrated in Figure 1, which is adapted
from a similar figure from Poupart’s dissertation (2005).
As Figure 1 shows, the new value vector is parallel to the
old vector (i.e., the value of each component is improved
by same amount) and it is tangent to the backed-up value
function.

Adding nodes Eventually, no node can be improved fur-
ther by solving its corresponding linear program. At this
point, BPI is at a local optimum. It can escape such a local
optimum by adding one or more nodes to the controller.

The key insight is that when a local optimum is reached,
the value vector of each node of the controller is tangent to
the backed-up value function at one or more belief states.
Moreover, the solution of the linear program that is the dual
of the linear program in Table 1 is a belief state that is tan-

Figure 1: BPI can improve the value vectorVn by an
amountε to obtain the improved value vectorV ′

n, which
is tangent to the backed-up value function.

gent to the backed-up value function, and so is called the
tangent belief state. (Since most linear program solvers re-
turn both the primal and dual solutions when they solve a
linear program, we assume that we get the tangent belief
state when we solve the linear program in Table 1, in ad-
dition to the value ofε and the action and node transition
probabilities.)

To escape a local optimum, it is necessary to improve the
value of the tangent belief state. This leads to a method for
adding nodes to a controller. Given a tangent belief state
b, the algorithm considers every belief stateb′ that can be
reached from it in one step (i.e., by taking some actiona
followed by some observationz). For each reachable belief
state, a backup is performed (as defined by Equation 3). If
the backed-up value is better than the value of the belief
state based on the current value function, a deterministic
node is added to the controller that has the same action,
and, for each observation, the same successor node, that
created the improved backed-up value. Often, it is only
necessary to add a single node to the controller to escape a
local optimum. But because a value vector may be tangent
to the backed-up value function for a linear portion of belief
space, it may be necessary to add more than one node to
escape the local optimum. As we will see, this method
for adding nodes to escape local optima is related to the
approach that we develop in this paper.

Two sources of complexity Most of the computation
time of BPI is spent in solving the linear programs that are
used to adjust the parameters that specify the action selec-
tion probabilities and node transition probabilities of each
node of a controller. The size of the linear programs, and
thus the complexity of BPI, depends on two things: the size
of the controller (which determines the number of variables
in the linear program) and the size of the state space (which
determines the number of constraints).



Number of nodes of controller
Test problem Statistic 50 100 150 200 250 300

total parameters per node 1,359 2,709 4,059 5,409 6,759 8,109
Slotted Aloha min non-zero parameters 6 5 7 7 7 6
|S| = 30, |A| = 9, |Z| = 3 avg non-zero parameters 11 11 11 11 11 11

max non-zero parameters 17 18 20 21 21 21
total parameters per node 4,255 8,505 12,755 17,010 21,255 25,505

Tiger grid min non-zero parameters 45 34 37 33 31 32
|S| = 36, |A| = 5, |Z| = 17 avg non-zero parameters 68 67 68 68 69 68

max non-zero parameters 98 97 97 114 98 114
total parameters per node 5,255 10,505 15,755 21,005 26,255 31,505

Hallway min non-zero parameters 28 44 32 35 36 35
|S| = 60, |A| = 5, |Z| = 21 avg non-zero parameters 99 112 105 103 102 100

max non-zero parameters 130 151 158 157 158 158
total parameters per node 4,255 8,505 12,755 17,010 21,255 25,505

Hallway2 min non-zero parameters 46 35 29 39 37 22
|S| = 92, |A| = 5, |Z| = 17 avg non-zero parameters 91 105 112 109 109 114

max non-zero parameters 144 155 163 166 164 167

Table 2: Total number of parameters per node of stochastic finite-state controllers found by bounded policy iteration, and
minimum, average, and maximum number of parameters with non-zero values, as a function of the size of the controller.
(The average is rounded up to the nearest integer.) The four test POMDPs are from (Cassandra, 2004).

In this paper, we focus on the first source of complexity,
that is, we focus on improving the complexity of BPI with
respect to controller size. (By controller size, we mean not
only the number of nodes of the controller, but also the
number of actions and observations, since these together
determine the number of parameters of a node.) Coping
with POMDPs with large state spaces is an orthogonal re-
search issue, and several approaches have been developed
that can be combined with BPI. For example, Poupart and
Boutilier (2005) describe a technique calledvalue-directed
compressionand report that it allows BPI to solve POMDPs
with millions of states. Because the test problems used in
this paper have small state spaces, it is important to keep in
mind that the techniques developed in the next section for
improving the scalability of BPI with respect to controller
size can be combined with techniques for coping with large
state spaces.

3 Sparse bounded policy iteration

In this section, we describe a modified version of BPI that
we callSparse BPI. In each iteration, it improves a FSC by
the same amount as the original algorithm, but with much
improved scalability. To motivate our approach, we begin
with a discussion of the sparse structure of stochastic finite-
state controllers found by BPI.

3.1 Sparse stochastic finite-state controllers

As we have seen, each iteration of BPI solves|N | linear
programs, and each linear program has|A| + |A||Z||N |

variables and|S| + |A||Z| constraints (in addition to the
constraints that the variables have non-negative values).
Even for small FSCs, the number of variables in the linear
programs can be very large, and the fact that the number of
variables grows with the number of nodes in the controller
significantly limits the scalability of BPI.

If we look at the controllers produced by BPI, however, we
find that most of the parameters of each node (i.e., most of
the variables in the solutions of the linear program) have
values of zero. Table 2 illustrates this vividly for four
benchmark POMDPs from (Cassandra, 2004). The over-
whelming majority of each node’s parameters have zero
probabilities. This is despite the fact thatall of the nodes
of these controllers are stochastic. Note that a deterministic
node has1 + |Z| non-zero probabilities, one for a choice
of action, and|Z| to specify the successor node for each
observation. Table 2 shows that the minimum number of
non-zero parameters for any node is always greater than
this, which indicates that all of the nodes are stochastic.
For these problems and many others, BPI is very effective
in leveraging the possibility of stochastic nodes to improve
a controller without increasing its size. Nevertheless, the
actual number of parameters with non-zero probabilities is
a very small fraction of the total number of parameters.

Besides the sparsity of the stochastic finite-state controllers
found by BPI, an equally important observation about the
results in Table 2 is that the number of parameters with
non-zero probabilities tends to remain the same as the con-
troller grows in size, whereas the total number of parame-
ters grows significantly. In the following, we develop a
modified version of BPI that exploits this sparse structure.



Figure 2: In the left panel, the value vector is tangent to the partial backed-up value function along a linear segment. The
center panel shows the result of adding parameters to the sparse linear program that improve the partial backed-up value
function at tangent belief statet1. Although this does not improve the value vector, it creates a new tangent belief statet2.
When parameters are added to the sparse linear program that improve its backed-up value, the result is an improved value
vector with a new tangent belief statet3, as shown in the right panel.

3.2 Sparse policy improvement algorithm

We begin by describing the main idea of the algorithm. We
have seen that the number of parameters of a node with
non-zero probabilities in the solution of the linear program
in Table 1 is very small relative to the total number of pa-
rameters. Let us call these theuseful parameters. If we
could somehow identify the useful parameters of a node,
we could improve a node by solving a linear program that
only includes these variables. We call a linear program that
only includes some of the parameters of a node areduced
linear program. Our approach will be to solve a series of
reduced linear programs, where the last one is guaranteed
to include all of the useful parameters of the node. This
approach will achieve the same result as solving the full
linear program of Table 1, but will be more efficient if the
reduced linear programs are much smaller.

We next describe an iterative method for identifying a small
set of parameters that includes all of the useful parameters.
Our method starts with the set of parameters of the node
that currently have non-zero probabilities. This guarantees
a solution that is at least as good as the current policy for
the node. Then we add parameters using a technique that is
inspired by the technique BPI uses to add nodes to a con-
troller in order to escape local optima. As shown in Fig-
ure 1, the value vector that is created by solving the linear
program in Table 1 is tangent to the backed-up value func-
tion, and the solution of the dual linear program is a tangent
belief state. In the case of a reduced linear program, how-
ever, we have apartial backed-up value functionthat does
not include vectors corresponding to parameters that are
not included in the reduced linear program. (For example,
if only one action parameter is included in the reduced lin-
ear program, the partial backed-up value function does not
include any vectors created by taking a different action.)

If the reduced linear program is missing some useful pa-
rameters, it must be possible to improve the value of the
tangent belief stateb by considering the vectors of the full
backed-up value function. So, to identify potentially use-
ful parameters, we perform a backup for the tangent belief
stateb. If the backed-up value, which is defined as

max
a∈A

{
R(b, a) + β

∑

z∈Z

P (z|b, a)max
n∈N

(∑

s∈S

ba
z(s)Vn(s)

)}
,

is greater than the value of the tangent belief state based
on the current value vectorVn′ , which is defined as∑

s∈S b(s)Vn′(s), we add to our set of parameters the pa-
rameters used to create the backed-up value: the best ac-
tion a, and, for each observationz, the best successor
noden. Then we solve another linear program that includes
these parameters in addition to the parameters contained in
the previous reduced linear program.

If the value vector is tangent to the partial backed-up value
function at a single belief state, adding the parameters that
improve the backed-up value of this tangent belief state im-
proves the value vector for this node. But since the value
vector may be tangent to the partial backed-up value func-
tion along a linear segment, adding parameters does not
guarantee improvement of the node. In this case, however,
it does change the result of the new reduced linear program
in an important way. Because adding these parameters to
the reduced linear program improves the partial backed-up
value function that is searched by the linear program, the
value vector is no longer tangent to the partial backed-up
value function at the same belief state. In other words, even
if the solution of the reduced linear program is not changed
by adding these parameters, the solution of its dual linear
program changes in one important way: there must be a
new tangent belief state. This is illustrated in Figure 2.



This points to an iterative algorithm for improving a node.
At each step, the algorithm solves a reduced linear pro-
gram, and then performs a backup for the tangent belief
state. If the backed-up value of the tangent belief state is
better than its value based on the current value vector, the
parameters that produced the improved backed-up value are
added to the reduced linear program. Since the backed-
up value of the tangent belief state is improved, it must be
the case that at least some of these parameters are not in
the current linear program; if they were, the current value
vector would not be tangent to the partial backed-up value
function at this belief state. The condition for terminating
this iterative process of adding parameters to a reduced lin-
ear program is based on the following lemma.

Lemma 1 The difference between the backed-up value of a
tangent belief state and its value based on the current value
vector bounds the amount by which the linear program in
Table 1 can improve the value vector of a node.

Proof: The linear program in Table 1 implicitly uses the
backed-up value function to improve the value vector asso-
ciated with a node by an amountε for each state value of
the vector; in turn, this improves byε the value of any be-
lief state based on the value vector. So, if the difference be-
tween the backed-up value of any belief state and its value
based on the current value vector isδ, thenε ≤ δ.¤
It follows that if the backed-up value of any belief state is
not an improvement of its value based on the current value
vector, the linear program cannot improve the value vector.

Based on this lemma, we can prove the following.

Theorem 1 This procedure of improving a stochastic node
by solving a sequence of reduced linear programs is guar-
anteed to terminate and the last reduced linear program in
the sequence produces the same result as solving the full
linear program in Table 1.

Proof: The procedure is guaranteed to terminate because
whenever the backed-up value of the tangent belief state
is greater than its value based on the value vector created
by solving the current reduced linear program, at least one
(and no more than (1 + |Z|) parameters will be added to
the linear program, and the total number of parameters is
finite.

To see that the last reduced linear program solved in this
sequence has the same result as solving the full linear pro-
gram in Table 1, note that the procedure terminates when
the difference between the backed-up value of the tangent
belief state (for the last reduced linear program) and the
value of the tangent belief state based on the best value
vector found so far for this node is zero. From Lemma 1, it
follows that no further improvement is possible.¤
We call this iterative approach to improving the nodes of a
stochastic FSCsparse policy improvement. The high-level

Algorithm 2 Sparse policy improvement
for each node of controllerdo

Create initial reduced linear program
{its variables correspond to the parameters of the node
that currently have non-zero probabilities}
threshold ← 0
repeat

Solve the reduced linear program
if ε > threshold then

Use solution of LP to update parameters of node
threshold ← ε

end if
Do backup for tangent belief state
if backed-up value> (current value +ε) then

Add variables to linear program that correspond
to parameters that produced backed-up value

end if
until no new variables are added to linear program
increase value vector of node byε

end for

pseudocode is shown in Algorithm 2. Although it can solve
multiple linear programs for each linear program solved by
the original BPI algorithm, it has an advantage if the num-
ber of variables in each of these reduced linear programs is
very small compared to the number of variables in the full
linear program of Table 1. This is the case whenever the
FSCs found by BPI are very sparse.

As mentioned before, this algorithm is inspired by the way
the original BPI algorithm adds nodes to a controller. In
both cases, the technique for breaking a local optimum at a
tangent belief state is to improve the backed-up value func-
tion of the tangent belief state. In the original BPI algo-
rithm, the value of the tangent belief state is improved by
adding nodes to the controller. In sparse policy improve-
ment, it is improved by adding parameters to a node.

There is also an interesting relationship between this algo-
rithm and column generation methods in linear program-
ming (Bertsekas & Tsitsiklis, 1997). Column generation
is a useful strategy for solving linear programs where the
number of variables is very large, the number of constraints
is relatively small, and most variables have a value of zero
in the optimal solution. It begins by considering a small
subset of the variables (i.e., the columns) of a problem, and
solves a reduced linear program with only these variables.
Then it identifies unused variables that can be added to the
linear program to improve the result. Use of this strategy
requires some way of determining if the current solution
is optimal, and if it is not, some way of generating one or
more unused variables that can improve the solution. Our
algorithm can be viewed as an application of this general
strategy to the problem of solving POMDPs using BPI.



Number of nodes of controller
Test problem Algorithm 50 100 150 200 250 300

Slotted Aloha BPI 202 415 684 871 1,085 1,620
|S| = 30, |A| = 9, |Z| = 3 Sparse-BPI 16 19 19 20 21 23
Tiger grid BPI 1,365 3,447 5,822 9,461 12,358 15,770
|S| = 36, |A| = 5, |Z| = 17 Sparse-BPI 189 212 335 174 207 274
Hallway BPI 3,900 10,180 17,340 24,485 27,428 32,973
|S| = 60, |A| = 5, |Z| = 21 Sparse-BPI 1,215 935 1,110 973 1,094 1,267
Hallway2 BPI 7,760 17,729 29,809 42,905 53,903 68,898
|S| = 92, |A| = 5, |Z| = 17 Sparse-BPI 2,668 4,128 3,323 4,078 3,513 3,388

Table 3: Average time (in CPU milliseconds) for improving a single node of a finite-state controller, as a function of the
size of the controller, for four benchmark POMDPs.

4 Experimental results

We implemented sparse bounded policy iteration and tested
it on several benchmark POMDPs. Table 3 shows re-
sults for the four POMDPs considered earlier in Table 2.
The experiments ran on a 3.0 GHz processor using a lin-
ear program solver in CPLEX version 9.0. We solved
each POMDP beginning with an initial controller with|A|
nodes, and adding up to five new nodes each time the policy
improvement step reached a local optimum. Table 3 reports
the average running time to improve a single node because
this dominates overall computation time, and also because
it measures performance independently of design decisions
such as how and when to add nodes to a controller.

Table 3 shows that Sparse BPI is much more efficient than
the original BPI algorithm in improving sparse stochastic
FSCs. Even for relatively small controllers of 300 nodes,
Sparse BPI runs between20 and80 times faster than BPI
in solving these particular POMDPs. More importantly, its
relative advantage grows with the size of the controller. The
size of the reduced linear programs solved by Sparse BPI
remains about the same as the controller grows in size; as
a result, the time it takes to improve a single node of the
controller remains relatively constant as the size of the con-
troller grows, in contrast to BPI.

An interesting difference between Sparse BPI and BPI is
that the running time of an iteration of Sparse BPI depends
on how much improvement of the controller is possible. If
the nodes of a controller are already at a local optimum,
Sparse BPI often needs to solve only a couple reduced lin-
ear programs per node in order to determine that further
improvement is not possible. In this case, an iteration of
Sparse BPI terminates relatively quickly. But if much im-
provement of the FSC is possible, Sparse BPI often needs
to solve ten or twenty or even more reduced linear pro-
grams for some nodes in order to add all of the parameters
that are needed to maximize improvement of the node. To
obtain reliable running times for Sparse-BPI, the results in
Table 3 are averaged over several iterations of Sparse-BPI.

Table 3 shows that a larger state space slows both algo-
rithms, but it slows the sparse algorithm more. This is be-
cause the sparse algorithm solves multiple linear programs
for each linear program solved by the original algorithm,
and more constraints makes these more difficult to solve.

The running time of Sparse BPI could be reduced further
by finding a way to reduce the number of iterations it takes
to improve a node. For thehallway2problem, for exam-
ple, the sparse algorithm can take ten or more iterations to
improve a node – occasionally, as many as thirty or forty.
Each iteration requires solving a reduced linear program.
But in fact, it is only necessary to solve one linear program
to change the parameters of a node. The other linear pro-
grams in the sequence of reduced linear programs solved
by the sparse algorithm are used to identify a sequence of
tangent belief states; for each tangent belief state, a backup
is performed in order to identify parameters to add to the
stochastic node. It seems possible to identify a set of be-
lief states for which to perform backups without needing to
solve a linear program to identify each one.

Point-based methods solve POMDPs by performing a
backup for each of a finite set of belief states (Pineau, Gor-
don, & Thrun, 2003). Recent work shows that this ap-
proach can be combined with policy iteration algorithms
that represent a policy as a finite-state controller (Ji, Parr,
Li, Liao, & Carin, 2007). An interesting direction of re-
search is to use point-based backups to identify parameters
that can be added to nodes; after many backups are per-
formed, a reduced linear program could be solved for each
node in order to improve its action selection and node tran-
sition probabilities – integrating point-based methods with
policy iteration for stochastic finite-state controllers.

Another possible way to reduce the number of iterations
is early termination. Instead of continuing to add parame-
ters until the difference between the backed-up value of the
tangent belief state and its value based on the current value
vector is zero, Sparse-BPI could stop adding parameters as
soon as the difference is small enough to demonstrate that
only a small amount of further improvement is possible.



5 Conclusion

We have presented a modified bounded policy iteration al-
gorithm for POMDPs called sparse bounded policy itera-
tion. The new algorithm exploits the sparse structure of
stochastic finite-state controllers found by bounded policy
iteration. Each iteration of the algorithm produces the iden-
tical improvement of a controller that an iteration of the
original bounded policy iteration algorithm produces, but
with improved scalability. Whereas the time it takes for the
original algorithm to improve a single node grows with the
size of the controller, the time it takes for the new algorithm
to improve a single node is typically independent of the size
of the controller. This makes it practical to use bounded
policy iteration to find larger controllers for POMDPs.

Acknowledgements

This work was supported in part by the Air Force Office of
Scientific Research under Award No. 05-003202A05.

References

Amato, C., Bernstein, D., & Zilberstein, S. (2007). Solving
POMDPs using quadratically constrained linear pro-
grams. InProceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI-07), pp.
2418–2424.

Baxter, J., & Bartlett, P. (2001). Infinite-horizon policy-
gradient estimation.Journal of Artificial Intelligence
Research, 15, 319–350.

Bernstein, D., Hansen, E., & Zilberstein, S. (2005).
Bounded policy iteration for decentralized POMDPs.
In Proceedings of the 19th International Joint
Conference on Artificial Intelligence(IJCAI-05), pp.
1287–1292.

Bertsekas, D., & Tsitsiklis, J. (1997).Introduction to Lin-
ear Optimization. Athena Scientific.

Cassandra, A. (2004). Tony’s POMDP file repository page..
http://pomdp.org/pomdp/examples/index.shtml.

Feng, Z., & Hansen, E. (2001). Approximate planning for
factored POMDPs. InProceedings of the 6th Euro-
pean Conference on Planning.

Hansen, E. (1998). Solving POMDPs by searching in pol-
icy space. InProceedings of the 14th Conference on
Uncertainty in Artificial Intelligence (UAI-98), pp.
211–219.

Ji, S., Parr, R., Li, H., Liao, X., & Carin, L. (2007).
Point-based policy iteration. InProceedings of the
22nd National Conference on Artificial Intelligence
(AAAI-07), pp. 1243–1249.

Kaelbling, L., Littman, M., & Cassandra, A. (1998). Plan-
ning and acting in partially observable stochastic do-
mains.Artificial Intelligence, 101, 99–134.

Meuleau, N., Kim, K., Kaelbling, L., & Cassandra, A.
(1999a). Solving POMDPs by searching the space of
finite policies. InProceedings of the 15th Conference
on Uncertainty in Artificial Intelligence (UAI-99),
pp. 417–426.

Meuleau, N., Peshkin, L., Kim, K., & Kaelbling, L.
(1999b). Learning finite-state controllers for par-
tially observable environments. InProceedings ofthe
15th Conference on Uncertainty in Artificial Intelli-
gence (UAI-99), pp. 427–436.

Pineau, J., Gordon, G., & Thrun, S. (2003). Point-based
value iteration: An anytime algorithm for POMDPs.
In Proceedings of the 18th International Joint Con-
ference on Artificial Intelligence (IJCAI-03), pp.
1025–1032.

Platzman, L. (1981). A feasible computational approach to
infinite-horizon partially-observed Markov decision
problems. Tech. rep., Georgia Institute of Technol-
ogy. Reprinted in Working Notes of the AAAI Fall
Symposium on Planning using Partially Observable
Markov Decision Processes, 1998.

Poupart, P. (2005).Exploiting Structure to Efficiently Solve
Large Scale Partially Observable Markov Decision
Processes. Ph.D. thesis, University of Toronto.

Poupart, P., & Boutilier, C. (2004). Bounded finite state
controllers. In Advances in Neural Information
Processing Systems 16: Proceedings of the 2003
Conference, pp. 823–830. MIT Press.

Poupart, P., & Boutilier, C. (2005). VDCBPI: An ap-
proximate scalable algorithm for large POMDPs. In
Advances in Neural Information Processing Systems
17: Proceedings of the 2004 Conference. MIT Press.


