
Sampling First Order Logical Particles

Hannaneh Hajishirzi and Eyal Amir
Department of Computer Science

University of Illinois at Urbana-Champaign
{hajishir, eyal}@uiuc.edu

Abstract

Approximate inference in dynamic systems is
the problem of estimating the state of the sys-
tem given a sequence of actions and partial ob-
servations. High precision estimation is funda-
mental in many applications like diagnosis, natu-
ral language processing, tracking, planning, and
robotics. In this paper we present an algorithm
that samples possible deterministic executions of
a probabilistic sequence. The algorithm takes ad-
vantage of a compact representation (using first
order logic) for actions and world states to im-
prove the precision of its estimation. Theoretical
and empirical results show that the algorithm’s
expected error is smaller than propositional sam-
pling and Sequential Monte Carlo (SMC) sam-
pling techniques.

1 Introduction

Important AI applications like natural language process-
ing, program verification, tracking, and robotics involve
stochastic dynamic systems. The current state of such sys-
tems is changed by executing actions. Reasoning is the task
of computing the posterior probability over the state of such
dynamic systems given past actions and observations. Rea-
soning is difficult because the system’s exact initial state or
the effects of its actions are uncertain (e.g., there may be
some noise in the system or its actions may fail).

Exact reasoning (e.g., [11; 1]) is not tractable for long se-
quence of actions in complex systems. This is because do-
main features become correlated after some steps, even if
the domain has much conditional-independence structure
[4]. Therefore, approximate reasoning is of much inter-
est. One of the most commonly used classes of techniques
for approximate reasoning is SMC sampling [5]. These
methods are efficient, but they require many samples (ex-
ponential in the dimensionality of the domain) to yield a

lower error rate. Recently, [8] introduced a new sampling
approach which achieves higher precision than SMC tech-
niques given a fixed number of samples. Still, it requires
a large number of samples in complex domains because in
their method the domains are represented using proposi-
tional logic.

In this paper we present a sampling-based filtering algo-
rithm in a first order dynamic system called Probabilistic
Relational Action Model (PRAM). We show that our new
algorithm takes fewer samples and yields better accuracy
than previous sampling techniques. Such improvement is
possible because of the underlying deterministic structure
of the transition system, the compact representation of the
domains using first order logic (FOL), and efficient subrou-
tines for first order logical regression (e.g., [17]) and first
order logical filtering [19; 14].

We model a PRAM (Section 2) using probabilistic situation
calculus [17], extended with a first order probabilistic prior
that combines FOL and probabilities in a single framework
(e.g., [18; 3; 12; 15; 7; 20]). Transitions in a PRAM are
modeled with probability distributions over possible deter-
ministic executions of probabilistic actions (every transi-
tion model can be represented this way).

Our algorithm (Section 3) first samples sequences of de-
terministic actions, called first order (FO) particles, that
are possible executions of the given probabilistic action se-
quence and are consistent with the observations. It also
updates the current state of the system given each FO par-
ticle. Next, the algorithm computes the probability of the
query given the updated current state. To do so, it applies
logical regression to the query for each FO particle, com-
putes a FOL formula that represents all the possible initial
states, and computes the prior probability of that formula.
Finally, the algorithm computes the posterior probability as
the weighted sum of these derived prior probabilities.

This algorithm achieves superior precision with fewer sam-
ples than SMC sampling techniques [5]. The intuition be-
hind this improvement is that each FO particle corresponds
to exponentially many state sequences (particles) generated

by earlier techniques. The algorithm is computationally ef-
ficient when FOL regression and filtering with the deter-
ministic actions are efficient. We prove our claim about
precision and verify the results empirically by several ex-
periments (Section 4).

Our representation for PRAM differs from Dynamic
Bayesian Networks (DBNs) (e.g., [13]). DBNs emphasize
conditional independence among random variables. In con-
trast, our model applies a representation for the transition
model as a distribution over deterministic actions. Also,
PRAM uses a different model for observations. The obser-
vations are received asynchronously without prediction of
what will be observed. Both frameworks are universal and
can represent each other, but they are more compact and
natural in different scenarios.

The closest work to ours is [8] which also samples de-
terministic executions of the given probabilistic sequence.
However, that work assumes that the deterministic se-
quences are always executable. In this paper we relax this
assumption and avoid sampling the sequences that are not
executable by keeping track of the current state of the sys-
tem. Also, our representation is more compact (uses FOL),
so it achieves higher precision with less samples.

Recently, [10; 22] explore reasoning algorithms in rela-
tional HMMs. They use a different representation than ours
for their observations. Moreover, they do not use a compact
representation for their prior distribution. Earlier algorithm
trades efficiency of computation for precision as it is an ex-
act method. Latter, introduced a sampling algorithm where
each sample represents a set of states and is generated from
the probability distribution over disjoint sets of the states.
Therefore, to update this distribution they build new dis-
joint sets at each time step which leads to a large num-
ber of disjoint sets (exponential in domain features) in long
sequences. Our algorithm is different in a sense that we
do not sample states; we sample deterministic sequences
which correspond to state sequences that are derived by re-
gressing the query through the deterministic sequence.

2 Probabilistic Relational Action Models

In this section we present our framework, called Proba-
bilistic Relational Action Model (PRAM), for representing
the dynamic system. The system is dynamic in a sense that
its state changes by executing actions. Actions have prob-
abilistic effects that are represented with a probability dis-
tribution over possible deterministic executions.

A PRAM consists of two main parts: (1) A prior knowl-
edge representing a probability distribution P0 over initial
world states in a relational model. (2) A probability dis-
tribution PA over deterministic executions of probabilistic
actions. In what follows we define the basic building blocks
of a PRAM. We first define the language L of a PRAM for

representing the probability distributions:

Definition 1. [PRAM language] The language L of a
PRAM is a tuple (F,C, V,A, DA) consisting of:

• F a finite set of predicate variables (called fluents)
whose values change over time.
• C a finite set of constants representing objects in the

domain.
• V a finite set of variables.
• A, DA finite sets of probabilistic and deterministic

action names, respectively.

We define a fluent atom as a formula of the form
f(x1, . . . , xk) (also represented by f(~x)), where
x1, . . . , xk ∈ V ∪ C are either variables or constants. In
PRAM grounding of a fluent f(~x) is defined as replacing
each variable in ~x with a constant c ∈ C. Accordingly,
a world state s ∈ S is defined as a full assignment of
{true, false} to all the groundings of all the fluents in F .

Example 1 (Briefcase). Briefcase is a domain consisting of
objects, locations, and a briefcase B. The variables ?o and
?l denote objects and locations, respectively. The fluents
are: In(?o),At(B, ?l),At(?o, ?l). An agent interacts with
the system by executing some probabilistic actions: putting
objects in, PutIn(?o,B), taking objects out of the briefcase,
TakeOut(?o,B), and moving the briefcase with objects in-
side, Move(B, ?l1, ?l2). Some deterministic actions in the
domain are: MvWithObj, PutInSucc, and PutInFail.

In PRAM each deterministic action da(~x) ∈ DA is speci-
fied by precondition and successor state axioms [17].

Definition 2. [Deterministic action axioms] Precondition
axioms show the conditions under which the deterministic
action da is executable in a given state; Precond is a spe-
cial predicate denoting the executability of a deterministic
action: Precondda(~x)⇔ Φ(~x) where Φ is a FOL formula.

Successor state axioms enumerate all the ways that the
value of a particular fluent can be changed; A successor
state axiom for a fluent f is defined as:

Precondtda(~x)⇒ (Succtf,da(~x)⇔ f t+1(~x))

where Succtf,da(~x) is a FOL formula at time t. One can
easily derive the effects of actions by the above axioms.

For example, the precondition of the deterministic action
MvWithObj(B, ?l1, ?l2) is At(B, ?l1) ∧ ¬At(B, ?l2), and
its effect is ¬At(B, ?l1) ∧ At(B, ?l2) ∧ (∀?o In(?o) ⇒
At(?o, ?l2)).

The grounding of a deterministic action is defined as the
grounding of all the fluent atoms appearing in the pre-
condition and effect logical formulas Precondtda(~x) and
Succtf,da(~x). Therefore, a grounded deterministic action is
a transition function T : S ×DA → S . One can see from
the example that for grounding the action MvWithObj, one

needs to permute all the possible combinations of objects
inside the briefcase. This increases the dimensionality of
the domain and increases the required number of samples
to yield low error. Hereinafter for simplicity, we represent
fluents and actions without their arguments whenever it is
not necessary to mention the variables or domain objects.
Definition 3. [Probability distribution for probabilistic ac-
tions] Let ψ1 . . . ψk be FOL formulas (called partitions)
that divide the world states into mutually disjoint sets.
Then, PA(da|a, s) is defined as a probability distribution
over possible deterministic executions da of the probabilis-
tic action a in the state swhich satisfies one of the partitions
ψi (i ≤ k). More formally, when some state s satisfies par-
tition ψi then PA(da|a, s) = PAi(da), where PAi is a prob-
ability distribution over different deterministic executions
da of action a corresponding to the partition ψi.

PA(da|a, s) =

 PA1(da) s |= ψ1

PA2(da) s |= ψ2

. . .
(1)

We assume that replacing variables in a(~x) with constants
does not change PA(da(~x)|a(~x), s).

For example, for probabilistic action TakeOut(?o), deter-
ministic action TakeOutSucc(?o), and s |= ψ1 = In(?o):
PA(da|a, s) = PA1(TakeOutSucc(?o)) = 0.9.

In PRAM we assume a prior distribution over world states
at time 0. Models like [18] are used to represent proba-
bilities in relational models. A knowledge engineer can
define the semantics of the prior distribution by using each
of these models. Then, we use the inference algorithm de-
fined in that model’s semantics to compute probability of
formulas at time 0. Our filtering algorithm does not depend
on the way the initial knowledge has been represented. We
discuss more about this in Section 3.1.3.

In conclusion, we define a PRAM formally as follows:
Definition 4. A PRAM is a tuple (L,AX,PA,P0) as:

• Language L = (F,C, V,A, DA) representing the
language of PRAM (Definition 1)
• A set of deterministic action axioms AX (Definition 2)
• A probability distribution PA for each probabilistic ac-

tion (Definition 3)
• A prior distribution P0 over initial world states

Based on the aforementioned dynamic system, PRAM, we
define our stochastic filtering problem as computing prob-
ability of a query given a sequence of probabilistic actions
and observations. The query is defined as a FOL formula
ϕT at the final time step, T . Note that throughout the pa-
per superscripts represent time. Each at in the probabilistic
action sequence 〈a1, . . . , aT 〉 represents the probabilistic
action that has been executed at time t.

The observations 〈o0, . . . , oT 〉 are given asynchronously
in time without prediction of what we will observe (thus,

a1

da1
1

da2
1

da31

o0 o2 o3o1

a3a2

da1
3

da23

da
3
3

da
da

Resampling

2
2

da32

1
2

Figure 1: Sampling the FO particle 〈da1
2, da

2
2, da

3
2〉 (straight ar-

rows) given probabilistic sequence 〈a1, a2, a3〉 (curved arrows)
and observations 〈o0, o1, o2, o3〉. Each deterministic action dat

is sampled from distribution P (dat|at, da1:t−1, o0:t). The thick-
ness of the arrows represent the weight of the current FO particle.

this is different from HMMs [16], where a sensor model is
given). Each observation ot is represented with a FOL for-
mula over fluents. When ot is observed at time t, the FOL
formula ot is true about the state of the world at time t. We
assume that a deterministic execution da of the probabilis-
tic action at in the sequence does not depend on the future
observations.

3 Filtering Algorithm

In this section we present our filtering algorithm for com-
puting probability of a query ϕT given a sequence of prob-
abilistic actions a1:T = 〈a1, . . . , aT 〉 and observations
o0:T = 〈o0, . . . , oT 〉 in a PRAM. The algorithm approx-
imates this probability by generating samples among pos-
sible deterministic executions of the given probabilistic ac-
tion sequence. Then, it places those samples instead of the
enumeration of deterministic executions and marginalizes
over those samples. The following equation shows the ex-
act computation.

P (ϕT |a1:T , o0:T) = (2)∑
i

P (ϕT | ~DAi, o0:T)P (~DAi|a1:T , o0:T)

where ~DAi is a possible execution of the sequence a1:T .

The first step of our approximate algorithm is generating
N samples (called FO particles) from all the possible de-
terministic executions of the given probabilistic sequence.
Two different sampling algorithms are introduced in Sec-
tion 3.2. The algorithms (illustrated in Figure 1) generate
a weighted FO particle ~DAi with weight wi given the se-
quence a1:T and the observations o0:T from the probability
distribution P (~DAi|a1:T , o0:T).

The next step of the algorithm is computing
P (ϕT | ~DAi, o0:T) for each FO particle ~DAi. It does

PROCEDURE FOFA(SampleAlg, ϕT , a1:T , o0:T)
Input: Sampling algorithm SampleAlg, probabilistic sequence
a1:T , observations o0:T , and query ϕT

Output: P̃ (ϕT |a1:T , o0:T)

1. (~DA1:N , curF1:N)← SampleAlg(a1:T , o0:T)
2. for each ~DAi compute PFOF(ϕT , ~DAi, curFi)
3. return P̃ (ϕT |a1:T , o0:T) using Equation (6).

Figure 2: FOFA: First Order Filtering Algorithm for approximat-
ing P (ϕt|a1:t, o0:t) given a sampling algorithm SampleAlg (ei-
ther S/R-Actions (Figure 5) or S-Actions (Figure 6)). Italic fonts
is used to denote subroutines.

so (Section 3.1) by updating the current state of the system
and then computing the posterior probability conditioning
on the updated current state.

Finally, the algorithm uses generated samples in place of
~DAi in Equation (2) and computes P̃N (ϕT |a1:T , o0:T) as

an approximation for the posterior probability of the query
ϕT given the sequence a1:T and the observations o0:T by
using the Monte Carlo integration [5]:

P̃N (ϕT |a1:T , o0:T) =
∑
i

wiP (ϕT | ~DAi, o0:T) (3)

Details of each step of our first order filtering algorithm
(FOFA, Figure 2) are explained next. We first present the
step of computing P (ϕT | ~DAi, o0:T) because it is used as
a subroutine in the sampling algorithms.

3.1 Probability of a FOL Formula at time t

In this section we show how to compute the probability
P (ϕt| ~DA, o0:t) of the formula ϕt given a FO particle ~DA
and observations o0:t. Executing the FO particle ~DA with
observations o0:t updates the current state of the system.
The current state is derived by applying a FO progres-
sion subroutine (described below) at each time step. Af-
terwards, procedure PFOF (Figure 3) computes the prob-
ability of the query given the current state of the system
for each FO particle. Its first step applies a FO regression
subroutine to the query and the current state formula and as
output returns FOL formulas at time 0. This can be done
since the actions are deterministic. The algorithm’s second
step computes the prior probability of the regression of the
query conditioned on the current state formula regressed
by the FO particle; Recall that a FO particle is a sampled
sequence of deterministic actions.

3.1.1 Progress Current State Formula

We define the current state formula as a FOL formula rep-
resenting the set of states that are true after executing a
sequence of deterministic actions and receiving observa-
tions. In this section we present algorithm Progress that
updates the current state formula given a deterministic ac-
tion and an observation. In general, progressing a FOL for-

PROCEDURE PFOF(ϕt, ~DA, curF)
Input: FO particle ~DA and the current state formula curF
Output: P (ϕt| ~DA, o0:t)

1. ϕ0 ←RegSeq(ϕt, ~DA)
2. curF0 ←RegSeq(curF, ~DA)
3. p0 ← Prior-FOF(ϕ0|curF0)
4. return P (ϕt| ~DA, o0:t)← p0

PROCEDURE Prior-FOF(ϕ0, MMLN)
Input: Formula ϕ0, Markov network MMLN of the prior MLN
Output: P (ϕ0)

1.
∧
i Ci ← ConvertToCNF(ϕ0)

2. Define indicator functions as Equation (4)
3. M ← ConstructNetwork(MMLN, fluents of ϕ0)

4. return P (ϕ0) by performing inference on M

Figure 3: PFOF: Compute probability P (ϕt| ~DA, o0:t) of a FOL
formula ϕt given a FO particle ~DA and the current state formula.

MvWithObj(L1,L2)

In(O)

At(B,L2)
In(O), At(O,L2)
In(?o) =>At(?o,L2)

Query: φ

ProgressProgress

RegressRegress

curF

At(O,L2)

RegressRegress

Observation

1
(In(O), At(O, L1), At(B,L1))
or (~In(O), At(O,L2))

In(?o) =>At(?o,L1)

φ0

In(O), At(O,L1),At(B,L1)
In(?o) =>At(?o,L1)

curF0(a)

(b) P(φ1|da1, o0:1) = P0 (φ0|curF0) = 1

Figure 4: (a) Regressing query ϕ1 and curF by MvWithObj.
Note, L1, L2, and O are constants, and there are only two pos-
sible locations L1 and L2, i.e. At(O,L2) ≡ ¬At(O,L1). (b)
Computing P (ϕ2| ~DA, o0:1) using Lemma 1.

mula δ with a deterministic action da, Progress(δ, da), re-
sults in a set of FOL formulas ∆(p1:n) where p1, . . . , pn
are atomic subformulas of ∆ and δ ∧ Precondda |=
∆(Succp1,da, . . . , Succpn,da) (see [19] for more details).
Also, filtering a FOL formula δ with an observation o is
the FOL formula δ ∧ o.

Overall, generating all ∆s is impossible because there
are infinitely many such ∆s. In this paper we assume
that progression of the current state formula curF with
a deterministic action da, Progress(curF, da, o), is rep-
resentable with a FOL formula. Hence, it is equal to∨
i ∆i(p1:n) ∧ o. Furthermore, [19; 14] provide some spe-

cial conditions that the progression algorithm is polynomial
and the representation of progressing a formula is compact.
For example, progressing In(O) through deterministic ac-
tion MvWithObj(L1, L2) results in the formula At(B,L2)∧
In(O) ∧ At(O,L2) ∧ (∀?o In(?o)⇒ At(?o, L2)).

3.1.2 Regressing a FOL Formula

Procedure RegSeq takes a FOL formula ϕt and a FO parti-
cle ~DA and returns as output another FOL formula ϕ0. ϕ0

represents the set of possible initial states, given that the fi-

nal state satisfies ϕt, and the FO particle ~DA occurs. Thus,
every state that satisfies ϕ0 leads to a state satisfying ϕt

after ~DA occurs.

For a deterministic action dat and a FOL formula ϕt, the
regression Regress(ϕt, dat) of ϕt through dat is a FO for-
mula ϕt−1 such that state st−1 satisfies ϕt−1 iff the re-
sult of the transition function T (st−1, dat) satisfies ϕt.
The computation of the regression RegSeq(ϕt, ~DA) of ϕt

through the FO particle ~DA is done recursively.

RegSeq(ϕt, 〈da1, ..., dat〉) =
RegSeq(Regress(ϕt, dat), 〈da1, ..., dat−1〉).

Regression of the current state formula curF is defined sim-
ilar to the regression of formula ϕt since the current state
is also represented with a fist order formula.

The algorithm for regression Regress(ϕt, da) of formula ϕt

with deterministic action da works as follows (see [17]).
Suppose that ϕt is an atomic fluent f t(~x) with the succes-
sor state axiom Succt−1

f,da(~x). Then, we derive the regression
of ϕt by replacing f t(~x) with Succt−1

f,da(~x). The regression
of non-atomic formulas are derived inductively as follows:

• Regress(¬ϕt) = ¬Regress(ϕt)
• Regress(ϕt1 ∧ ϕt2) = Regress(ϕt) ∧ Regress(ϕt2)
• Regress((∃ν)ϕt) = ∃νRegress(ϕt)

The efficiency of the regression yields from the fact that
we regress non-grounded fluents f(~x). Besides, one can
employ some approximations at each step (like removing
unnecessary clauses) to maintain the compactness of the
regressed formulas.

We now summarize and show how to compute the proba-
bility distribution P (ϕt| ~DA, o0:t) by applying progression
and regression. The algorithm first computes curF by pro-
gressing through the FO particle and observations. Then,
it computes ϕ0 and curF0 by regressing ϕt and curF.
Finally, it computes P 0(ϕ0|curF0) as the evaluation of
P (ϕt| ~DA, curF) as shown by the following lemma.
Lemma 1. Let ϕt be the query and o0:t the observations.
If curF is the current state formula, ϕ0 = RegSeq(ϕt, ~DA),
and curF0 = RegSeq(curF, ~DA), then P (ϕt| ~DA, o0:t) =
P 0(ϕ0|curF0).

Proof. Probability of a formula is a marginalization over
states: P (ϕt, o0:t| ~DA) =

∑
s P (ϕt, curF|s, ~DA)P (s| ~DA).

For s, P (ϕt, curF|s, ~DA) = 1 if s |= ϕ0∧ curF 0, o.w. it is
0. The reason is that executing the deterministic sequence
~DA in state s results at time t that models ϕt and is consis-

tent with observations o0:t iff s |= ϕ0 ∧ curF 0. Therefore,
P (ϕt, o0:t| ~DA) =

∑
s|=ϕ0,curF0 P (s) = P 0(ϕ0, curF0).

The same computations exist for P (o0:t| ~DA). Therefore,

P (ϕt| ~DA, o0:t) =
P (ϕt, o0:t| ~DA)
P (o0:t| ~DA)

=
P 0(ϕ0, curF0)
P 0(curF0)

.

Figure 4 shows an example of computing P (ϕt| ~DA, o0:t)
using procedure PFOF. The next section shows how to
compute P 0(ϕ0|curF0) using the prior P 0. Note that ϕ0

and curF0 are FOL formulas over fluents at time 0.

3.1.3 Prior Probability of a FOL Formula

In this section we describe procedure Prior-FOF to com-
pute the probability of a FOL formula at time 0. We assume
that the prior distribution P 0 over world states of a PRAM
with language L = (F,C, V,A, DA) is represented by a
Markov Logic Network (MLN) [18]. We choose to repre-
sent our prior probabilistic logic with an MLN (called prior
MLN) because it keeps the expressive power of FOL for a
fixed domain.

Our prior MLN consists of a set of weighted FOL formulas
over the fluents in language L of the PRAM. The semantics
of the MLN is that of a Markov network MMLN [9] whose
cliques correspond to groundings of the formulas given the
universe of objects C ∈ L. The potential Φ of a clique
Cl is defined as the exponential of the weight of the corre-
sponding formula in case the grounding is true.

We introduce Prior-FOF (Figure 3) to compute the proba-
bility of a FOL formula ϕ0 by slightly changing the infer-
ence algorithm expressed for MLNs. Procedure Prior-FOF
first converts ϕ0 to a clausal form; Note that like MLNs ex-
istentially quantified formulas are replaced by disjunction
of their groundings. Then, Prior-FOF assigns an indicator
function, Ig(Ci), to every grounding g of a clause Ci.

Ig(Ci)(~fg(Ci)) =
{

1 ~fg(Ci) |= g(Ci)
0 otherwise

(4)

The next step is to construct a Markov network M as
the minimal subset of the original network MMLN re-
quired to compute P 0(ϕ0). The nodes in M consist of
all the ground fluents fg(Ci) in clauses Ci of ϕ0 and all
the nodes in the original Markov network MMLN with a
path to the fluent fg(Ci). The final step is to perform in-
ference on this network. It can be computed exactly by
performing variable elimination (e.g., [9]) in P 0(ϕ0) ∝∑
f∈M

∏
~fj∈Clj ,~fi∈Ci

Φj(~fj)I(~fi). Also, one can employ
any approximate inference algorithm like Gibbs sampling.

We are not restricted to use MLNs as a framework for
representing prior probability distribution. We can use
any other probabilistic logical frameworks ([3; 12; 15; 7;
20]) provided that the expressed inference algorithm in that
framework can compute probability of the query. Note that
the query ϕ0 for that framework is derived from the regres-
sion of the original query ϕt given an FO particle. Also,
our algorithms would work for unbounded domains just by
using a framework (e.g., [21]) for representing prior distri-
bution over infinite states.

PROCEDURE S/R-Actions(a1:T , o0:T)
Input: Probabilistic sequence a1:T and observations o0:T

Output: N FO particles ~DA1:N

1. for n← 1 . . . N : curFn ← o0

2. for t← 1 . . . T
3. for n← 1 . . . N
4. π ←

∑
ψi

PAi · PFOF(ψt−1
i , da1:t−1)

5. P ←
∑
ψi

PAi · PFOF(ψt−1
i , da1:t−1

n , curFn)

6. ˆdat ← a sample from probability distribution π
7. curFn ← Progress(curFn, ˆdatn, o

t)

8. w∗n ←
π(ˆdat

n)

P (ˆdat
n)

9. 〈ŵ1, . . . , ŵN 〉 ← Normalize(w∗1 , . . . , w
∗
N)

10. (dat1:N , w1:N)← Resample(ˆdat1:N , ŵ1:N)

11.return ~DA1:N ← 〈da1 . . . daT 〉1:N

Figure 5: S/R-Actions: Sampling/Resampling algorithm for gen-
erating N FO particles given a sequence a1:T and observations
o0:T .

PROCEDURE S-Actions(a1:T , o0:T)
Input: Probabilistic sequence a1:T and observations o0:T

Output: N FO particles ~DA1:N

1. for n← 1 . . . N : curFn ← o0

2. for t← 1 . . . T
3. for n← 1 . . . N
4. P ←

∑
ψi

PAi · PFOF(ψt−1
i , da1:t−1, curFn)

5. dat ← a sample from probability distribution P
6. curFn ← Progress(curFn, dat, ot)
7.return ~DA1:N ← 〈da1 . . . daT 〉1:N

Figure 6: S-Actions: Direct sampling algorithm for generating
N FO particles given a sequence a1:T and observations o0:T .

3.2 Sampling Algorithms

In this section we describe procedures S/R-Actions (Fig-
ure 5) and S-Actions (Figure 6) which generate N samples
(called FO particles) given a sequence of probabilistic ac-
tions and observations. Each FO particle is a possible de-
terministic execution of the given probabilistic sequence.
Both algorithms incrementally build every FO particle by
sampling a deterministic action at a time. Later, we will
discuss about the deficiencies of S/R-Actions algorithm.

Both S/R-Actions and S/Actions generate a FO particle
~DA = 〈da1, . . . , daT 〉 given a sequence a1:T and obser-

vations o0:T from the distribution P (~DA|a1:T , o0:T). We
compute this probability distribution iteratively:

P (~DA|a1:T , o0:T)

= P (da1|a1, o0:1)
∏
t

P (dat|at, da1:t−1, o0:t)

The above derivation allows iterative sampling of determin-
istic actions from the distribution P (dat|at, da1:t−1, o0:t).
Recall that a FO particle is a sequence of deterministic ac-
tions. Thus, at each time the algorithms sample a determin-
istic action dat given the probabilistic action at, the previ-
ous deterministic actions da1:t−1, and the previous obser-

vations o0:t; Note that current deterministic action is inde-
pendent of the future observations. Then, the algorithms
update the current state formula curF (Section 3.1.1) given
the current deterministic action and the observation.

Algorithms S/R-Actions, S-Actions use different ap-
proaches for incremental sampling of each deterministic
action. In S/R-Actions, we adopt a sequential importance
sampling approach. At each time step, S/R-Actions samples
deterministic actions based on a normalized importance
function, assigns weights to the particles, and resamples if
the weights have high variance. The importance function
π(dat|at, da1:t−1) approximates P (dat|at, da1:t−1, o0:t)
by ignoring the effect of the current state curF in the
PRAM = (L,AX,PA, P 0).

π(dat|at, da1:t−1) =
∑
i

PAi(dat)PFOF(ψt−1
i,at , da

1:t−1)

where ψi,at is the ith partition of action at (Definition 3).

At time step t, S/R-Actions samplesN deterministic actions
dat1:N from the importance function: π(dat|at, da1:t−1).

It then restructures the nth particle ~DA
t−1

n by attaching
the deterministic action datn to that particle, i.e. ~DA

t

n =
〈da1

n, . . . , da
t−1
n , datn〉. The importance weight w∗n of the

nth particle is derived as: w∗n = P (dat
n|a

t,da1:t−1
n ,o0:t)

π(dat
n|at,da1:t−1

n)
.

Accordingly, the normalized importance weight wn of the
nth particle is: wn = w∗n∑N

i=1 w
∗
i

.

The exact value for P (dat|at, da1:t−1, o0:t) is computed
using PFOF subroutine (Figure 3).

P (dat|at, da1:t−1, o0:t) (5)

=
∑
i

PAi(dat) · PFOF(ψt−1
i,at , da

1:t−1, curF)

S/R-Actions resamples the particles if the variance of the
normalized importance weights becomes too high. The ba-
sic idea of resampling is to avoid those particles with very
low weight and concentrate on particles that have higher
normalized weight. An estimation (see [5]) for measuring
high variance among the weights is estimating the effective
number of particles as N̂eff = 1∑N

i=1 wi
. If N̂eff is smaller

than a threshold then procedure Resample generates a new
deterministic action dat from the probability distribution
over the normalized weights w1:N of the particles. It then
assigns equal weights, 1

N , to all the particles.

The second sampling algorithm, S-Actions (Figure 6), is
derived by simplifying the above sampling algorithm. This
algorithm at each time step generates samples among exe-
cutable deterministic actions. It samples every determin-
istic action in a FO particle from the exact computation
for P (dat|at, da1:t−1, o0:t−1) (Equation 5) instead of sam-
pling from the importance function and assigning weights.
Therefore, all the weights are equal to 1

N .

S/R-Actions, samples deterministic actions even when they
are not executable and assigns weight zero to those parti-
cles. Therefore, it decreases the effective number of sam-
ples. Resampling step does not help that much because it
resamples the latest deterministic action in the FO particle.
However, resampling earlier deterministic actions may re-
sult in a more effective set of FO particles. Note that this
new type of resampling is not tractable. Therefore, it makes
more sense to maintain the current state formula curF as in
S-Actions and just sample executable deterministic actions
(as in S-Actions) unless there exists a better resampling pro-
cedure. In the empirical results we examine the effects of
using S/R-Actions and S-Actions sampling algorithms in the
FOFA filtering algorithm (Figure 2).

3.3 Correctness, Complexity, and Accuracy

The following theorem shows how FOFA with S-Actions
and S/R-Actions compute the approximate posterior distri-
bution P̃N (ϕT |a1:T , o0:T).

Theorem 1. Let ϕT be the query, a1:T be the given prob-
abilistic sequence, ~DAi be the FO particles, and o0:T be
the observations. If curFi is the current formula given the
ith FO particle, ϕ0

i = RegSeq(ϕT , ~DAi), and curF0
i =

RegSeq(curFi, ~DAi), then

P̃N (ϕT |a1:T , o0:T) =
∑
i

wiP
0(ϕ0

i |curF0
i) (6)

where wi = 1
N for S-Actions. Besides, for S-Actions:

P̃N (ϕT |a1:T , o0:T)→N→∞ P (ϕT |a1:T , o0:T) (7)

The proof follows from using MC integration in Equation
2 and using Lemma 1.

The running timeRFOFA of our filtering algorithm (Figure
2) is O(N · T · (RRegSeq +RProgress +RPrior-FOF)),
where N is the number of samples and T is the length of
the given sequence of probabilistic actions. Efficiency of
FOFA results from efficiency of the underlying algorithms
for RegSeq, Progress, and Prior-FOF.

We evaluate the accuracy of our sampling algorithm FOFA
by computing expected KL-distance 1 as the expected value
of all the KL-distances between the exact distribution P
and the approximation P̃ derived by FOFA. Our algorithm,
FOFA, has higher accuracy than SMC for a fixed number
of samples. The intuition is that each FO particle generated
by FOFA covers many particles generated by SMC.

Theorem 2. If FOFA(S-Actions) and SMC approxi-
mate posterior distribution P (ϕT |a1:T , o0:T) with N
samples. Then, Expected-KLFOFA(S-Actions) ≤
Expected-KLSMC.

1KL(P, P̃) =
∑
x Pxlog(Px/P̃x),KL(P, P̃) = 0 if P = P̃

The proof is similar to the proof of Theorem 3.3 in [8]. In-
tuitively, we define a mapping f to map each set of FO par-
ticles of S-Actions to sets of particles of SMC. The mapping
f is defined such that it covers all the possible sets of parti-
cles of SMC, and for two separate sets of particles zi 6= zj ,
f(zi) ∩ f(zj) = ∅, and PrFOFA(z) = PrSMC(f(z)).
Furthermore, we prove that ∀y ∈ f(z),KL(P, P̃ z1) ≤
KL(P, P̃ y2) where P̃1 and P̃2 are approximations returned
by FOFA and SMC, respectively.

4 Empirical Results

We implemented our algorithm FOFA (Figure 2) with both
S/R-Actions (Figure 5) and S-Actions (Figure 6). Our al-
gorithms take advantage of a different structure than that
available in DBNs. Hence, we focused on planning-type
domains: briefcase and depots taken from International
Planning Competition at AIPS-98 and AIPS-02. 2 We ran-
domly assigned deterministic executions and a probability
distribution over them for each action. For example, for
action PutIn we considered two executions PutInSucc and
PutInFail with probabilities 0.9 and 0.1. Note that DBN
representations (transitions between states) for the above
frameworks are not compact because the independence as-
sumptions among the state variables are not known.

We compared the accuracy of our FOFA(S/R-Actions) and
FOFA(S-Actions) with SCAI [8] and SMC algorithms.
Note that we grounded the domains for running SCAI and
SMC. We ran sampling algorithms (50 times) for a fixed
number of samples and computed the KL-distance between
their approximation and the exact posterior. We calculated
the average over these derived KL-distances to approxi-
mate the expected KL-distance. SCAI assumes that deter-
ministic actions are always executable. We include this as-
sumption in the depots domain in which we compared the
results with SCAI. In the briefcase domain, we just com-
pared our algorithms with the SMC techniques.

Figures 7 and 8 show the expected KL-distances (in log-
arithmic scale) vs. number of samples in the depots and
briefcase, respectively. As we expected, the average KL-
distance for FOFA(S-Actions) is always the lowest. We
expect to get more improvement when there are more ob-
jects in the domain (here, we just use 5 constants to be
able to compute the exact distribution). For the brief-
case domain (Figure 8) SMC has higher accuracy than
FOFA(S/R-Actions) for 1000 samples. The reason is that
the posterior distribution converges to the stationary dis-
tribution in this domain (4 constants, 256 states). Even
grounded domain is not too big, but for cases involving
longer sequences and more states we did not have the exact
posterior to compare with since the implementation for the
exact algorithm crashes.

2Also available from: ftp://ftp.cs.yale.edu/pub/
mcdermott/domains/.

0.0001

0.001

0.01

0.1

50 100 500 1000

FOFA(S-Actions)
FOFA(S/R-Actions)
SCAI
SMC

Figure 7: Expected KL-distance (in logarithmic scale) of our
algorithms, FOFA(S-Actions) and FOFA(S/R-Actions), SCAI, and
SMC with the exact distribution vs. number of samples for depots.

0.0001

0.001

0.01

0.1

1

50 100 500 1000

FOFA(S-Actions)
FOFA(S/R-Actions)
SMC

Figure 8: Expected KL-distance (in logarithmic scale) of our
algorithms, FOFA(S-Actions) and FOFA(S/R-Actions), and SMC
with the exact distribution vs. number of samples for briefcase.

5 Conclusions and Future Work

In this paper we presented a sampling algorithm to com-
pute the posterior probability of a query given a sequence
of actions and observations in a FO dynamic system. Our
algorithm takes advantage of a compact representation and
achieves higher accuracy than SMC sampling and earlier
propositional sampling techniques.

There are several directions that we can continue this
work: (1) Apply sampling in FO Markov Decision Pro-
cesses(MDP)s 2 Learn the transition model in PRAM.
(3) Apply the algorithm in text understanding. (4) Gen-
eralize the representation to continuous domains (e.g., by
discretizing the real value variables or by combining with
Rao-Blackwellised Particle Filtering [6]).

Acknowledgements

We would like to thank the anonymous reviewers for
their helpful comments. This work was supported by
DARPA SRI 27-001253 (PLATO project), NSF CAREER
05-46663, and UIUC/NCSA AESIS 251024 grants.

References
[1] F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning

about noisy sensors and effectors in the situation calculus.
AI, 1999.

[2] C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic
programming for first-order MDPs. In IJCAI, 2001.

[3] V. S. Costa, D. Page, M. Qazi, and J. Cussens. Clp(bn):
Constraint logic programming for probabilistic knowledge.
In UAI, 2003.

[4] T. Dean and K. Kanazawa. Probabilistic temporal reasoning.
In AAAI, 1988.

[5] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte
Carlo Methods in Practice. Springer, 1st edition, 2001.

[6] A. Doucet, N. de Freitas, K. Murphy, and S. Russell. Rao-
blackwellised particle filtering for dynamic bayesian net-
works. In UAI, 2000.

[7] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning
probabilistic relational models. In IJCAI, 1999.

[8] H. Hajishirzi and E. Amir. Stochastic filtering in a proba-
bilistic action model. In AAAI’07, 2007.

[9] Michael Jordan. Introduction to probabilistic graphical
models. 2007. Forthcoming.

[10] K. Kersting, L. D. Raedt, and T. Raiko. Logical hidden
markov models. Artificial Intelligence Research, 2006.

[11] U. Kjaerulff. A computational scheme for reasoning in dy-
namic probabilistic networks. In UAI, 1992.

[12] S. Muggleton. Stochastic logic programs. In Workshop on
ILP, 1995.

[13] Kevin Murphy. Dynamic Bayesian Networks: Representa-
tion, Inference and Learning. PhD thesis, 2002.

[14] M. Nance, A. Vogel, and E. Amir. Reasoning about partially
observed actions. In AAAI, 2006.

[15] D. Pool. Probabilistic horn abduction and bayesian net-
works. Artificial Intelligence, 64:81–129, 1993.

[16] L. R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition. IEEE, 1989.

[17] R. Reiter. Knowledge In Action. MIT Press, 2001.

[18] Matthew Richardson and Pedro Domingos. Markov logic
networks. Machine Learning, 2006.

[19] A. Shirazi and E. Amir. First order logical filtering. In IJ-
CAI, 2005.

[20] B. Taskar, P. Abbeel, and D. Koller. Discriminative proba-
bilistic models for relational data. In UAI’02, 2002.

[21] M. Welling, I. Porteous, and E. Bart. Infinite state bayesian
networks. In NIPS, 2007.

[22] L. S. Zettlemoyer, H. M. Pasula, and L. P. Kaelbling. Logi-
cal particle filtering. In Dagstuhl Seminar on Probabilistic,
Logical, and Relational Learning, 2007.

