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Abstract

Parameter estimation in Markov random fields
(MRFs) is a difficult task, in which inference
over the network is run in the inner loop of a
gradient descent procedure. Replacing exact in-
ference with approximate methods such as loopy
belief propagation (LBP) can suffer from poor
convergence. In this paper, we provide a differ-
ent approach for combining MRF learning and
Bethe approximation. We consider the dual of
maximum likelihood Markov network learning
— maximizing entropy with moment matching
constraints — and then approximate both the ob-
jective and the constraints in the resulting opti-
mization problem. Unlike previous work along
these lines (Teh & Welling, 2003), our formula-
tion allows parameter sharing between features
in a general log-linear model, parameter regular-
ization and conditional training. We show that
piecewise training (Sutton & McCallum, 2005)
is a very restricted special case of this formula-
tion. We study two optimization strategies: one
based on a single convex approximation and one
that uses repeated convex approximations. We
show results on several real-world networks that
demonstrate that these algorithms can signifi-
cantly outperform learning with loopy and piece-
wise. Our results also provide a framework for
analyzing the trade-offs of different relaxations
of the entropy objective and of the constraints.

1 Introduction

Markov random fields (MRFs) have become a standard tool
in many applications. It is often desirable to estimate the
parameters of these models from data because tuning them
manually is often difficult, and learned models often exhibit
better performance. While several different objectives have
been proposed for the learning task, the most commonly
used are maximum likelihood and maximum conditional

likelihood, often with additional parameter priors (regular-
ization penalties). These objectives cannot be optimized in
closed form, but they are convex, and so the global opti-
mum can be found using iterative methods, such as simple
gradient descent or more sophisticated optimization algo-
rithms (Minka, 2001; Vishwanathan et al., 2006). Unfortu-
nately, each step of these optimization algorithms requires
that we compute the log partition function and the gradient
which in turn requires performing inference on the model
with the current parameters. As MRF inference is compu-
tationally expensive or even intractable, the learning task
— which executes inference repeatedly — is often viewed
as intractable.

One commonly-used approach (Shental et al., 2003; Taskar
et al., 2002; Sutton & McCallum, 2005) is to approx-
imate the gradient of the maximum likelihood objective
through an approximate inference technique, most often
the loopy belief propagation (LBP) (Pearl, 1988; Yedidia
et al., 2005) algorithm. LBP uses message passing to find
fixed points of the non-convex Bethe approximation to the
energy functional (Yedidia et al., 2005). Unfortunately, for
some choices of models, LBP can be highly non-robust,
providing wrong answers or not converging at all. These
phenomena are particularly problematic when LBP is used
as the inner loop of a learning algorithm, as they can lead
to non-robust estimates of the gradient, and poor conver-
gence of the entire algorithm. Other methods, such as the
double loop algorithm of Yuille (2002), provide a conver-
gent alternative to optimizing the Bethe objective. How-
ever, in the context of learning, this method would give rise
to a triple-loop algorithm (with parameter updates being
the outer loop), with the resulting increase in complexity.
Moreover, as the inner objective is non-convex, it has mul-
tiple local minima, possibly creating problems for the more
sophisticated optimizers that often assume convexity.

In this paper, we present an alternative approach, based
on a unified objective that integrates both inference and
learning. Our formulation starts with the dual of max-
imum likelihood, namely maximum entropy with expec-
tation constraints. We approximate the entropy using the
Bethe approximation and the marginal polytope with the



standard local consistency constraints. This formulation
pulls all of the non-convexity into the external, unified
objective, avoiding the difficulty of solving a non-convex
problem in the inner loop. The overall objective, which
we callCAMEL(Constrained Approximate Maximum En-
tropy Learning) is a sum of concave and convex functions.
We maximize it using the iterated CCCP approach of Yuille
(2002): in each iteration, we linearize the non-concave part,
resulting in a constrained maximization of a concave func-
tion problem. We show how the dual of this problem can be
reformulated as a sum of local logistic regressions, one for
each factor in the MRF, with shared parameters. The op-
timization can thus be performed efficiently using state-of-
the-art solvers such as conjugate gradient or L-BFGS (Zhu
et al., 1997).

The unified objective provides an elegant framework to un-
derstand different approaches in terms of the approxima-
tions they make to both the objective and the constraints.
In particular, we show that piecewise training method, re-
cently proposed by Sutton and McCallum (2005), is solv-
ing a simplification of the CAMEL objective, when the
linearization is chosen to be zero, and the marginal con-
sistency constraints have been dropped. This provides a
novel insight into the relationship between LBP and piece-
wise training, providing a direct comparison between the
objectives that each is optimizing. We also show that the
Uniform Propagation and Scaling algorithm of Teh and
Welling (2001) is performing a coordinate-ascent proce-
dure on the unified objective for a restricted class of models
that involve no weight sharing, conditional training or reg-
ularization.

On several data sets, we find that our CCCP-based pro-
cedure has to perform relatively few relinearizations. On
tasks where LBP works well in the inner loop, we show
that our method achieves comparable results. On a vision
task, where LBP fails completely, our method still performs
well, and outperforms piecewise training by a large margin.

2 Background and Related Work

2.1 Maximum Entropy Learning

For the purposes of this paper, we focus on discrete MRFs,
and utilize the log-linear representation, which most natu-
rally accommodates rich feature spaces, regularization, and
parameter sharing. A log-linear MRF encodes a joint dis-
tribution over assignmentsx to a set of (discrete) random
variablesX = {X1, . . . ,Xn}. We assume that the dis-
tribution is defined in terms of a set offeaturesfl, each
with its own weightwl. In our formulation, features can
be shared both within and between factors in the network.
We definef l to be the overall sufficient statistic associated
with fl. For standard (generative) MRFs, the distribution

defined by the log-linear model is:

Pw(x) =
1

Z

∏

l

exp (wlf l(x)) =
1

Z
exp(wT f(x)),

(1)
whereZ is the normalizing partition function.

Given a training setD with instancesx1, . . . ,xM , we can
choose the parametersw to maximize the log-likelihood
log P (D | w) =

∑M
m=1 log P (xm | w). This objective

has no closed form solution, but it is convex, and so can be
optimized using simple gradient descent, or more sophis-
ticated optimization techniques such as conjugate gradient
or L-BFGS (Zhu et al., 1997).

It is well-known that the dual of maximum likelihood is
maximum entropy (Berger et al., 1996), subject to moment
matching constraints on the expectations of features taken
with respect to the distribution.

maximizeQ HQ(X)
subject to EQ[f ] = EP̂[f ]

∑

x Q(x) = 1
Q(x) ≥ 0

(2)

This derivation also generalizes to the case of optimizing
a conditional-likelihood objective, as in conditional ran-
dom fields (CRFs) (Lafferty et al., 2001). Here, we encode
a conditional probability distribution over a set of vari-
ablesY given an observed set of variablesX: Pw(y |
x) = 1

Z(x)

∏

l exp(wlfl(yl,xl)), whereZ(x) is a nor-
malizing constant that defines a distribution overy for ev-
ery value ofx. The learning task for a CRF is to max-
imize the conditional likelihood of the training dataD,
maxw

∑

(xm,ym)∈D log Pw(ym | xm). The dual of this
problem is the sum of the entropies of the conditional dis-
tributions, subject to expectation constraints (McCallum
et al., 2000):

maximizeQ

∑

m HQ(Y | xm)
subject to

∑

m EQY |xm [f(Y ,xm)] =
∑

m f(ym,xm)
∑

y QY |xm(y) = 1,∀m

Q(y | xm) ≥ 0, ∀m,y
(3)

We can also generalize this formulation to encompass reg-
ularization of parameters (or, equivalently, a parameter
prior). For example, regularizing theL2 norm of the
weightsw corresponds to replacing the hard constraints
equating the expected and empirical counts with anL2

penalty on their difference in the objective:

maximizeQ

∑

m HQ(Y | xm) − λ‖EQ[f ] − EP̂[f ]‖2

subject to
∑

y QY |xm(y) = 1,∀m

Q(y | xm) ≥ 0, ∀m,y
(4)

For simplicity of exposition and without loss of generality,
we present our derivation for the case of generative training
without regularization.



2.2 Constrained Entropy Approximation

Unfortunately, the entropy-based optimization problems
presented above are no more tractable than their maximum
likelihood dual, as they require that we optimize over the
space of distributionsQ, whose dimension is exponentially
large. A tractable approximation to this problem can be ob-
tained by applying the same sequence of transformations
used by Yedidia et al. (2005) to derive the LBP message-
passing inference algorithm as a fixed point to the prob-
lem of optimizing objective. More precisely, we consider
a cluster graphconsisting of a set of clusters{Ci}, where
each has a scopeci ⊂ {X1, . . . ,Xn}. Pairs of clusters
are connected by edges(Ci, Cj), annotated with sepsets
sij ⊆ ci ∩ cj .

Now, rather than optimizing over the space of distributions
Q, we optimize over the set ofpseudo-marginals— a set
π = {πi(ci) : Ci ∈ C}, µ = {µij(sij) : (Ci, Cj) ∈ C},
subject to local (cluster-based) calibration and normaliza-
tion constraints:

µij(sij) =
∑

ci\sij
πi(ci) ∀(Ci, Cj) ∈ C

∑

ci
πi(ci) = 1 ∀Ci ∈ C.

(5)

The local marginal consistency constraints are a relax-
ation (outer bound) on themarginal polytope(Wainwright
et al., 2003) — the set of allπ,µ that can be obtained
by marginalizing out a legal distributionQ(X1, . . . ,Xn).
That is, whereas all legal marginals satisfy the constraints
of Eq. (5), there are assignmentsπ,µ that satisfy these con-
straints but are not the marginals of any legal distribution.

Continuing as in the LBP derivation, we approximate the
entropyHQ(X) as:

HQ(X) ≈
∑

Ci∈C

Hπi
(Ci) −

∑

Sij∈C

Hµij
(Sij) (6)

This reformulation is exact when the cluster graph is a tree,
but is approximate otherwise. We note that one can also use
other approximations to the entropy that are concave, e.g.,
those proposed by Wainwright et al. (2003), Weiss et al.
(2007). We focus our discussion mostly on the Bethe ap-
proximation, which often provides a better approximation,
if it converges.

Putting these approximations together, we obtain the
following CAMEL objective (Constrained Approximate
Maximum-Entropy Learning):

maximizeπ

∑

i H(πi) −
∑

ij H(
∑

ci\sij
πi(ci))

subject to (a)Eπ[f ] = EP̂[f ]
(b)

∑

ci\sij
πi(ci) =

∑

cj\sij
πj(cj)

(c)
∑

ci
πi(ci) = 1

π ≥ 0
(7)

To illustrate this equation, consider a simple MRF over the
binary variablesA,B,C, with three clustersAB,BC,AC.

We assume that the log-linear model is defined by the fol-
lowing two features, both of which are shared over all clus-
ters: f00(x, y) = 1 if x = 0 andy = 0, and0 otherwise;
andf11(x, y) = 1 if x = 1 andy = 1. Assume we have 3
data instances[0, 0, 1], [0, 1, 0], [1, 0, 0]. The unnormalized
empirical counts of each feature, pooled over all clusters,
is thenEP̂ [f00] = (1+1+1)/3 = 1, EP̂ [f11] = 0. In this
case Eq. (7) would take the following form:

maximizeπ H(πAB) + H(πBC) + H(πAC)
−H(πA) − H(πB) − H(πC)

subject to
∑

i Eπi
[f00] = 1

∑

i Eπi
[f11] = 0

∑

a[πAB ] −
∑

c[πBC ] = 0
∑

b[πBC ] −
∑

a[πAC ] = 0
∑

c[πAC ] −
∑

b[πAB ] = 0
∑

ci
πi(ci) = 1 i = 1, 2, 3

π ≥ 0

(8)

2.3 Related Work

A formulation similar to the CAMEL objective of Eq. (7)
was used by Teh and Welling (2001) to derive Uniform
Propagation and Scaling(Teh & Welling, 2001). They
begin with minimizing the Kullback-Liebler divergence
and then present an approximation motivated by the LBP
derivation. They then use a Lagrange-multiplier analysis to
define the fixed points for their objective, and obtain a uni-
fied message passing algorithm. Their formulation, how-
ever, is highly restricted in the following ways: (1) it only
covers parametrizations that are full factors over the clus-
ters in the network, without shared parameters; (2) it only
allows moment matching constraints over features involv-
ing single variables; (3) it does not cover conditional train-
ing; (4) it does not allow for regularization. These assump-
tions are violated in virtually any practical MRF applica-
tion. Moreover, their unified message passing algorithm
is based on iterated proportional fitting, and thereby per-
forms coordinate ascent on the Largrange multipliers. This
technique works reasonably well when the constraints tie
together few variables, as in their restricted class of prob-
lems. In the general case with shared parameters, coor-
dinate ascent will perform poorly (Minka, 2001) because
iterating one constraint will often cause a large number of
other constraints to be violated.

The unified CAMEL objective was also proposed by Wain-
wright (2006). However, Wainwright’s optimization ap-
proach differs from ours in that he selects a single con-
vex approximation to the entropy, and then uses a standard
double-loop algorithm which optimizes log-likelihood in
the outer loop using a convexified LBP as the inference
engine in the inner loop. By contrast, our approach opti-
mizes the original Bethe approximation, using the iterated
CCCP approach. An analysis of the unified objective is also
used by Wainwright et al. (2003) to show that maximum
likelihood learning with LBP has a simple closed form so-
lution (called pseudo-moment matching), in the very re-



stricted setting of generative MRFs, with full table factors,
no regularization, and no shared parameters. (This solution
is obtained by estimating the cluster beliefs directly as the
marginals of the empirical distribution, and then using a
simple procedure for computing the parameterization from
those marginals.)

Also interesting is the connection between Eq. (7) and
the piecewise training approach of Sutton and McCallum
(2005). If we further relax the optimization problem by
removing the marginal consistency constraints in (b), and
further approximate the objective by eliminating the neg-
ative entropy terms on the right-hand side, we obtain the
following optimization problem:

maximizeπ Hπi
(Ci)

subject to Eπ[f ] = EP̂[f ]
(9)

This optimization problem is concave, and its dual is pre-
cisely the piecewise objective. This equivalence highlights
the two important differences between the objective of
piecewise training and that of maximum likelihood using
LBP inference: piecewise training uses a particular form of
concave entropy approximation, and omits any attempt to
enforce the marginal consistency constraints between clus-
ters. We study the implications of these approximations.

3 Optimization

We now consider the task of optimizing the Eq. (7) objec-
tive. The standard strategy is to introduce Lagrange mul-
tipliers, or weights, for the expectation constraints. Fora
fixed set of weights, the resulting optimization problem is
minimization of the Bethe Free Energy where the poten-
tials are defined by the setting of the weights. The standard
optimization strategy is adouble loopmethod, where the
outer loop takes gradient steps relative to the weights, and
the inner loop computes the gradient using a message pass-
ing algorithm such as LBP. As we shall demonstrate in our
experiments, this method can run into significant difficul-
ties in complex models, as having a non-convex problem
as the inner loop of outer optimization creates convergence
problems.

The objective in Eq. (7) has two components: the pos-
itive clique entropies

∑

i H(πi), and the negative sepset
entropies−H(

∑

ci\sij
πi(ci)). The positive entropies are

concave functions, whereas the negative entropies are con-
vex. For the Bethe approximation, this objective is not con-
cave, and therefore must be optimized with care. The con-
cave entropy approximations mentioned above can be opti-
mized directly using standard optimization methods.

Our strategy for the non-concave case is based on the
CCCP approach of Yuille (2002), which was developed for
the approximate inference task. We write the objective as a
sum of a concave function and a convex function. We then
linearize the convex component−

∑

ij H(
∑

ci\sij
πi(ci))

with a linear functiongT π. This approximation gives rise
to a problem where we maximize a concave function sub-
ject to constraints. This problem can be solved efficiently
using standard optimization methods. We now relinearize
the convex component around the solution found, and re-
peat the process.

We note that there are several other ways to “carve out”
a concave portion of this objective. In particular, more
elaborate methods can be defined based on the concave en-
tropy approximations of Wainwright et al. (2003), Heskes
(2006), Weiss et al. (2007). These entropy approximations
usecounting numbersto define a weighted sum of posi-
tive and negative entropies that is guaranteed to be concave
overall. Thus, we might be able to “fold in” a portion of
the negative entropy terms into the positive entropy terms,
while still leaving the sum concave. Here, for simplicity,
we consider the simplest approach, where we take only the
positive entropies to be concave, and (iteratively) linearize
the negative entropies. The analysis of Yuille shows that
this process is guaranteed to converge to a local optimum
of the original objective.

In the remainder of this section, we first discuss the inner
loop of this algorithm — the solution of the constrained
convex optimization problem and then present the iterated
linearization procedure. In each iteration, our optimization
problem now takes the following form:

maximizeπ

∑

i H(πi) −
∑

i gT
i πi

subject to (a)Eπ[f ] = EP̂[f ]
(b)

∑

ci\sij
πi(ci) =

∑

cj\sij
πj(cj)

(c)
∑

ci
πi(ci) = 1

π ≥ 0
(10)

In this equation, the objective is the sum of entropies of the
cliques, with a linear contribution that does not affect the
form of the optimization.

We want to solve this optimization problem via its dual;
if we ignore the marginal consistency constraints, the dual
would simply be a product of log-linear estimation prob-
lems with shared parameters. Appealingly, we can also
accommodate the marginal consistency constraints within
this framework by introducing auxiliary features that cap-
ture violations of marginal consistency. In particular, we
arbitrarily select a directionality(i, j) for each edgeij in
the cluster graph, and for each one define a set of features
h

sij

ij , one for each assignmentsij to the sepset; this feature
measures violation of marginal consistency for this particu-
lar sepset assignment. The scope of these features isCi and
Cj . Applied to an assignmentci, it takes the value+1 if ci

agrees withsij ; applied tocj , it takes the value−1 if if cj

agrees withsij . Thus, the overall value of the feature is0 if
the cliques agree on the assignmentsij , and±1 otherwise.
The expected value of these features is

Eπ[h
sij

ij ] =
∑

ci\sij

πi(ci) −
∑

cj\sij

πj(cj).



The expected value of these features on the empirical dis-
tribution,EP̂ [hij ], is necessarily0, as all valid distributions
have consistent marginals.

Continuing our running example, here we would have one
set of features for theB sepset that relates theAB and
BC clusters. Let us consider the feature that measures
the disagreement on theB = 0. The featurehB=0

12 is de-
fined as follows: when applied toAB, it returns 1 when-
everB = 0; when applied toBC, it returns -1 whenever
B = 0; in all other cases, its value is 0. Then, the ex-
pectation of this feature on the factors will precisely be
πAB(00)+πAB(10)−πBC(00)−πBC(01). As eachπi is
constrained to be normalized, the expected value ofhB=0

12 is
the degree to whichπAB andπBC disagree onP (B = 0).

We can now rewrite Eq. (7) as standard maximum entropy
subject to expectation constraints:

maximizeπ

∑

i H(πi) −
∑

i gT
i πi

subject to (a)Eπ[f ] = EP̂[f ]
(b)Eπ[h] = 0
(c)

∑

ci
πi(ci) = 1

π � 0

(11)

We compute the Lagrange dual of this problem by intro-
ducing two sets of Lagrange multipliers:w for the original
expectation constraints, andδ that correspond to the new
marginal consistency featuresh. For a cluster assignment
ci to Ci and a featurefl, we definefl(ci) to be the portion
of the sufficient statistics offl derived from theCi portion
of the overall joint assignment to the network variables. We
can now define:

πi(ci) =
1

Zi

exp(wT f(ci)+
∑

(i,j)∈C

∑

sij

δ
sij

ij h
sij

ij (ci)+gci
)

where Zi is the normalization constant. The dual of
Eq. (11) can now be written as:

maximize
w,δ

∑

Ci∈C

[

M
∑

m=1

∑

l

wlfl(c
m
i ) − lnZi

]

(12)

Continuing our 3-cluster example, assumingg = 0, the
dual objective is written as the sum of three terms, one for
each cluster. The term for theAB cluster with our three
data points, would be

w00

3
∑

m=1

f00(a
m, bm) + w11

3
∑

m=1

f11(a
m, bm) − 3 log Z1

Our overall objective would be the sum of the
three cluster terms, over the parametersw00, w11 and
δ0
12, δ

1
12, δ

0
13, δ

1
13, δ

0
23, δ

1
23. We can then define the potentials

using the derived parameters; for example,π1(A,B) =
exp(w00f00(A,B) + w11f11(A,B) +

∑

b δb
12h

b
12(AB) +

∑

a δa
13h

a
13(AB)).

We see that Eq. (12) is the sum of local likelihoods, one per
training instancexm and clusterCi in the cluster graph.
In fact, this objective is very similar to both the piecewise
objective and standard multiclass logistic regression. The
linear termg produces a bias term for each cluster. As in
piecewise training, we obtain a set of log-linear estimation
problems that are coupled via the use of shared parame-
ters. Unlike piecewise training, our formulation enforces
marginal consistency constraints through the use of the La-
grange multiplierδ. We are guaranteed that the factors re-
sulting from this optimization will be a set ofconsistent
pseudo-marginals. Thus, our learning objective couples in-
ference — obtaining a set of consistent marginals — with
learning.

After fully optimizing the concave subproblem, we update
the linearization as per the CCCP algorithm:

gci
:=

∂

∂πi(ci)

∑

ij

H(
∑

ci\sij

πi(ci))

=
∑

i→j



−1 − log(
∑

ci\sij

πi(ci))





We repeat the procedure of optimizing the concave sub-
problem and relinearizing until the change in linearization
term g is small. This procedure is guaranteed to converge
to a fixed point of the original objective (Yuille, 2002). We
experimented with initializingg by evaluating the above
expression atπ = π̂.

We note that, since at convergence the clusters agree on
their separators, we could also use another linear combi-
nation of the marginals of the clusters to define the nega-
tive entropy. One reasonable choice is to define the sepset
marginal for each edge as half the marginal of the source
cluster and half of the target cluster, thus splitting the lin-
earization evenly between the two clusters.

4 Experimental Results

The CAMEL objective consists of an objective which is a
sum of a convex and concave entropy approximation and
constraints which include the moment matching and local
marginal consistency. We tested algorithms where we ex-
plored dropping the negative entropy terms and dropping
the marginal consistency constraints in order to investigate
the effects independently.

• Piecewise Training (Sutton & McCallum, 2005)
which is equivalent to the CAMEL objective with
the local consistency constraints and negative entropy
terms removed.

• CAMEL(0), which is the CAMEL objective with the
negative entropies removed, which corresponds to
Piecewise Training that respects the marginal consis-
tency constraints. We first run Piecewise, and then



introduce the marginal consistency constraints as we
found this ran more quickly.

• LBP, approximating the gradient using Residual Be-
lief Propagation (Elidan et al., 2006). We tested
various convergence criteria and show the choice that
worked best. When we change the weights, we restart
inference from the final messages from the previous
setting of which improves the speed and robustness of
the learning algorithm.

• CCCP CAMEL which is the algorithm proposed in the
paper, initialized atg = 0.

• CCCP CAMEL(Empirical), initialized from the em-
pirical distribution as discussed earlier.

All of the objective functions are optimized using a limited-
memory BFGS (Zhu et al., 1997), using the recommended
parameters that come with the standard software package.
At test time, we use RBP for inference.

We test the performance of each algorithm by training con-
ditional random fields on the following three data sets: the
CONLL 2003 English named entity recognition data set,
the CMU Seminar Announcements information extraction
data set, and the COREL image segmentation data set. We
use the Gaussian prior ofσ2 = 10 that was used in previ-
ous work for the NLP data sets, and no regularization for
the vision data set, which has a very small number of pa-
rameters relative to the number of training instances. For
both NLP tasks, our features were calculated as in Finkel
et al. (2005) and we evaluated our results by calculating
the macro F1 and micro F1 scores.

The CONLL data set1 is a collection of Reuters newswire
articles annotated with four entity types: person, location,
organization, and miscellaneous. The task is to correctly
classify tokens as the correct entity type. We trained on the
standard training set of 947 documents and tested on the
standard test set of 231 documents. The CRF model for this
task is the skip chain model developed by Sutton and Mc-
Callum (2004), which is the standard linear-chain model
for information extraction, augmented with long-range de-
pendencies between identical capitalized tokens.

Our second task is to extract information about seminars
from the email announcements data set of Freitag (1998)2.
The data is labeled with four fields: Start-Time, End-Time,
Location and Speaker. It consists of 485 emails contain-
ing seminar announcements at Carnegie Mellon University.
The CRF model for this task is the skip-chain model devel-
oped by Sutton and McCallum (2004). We evaluated the
performance averaged over four folds.

Our final task is an image segmentation task in the Corel
data set. These images are pre-segmented into seven

1Available at http://cnts.uia.ac.be/conll2003/ner/
2Available at http://nlp.shef.ac.uk/dot.kom/resources.html

classes: rhino, polar bear, water, snow, vegetation, sky, and
ground. Here, we used a newly developed model (Gould
et al., 2008) constructed as follows: Pixels are first grouped
into a number of super-pixels, using the normalized min-
cut algorithm of Ren and Malik (2003). Seven (flat)
boosted classifiers were trained to learn the singleton po-
tentials for each patch in terms of its appearance features.
Edge potentials were a full (symmetric)7 × 7 table. A
CRF was then trained to learn both the edge potentials,
the weights of the pre-learned node potentials, and the bias
term. Thus, in this model, there is a total of 56 (8 × 7) pa-
rameters for the node potentials and 21 parameters for the
edge potentials. Our evaluation metric is the accuracy of
the classifier at predicting the class of each super-pixel. We
randomly partitioned the 80 images into three folds of 40
training and 40 test images and averaged the results.

On the named entity recognition task, all of the methods
perform reasonably well. The LBP method and the CCCP
CAMEL method perform the best and almost identically.
The table also presents the running times, but these are
very sensitive to the convergence criteria used for the inner
loop, which affect the different algorithms in unpredictable
way. Thus, these running times should be viewed only as a
very coarse guideline to the orders of magnitude. The num-
ber of outer loops of the CCCP algorithms was small each
time, illustrating that a small number of relinearizationsis
required to reach convergence.

On the information extraction task, loopy belief propaga-
tion performs the best, but the difference between the al-
gorithms is not much larger than the standard deviation of
the estimate. On this data set, after eliminating features
that appear only once, there are 346,140 features, and 3
million weights, and therefore the additional features and
weights added by the CAMEL variants (1 million) are a
small proportion; as a result, the additional running times
for CAMEL(0) over Piecewise is not significant. However,
due to the large number of features, the learned distribu-
tion is very similar to the empirical distribution, so that
the marginal consistency constraints are automatically sat-
isfied. Indeed, the CAMEL version that initializes from the
Piecewise Training results converges very quickly.

ALGORITHM TIME(S) ACCURACY(%)
PIECEWISETRAINING 911(20) 78.6(1.3)
CAMEL(0) 4082(267) 82.9(0.9)
LBP 4437(307) 53.2(4.2)
CCCP CAMEL 40501(3994) 84.4(.6)
CCCP CAMEL(EMPIR) 37032(4419) 84.4(.5)

Table 3: Results for the image segmentation task; re-
sults are averaged over 3 folds, with standard deviation in
parens.

On the image segmentation task, the story is quite different.
This data set has only 84 weights, with very extensive shar-
ing across all the clusters. Learning with LBP fails badly,
as the optimizer is incapable of making any progress in op-



ALGORITHM OUTER LOOPS INNER LOOP TIME(S) MACRO F1 MICRO F1
PIECEWISETRAINING 1 82 7348 83.7 85.2
CAMEL(0) 1 20 9348 83.9 85.5
LBP 3 97,20,12 13871 84.6 86.2
CCCP CAMEL 2 250,41 40000 84.6 86.1
CCCP CAMEL(EMPIRICAL) 2 150,40 24833 84.5 85.9

Table 1: Results for the named entity recognition task.

ALGORITHM OUTER LOOPS MACRO F1 MICRO F1
PIECEWISETRAINING 0 88.5(1.0) 88.5(.9)
CAMEL(0) 0 88.5(1.0) 88.5(.9)
LBP 0 89.6(1.1) 89.6(1.0)
CCCP CAMEL 2 88.7(1.1) 88.6(1.0)
CCCP CAMEL(EMPIRICAL) 1 88.7(1.1) 88.7(1.0)

Table 2: Results for the information extraction task; results are averaged over 4 folds, with standard deviation in parens.

timizing the objective. We tried to restart the optimizer sev-
eral times, which we found helped significantly on the NLP
data sets, but this was not effective on the image segmenta-
tion data set. This is not surprising because this model has
very many tight loops, which may cause LBP to be highly
unstable. The CAMEL algorithms achieve the best perfor-
mance on this data set. The large margin between Piece-
wise and CAMEL illustrates that enforcing the marginal
consistency constraints is beneficial. In addition, the im-
provement of CCCP CAMEL over CAMEL(0) is also sig-
nificant, demonstrating that the negative entropy terms are
also important. The CCCP Camel algorithms had essen-
tially converged after seven linearizations on all folds.

A different view of these results can be obtained from the
optimization perspective. In the maximum entropy prob-
lem, sharing parameters corresponds to reducing the num-
ber of rows of the moment-matching constraint matrix,
thereby reducing its rank. The lower the rank, the less con-
strained the optimization problem, and thus the more likely
that the distribution will deviate from the marginal poly-
tope. In the NLP data set, this did not occur because there
are more weights than data instances, so that the moment-
matching constraint matrix is close to full-rank. Thus, the
additional local-consistency constraints have little effect on
the rank, and therefore do not further constrain the problem
significantly. By contrast, in the vision domain, the graph
has many shared parameters, so that the problem is highly
under-constrained, and it is easy to leave the marginal poly-
tope while still agreeing with the empirical moments. By
adding the many constraints that result from the marginal
consistency constraints in this (fairly dense) graph, we pro-
vide important information that moves the solution towards
a more plausible region of the space.

5 Discussion and Conclusions

The main contribution of our paper is a convergent algo-
rithm to perform learning with the Bethe approximation
that only has to solve convex problems in the innermost
loop. As in the work of Teh and Welling (2001), Wain-

wright (2006), we use the entropy-dual of the maximum
likelihood task, and approximate it in ways that parallel
the derivation of the belief propagation algorithm (Yedidia
et al., 2005). However, unlike the formulation of Teh
and Welling, our approach encompasses parameter shar-
ing, regularization, and conditional training, all of which
are ubiquitous in real-world problems. Unlike the work of
Wainwright, our algorithm optimizes the Bethe approxima-
tion to the objective, rather than a convex surrogate.

Our optimization algorithm uses an outer loop where we
repeatedly linearize the unified, non-convex objective, and
an inner loop where we optimize the linearized objective.
Our inner loop reformulates the marginal consistency con-
straints using special features, allowing it to use standard
gradient-based methods to find a set ofconsistentpseudo-
marginals. Thus, our inner loop jointly solves a problem
that unifies learning and inference (obtaining a set of con-
sistent marginals). We note that the inner loop can also be
solved using other methods; for example, we can optimize
our convex subproblems by performing maximum likeli-
hood estimation using sufficient statistics computed by a
convex-BP message passing algorithm (Weiss et al., 2007).
The most efficient method is likely to depend on the de-
tails of the problem (Minka, 2001), such as the extent to
which parameters are shared across the network. Studying
the relative trade-offs of different scheduling algorithms is
a useful direction for future work.

Our unified objective provides a framework for understand-
ing learning algorithms in terms of the approximations they
make both on the objective and on the constraints. For ex-
ample, we saw that it allows us to reinterpret the piecewise
training method of Sutton and McCallum (2005) in terms
of a particular approximate objective and a particular set
of constraints, providing new insight on the connection be-
tween piecewise training and LBP. We note that previous
work relating the two (Sutton & Minka, 2006) does so on
a procedural basis, viewing piecewise as a variant of LBP
that does not pass any messages.

This framework also allows us to evaluate the relative value



of different approximations to both the objective and the
constraints. In particular, our results show that even a sim-
ple linearization of the objective (just dropping the neg-
ative entropy terms) provides results comparable to the
full Bethe approximation. By contrast, we show that sig-
nificant gains are obtained by incorporating the marginal
consistency constraints. In retrospect, this finding is per-
haps not surprising, as this constraint encodes a true bias
about real-world probability distributions. It does, how-
ever, suggest that additional performance gains may be ob-
tained by further reducing the space of allowable pseudo-
marginals by incorporating additional constraints that are
true for marginals of a valid probability distribution (Wain-
wright & Jordan, 2006; Sontag & Jaakkola, 2007). Thus,
the unified view of learning as constrained optimization of
an approximate entropy function enables an exploration of
the space of approximations for both the objective and the
constraints, a perspective that has dramatically improved
the performance of approximate inference over the past few
years.
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