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Abstract

When related learning tasks are naturally ar-
ranged in a hierarchy, an appealing approach for
coping with scarcity of instances is that of trans-
fer learning using a hierarchical Bayes frame-
work. As fully Bayesian computations can be
difficult and computationally demanding, it is of-
ten desirable to use posterior point estimates that
facilitate (relatively) efficient prediction. How-
ever, the hierarchical Bayes framework does not
always lend itself naturally to this maximum a-
posteriori goal. In this work we propose an undi-
rected reformulation of hierarchical Bayes that
relies on priors in the form of similarity mea-
sures. We introduce the notion of “degree of
transfer” weights on components of these sim-
ilarity measures, and show how they can be
automatically learned within a joint probabilis-
tic framework. Importantly, our reformulation
results in a convex objective for many learn-
ing problems, thus facilitating optimal poste-
rior point estimation using standard optimization
techniques. In addition, we no longer require
proper priors, allowing for flexible and straight-
forward specification of joint distributions over
transfer hierarchies. We show that our frame-
work is effective for learning models that are part
of transfer hierarchies for two real-life tasks: ob-
ject shape modeling using Gaussian density esti-
mation and document classification.

1 Introduction

Many learning algorithms estimate a parametric model that
is intended to generalize well over test datasets. The ro-
bustness and success of such methods rely, in large part, on
the availability of sufficiently many training instances. In
many applications, however, the availability of data is lim-
ited and alternative sources of information must be used.

An appealing approach for coping with this sce-
nario involves what is called transfer learning (Thrun,
1996; Caruna, 1997), in which data from “similar”
tasks/distributions is used to compensate for the sparsity of
training data in our primary class or task. When learning a
model for the shape of a giraffe, for example, we would like
to take advantage of available instances of llamas; when
learning to predict the topic of a document, we would like
to take advantage of available documents of similar topics.
In this paper, we consider the problem of transfer learning
in the context of both density estimation and classification.

One general purpose approach for transfer learning is the
simple shrinkage method designed to improve the esti-
mates of ill-defined problems (e.g., (Carlin and Louis,
1996; McCallum et al., 1998)). This approach involves first
learning the parameters of each task/distribution indepen-
dently and then smoothing the parameters of the most fine-
grained tasks (e.g., giraffe, deer) toward the parameters of
the coarser-grained tasks (e.g., quadruped).

A more principled approach for transfer learning is the hi-
erarchical Bayes framework, where similar models are re-
lated via an existing but unknown prior distribution over
the common parameters, and Bayes rule is used to compute
posterior parameter estimates (see, for example, Gelman
et al. (1995)). This approach is conceptually elegant and
effective in many settings, allowing the individual param-
eters to conform more or less to the prior belief over their
values defined by the “parent” task/distribution. For exam-
ple, it is natural to informally think of the shape distribution
of a quadruped as a prior for the shape distribution of a gi-
raffe or a deer. It can also be shown that, asymptotically,
using the hierarchical Bayes approach is better than learn-
ing related distributions independently, particularly when
the prior classes have complex structure (Baxter, 1997).

In practice, as full Bayesian computations can be both dif-
ficult and computationally demanding, it is often desirable
to perform point estimation of the maximum a-posteriori
(MAP) parameters, and use these parameters for (rela-
tively) efficient prediction. Hierarchical Bayes techniques,
however, have been designed primarily with Bayesian com-
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Figure 1: (a) Illustration of a simple transfer hierar-
chy where the distributions over the shapes of a pair of
mammals share a common prior distribution (e.g., long-
necked mammal). (b) An example of a hierarchical Bayes
parametrization. The joint distribution over the data (ob-
servations of the leaf classes) and parameters has the form
of P (Θpar)

∏
i P (ΘCi | Θpar)P (DCi | ΘCi).

putation in mind and are often not geared toward efficient
point estimation. In particular, since many common pri-
ors such as the Dirichlet or normal-inverse-Wishart are not
convex with respect to their arguments, the MAP objective
does not lend itself naturally to efficient and optimal opti-
mization. In addition, due to mathematical technicalities,
the parametrization of such conjugate priors is often prob-
lematic for high-dimensional domains (see Section 2).

In this work we aim to preserve the probabilistic appeal
of the hierarchical Bayes setting while applying it to the
problem of posterior point estimation in high-dimensional
transfer hierarchies. As in the standard hierarchical Bayes
approach, we define a single probabilistic objective that
combines fitting the data with terms that encourage soft
similarity between several related distributions and a com-
mon parent distribution (see Figure 1). Unlike the standard
hierarchical Bayes approach, we replace the prior distribu-
tions with positive similarity measures and write our joint
probability distribution as an undirected Markov random
field (MRF). This can be viewed as defining an improper
prior over the parameters of all classes. This model falls
under the broad definition of probabilistic abstraction hi-
erarchies (PAHs) of Segal et al. (2001), but refines this
general framework by defining a coherent joint distribution
over all parameters in the hierarchy.

The hierarchical Bayes perspective also motivates an im-
portant extension of the joint distribution that is not cap-
tured by a standard shrinkage approach (e.g., (McCallum
et al., 1998)) or by the PAH model (Segal et al., 2001).
We introduce the notion of “degrees of transfer” along the
edges of the hierarchy, allowing for different weights on

different components of the similarity measures. These
weights afford the possibility of more intelligent sharing
in that similarity need not be equally strong throughout the
hierarchy. In Section 4, we show how this idea is made
concrete and how the weights can be automatically learned
using the same optimization-based approach.

The reformulation of a hierarchical Bayes objective as an
undirected model with improper priors has several benefits.
First, specifying the joint distribution is straightforward, as
it only requires a choice of a divergence measure between
the parameters of the parent and child distributions. Sec-
ond, multi-tier hierarchies present no additional complica-
tions, as conjugacy is not required for the goal of point es-
timation. Most importantly, if we choose a convex diver-
gence term (e.g., L1, L2, e-insensitive, Kullback-Leibler),
the problem of finding posterior point estimates is convex
for many learning scenarios and can be solved using stan-
dard gradient based techniques.

We make our approach concrete for two very different set-
tings. First, we consider a continuous distribution setting
in which the shapes of different mammals share a common
quadruped shape prior. Second, we construct a multi-tier
hierarchy of naive Bayes models for document classifica-
tion into topics based on the newsgroup dataset. In both
cases we demonstrate that our high-dimensional undirected
hierarchical Bayes model, joined with convex point esti-
mation of posterior parameters, is superior to distributions
learned independently as well as to the shrinkage approach.

2 Generative Hierarchical Bayes

Our goal is to define a framework for flexible transfer learn-
ing in a class hierarchy. In this section, we briefly describe
the standard hierarchical Bayes approach for this scenario.
In the next section, we present our alternative formulation.

We begin with a given hierarchy over a set of related learn-
ing tasks/classes C (for example, Figure 1(b)). At the low-
est level are the leaf classes c ∈ L for which we observe
instancesDc. For convenience, we assume thatDc only ex-
ists for the nodes at the leaves of the hierarchy. 1 For each
class c (except the root), par(c) denotes its parent class.

The hierarchical Bayesian framework views this hierarchy
as a directed probabilistic model in which the class pa-
rameters Θc are generated according to the distribution
P (Θc | Θpar(c)) and the data is generated according to
P (Dc | Θc) for c ∈ L. This induces a joint distribution
over the observed data and all class parameters as follows:

P (D, Θ) =
∏

c∈L
P (Dc | Θc)×

∏

c∈C
P (Θc | Θpar(c)) (1)

where for the root class P (Θc | Θpar(c)) ≡ P (Θc).
1Our general formulation in Section 3 can easily incorporate

observations of any class in the hierarchy.



Once this directed model is defined, we are typically inter-
ested in the posterior distribution of the parameters P (Θ |
D), or the marginal of this posterior for a subset of the pa-
rameters. In the empirical Bayes approach, tailored for the
common case of a two-level hierarchy, a point estimate for
the root parameters is found first, and then full posteriors
P (Θc | D, Θroot) are computed for the leaf distributions
(see Gelman et al. (1995) for more details).

As noted in Section 1, it is often preferable to compute
point estimates of the MAP parameters rather than use full
posteriors for the practical purpose of prediction. That is,
we want to compute

Θ∗ = argmin
Θ

− log P (D, Θ),

where

log P (D, Θ) =
∑

c∈L
log P (Dc | Θc)

+
∑

c∈C
log P (Θc | Θpar(c)) (2)

By design, many standard hierarchical Bayes approaches
lend themselves toward the fully Bayesian treatment, and
therefore make limiting choices. In particular, priors are
generally chosen to be in conjugate families to allow for the
computation of posteriors in closed form. However, many
common conjugate priors such as the Dirichlet or normal-
inverse-Wishart are not convex with respect to the parame-
ters, thus not allowing for efficient point estimation.

In addition, the requirement that the priors be valid dis-
tributions that integrate to 1 can lead to untenable restric-
tions. For example, the conjugate prior for the multivariate
Gaussian is the normal-inverse-Wishart distribution, which
has a degrees of freedom parameter corresponding to the
strength (pseudocounts) of the prior. In order to ensure that
it is a proper distribution, the pseudocounts must be at least
as large as the dimension d of the data. Thus, in the case
of high-dimensional data with few instances, this require-
ment forces the strength of the prior to overwhelm the sig-
nal in the data. For example, in Section 5 we consider 120-
dimensional data representing the shape of various mam-
mals, with up to only 15 instances per class. Even if we per-
form dimensionality reduction so that the data is only 20-
dimensional, using a normal-inverse-Wishart in this case
would mean that the weakest allowable prior would be
at least as strong as the data. Indeed, most hierarchical
Bayes applications are limited to the scenario in which the
higher level priors are low-dimensional and relatively sim-
ple (e.g., (Gelman et al., 1995; Blei et al., 2003)), rather
than a rich class distributions in their own right.

3 Undirected Transfer Hierarchies

As mentioned above, many of the difficulties associated
with the standard hierarchical Bayes approach result from

the design of the framework for full posterior estimation.
Thus, for the purpose of point posterior estimation, we pro-
pose an alternative formulation that is more amenable to
the use of standard optimization techniques. We start by
describing the general approach and then provide two dif-
ferent scenarios for which it is made concrete. In Section 4
we present an extension to the basic approach that allows
for greater flexibility in the way that parameters are shared.

3.1 Basic Framework

We begin our reformulation by writing Eq. (2) as an ob-
jective that has a more general form (and that can be made
equivalent to Eq. (2) given the appropriate instantiation):

Fjoint(Θ;D) =−
∑

c∈L
Fdata(Dc, Θc)

+ β
∑

c∈C
Div(Θc,Θpar(c)) (3)

Here, Fdata(Dc,Θc) is a data-dependent objective (e.g., the
probability ofDc given Θc) that encourages the parameters
of each class to represent the data well. Div(Θc,Θpar(c))
is a divergence or dissimilarity function over the child and
parent parameters that encourages the parameters of linked
classes to be similar. The weight β determines the overall
trade-off between these competing objectives.

In the analysis that follows, we consider divergence func-
tions that decompose independently over each parameter in
Θc. This includes many dissimilarity metrics, including all
norms. Using this assumption, we write:

Fjoint(Θ;D) =−
∑

c∈L
Fdata(Dc, Θc)

+ β
∑

c∈C

∑

i

Div(θc
i , θ

par(c)
i ) (4)

Note that we can more generally take Θc
i to be (possibly

overlapping) subsets of Θc. For the sake of simplicity, how-
ever, we only consider the fully decomposed form.

There are several points to note about our objective in
Eq. (4). First, it has the general form of the log-probability
of a Markov random field (MRF) (Pearl, 1988), and if its in-
tegral is finite, then 1

Z exp{−Fjoint(Θ;D)} defines a coher-
ent joint probability function over the data and parameters
of all classes in the hierarchy. Thus, this formulation is in
fact a hierarchical Bayes setting where we make use of un-
normalized priors in the form of exp{−Div(θc

i , θ
par(c)
i )}.

Second, the penalty term is a function of both the child and
parent parameters. This means that the penalty can be re-
duced by either parameter moving towards the other. It is
this feature that differentiates us from empirical Bayes.

While Eq. (3) and Eq. (4) may appear as deceptively naive
rewritings of Eq. (2), this view actually has important prac-
tical ramifications. The first benefit is the ease with which



relatedness may be defined. Natural choices include the
L2 distance (corresponding to a local unnormalized Gaus-
sian prior), the L1 distance (corresponding to a local un-
normalized Laplacian prior), or a (smoothed) ε-insensitive
loss (which gives a constant penalty for all values below ε).

The second benefit is that we can now use infer-
ence/optimization techniques that have been developed for
energy objectives that take on the form of Eq. (3). Our goal
is to learn a point estimate for the parameters that is the
mode of the posterior distribution. That is, given Dc for all
classes, we want to learn the parameters Θ∗ such that

Θ∗ = argmin
θ

Fjoint(Θ;D)

Appealingly, for any convex divergence function
Div(Θc,Θpar(c)), this entire objective is convex in
Θ, when the data objective Fdata(Dc, Θc) (e.g., likelihood)
is concave, as is typically the case for many learning
scenarios. This allows us to find the mode of optimal pa-
rameters using straightforward gradient ascent techniques;
in the experiments below, we use the Polak-Ribiere conju-
gate gradient algorithm (Boyd and Vandenberghe, 2004).
Note that our approach scales well with large amounts of
data, as the sample size affects only the one-time collection
of sufficient statistics for use in Fdata.

Below, we describe how the reformulation of the hierarchi-
cal Bayes model is made concrete for two different transfer
learning scenarios. In Section 5 we present experiments
using these instantiations for two real-life scenarios.

3.2 Gaussian Density Estimation

Suppose we wish to model the data of class c using a multi-
variate Gaussian distribution parametrized by mean µc and
covariance Σc. The data objective for this class is naturally
given by the (regularized) log-likelihood:

Fdata(Dc, Θc) ≡ ` (Dc; Θc) (5)

=
Mc∑
m

logN (x[m] | µc,Σc + αI),

where x[m] is the mth instance inDc (which is of size Mc),
I is the identity matrix, and α is the standard regularizing
“ridge” term used to avoid issues of singular matrices and
overfitting in the regime of small amounts of data.

This objective is not concave in the covariance parameter
Σc, but becomes concave if the Gaussian is parametrized
using the inverse covariance matrix, also known as the pre-
cision matrix. In this case, the log-likelihood is:

` (Dc; Θc) =− 1
2

Mc∑
m

(x[m]− µ)T K(x[m]− µ)

− M

2
log detK + C (6)

where K−1 = Σc + αI.

Unfortunately, the Gaussian log-likelihood is not jointly
concave in the mean vector and precision matrix. However,
it is concave in each part independently. As a result, we can
iteratively optimize our objective in two phases, one for
each set of parameters. This process generally converges
to a local optimum in a few iterations.

For the divergence function, we use the L2 norm over the
mean and diagonal precision parameters, while we do not
tie the off-diagonal terms to the parent parameters.

3.3 Discrete Bayesian Networks

In contrast to the case of continuous Gaussian distribu-
tions, we consider the setting in which each class model
is a Bayesian network over discrete-valued data. Note that
in this scenario, each node in the hierarchy is a Bayesian
network, and we assume that the networks have the same
structure and therefore the same parametrization Θc.

We consider the specific case of table CPDs (conditional
probability distributions) using a multinomial distribution.
To avoid positivity and normalization constraints, we use a
log-space representation of the multinomial distribution

P (x | paX ; θc) =
exp(θc

x,paX
)∑

x′ exp(θc
x′,paX

)
,

where x and paX are specific values for the variable X and
its parents. Note that the notion of the parents of X is in the
context of the Bayesian network that sits inside each node
in the hierarchy; this is distinct from the notion of parents
of the nodes themselves in the hierarchy.

We now define the data objective to be the log-likelihood
of the data of a class c given the parameters Θc of the cor-
responding Bayesian network:

Fdata(Dc, Θc) ≡ ` (Dc; Θc)

=
Mc∑
m

∑

X∈X
log P (x[m] | paX [m]; θc)

=
∑

X∈X

∑
x

(Nc{x, paX}+ α) ·

{θc
x,paX

− log
∑

x′
exp(θc

x′,paX
)} (7)

where the sufficient statistic Nc{x, paX} is the number of
times the values (x, paX) occur in the dataset Dc, and α is
the corresponding pseudo-count of the Dirichlet prior dis-
tribution used to regularize the likelihood. For the diver-
gence function, we use the L2 norm over all parameters θc.

4 Degree of Transfer Coefficients

Our model thus far can be viewed as a probabilistic rein-
terpretation of the PAH framework of Segal et al. (2001).



Having motivated our model as an undirected reformula-
tion of the hierarchical Bayes joint distribution, we can use
this novel perspective to suggest additional modifications
that are natural to this setting. In particular, we can re-
fine the single weight β that corresponds to prior strength
in Eq. (4) and introduce distinct λ

c,par(c)
i terms at each

edge (c, par(c)) in the hierarchy. These degree of transfer
(DOT) coefficients represent how much we want each of
the child parameters to be near its corresponding parent pa-
rameter. Note that, as with the Div(Θc, Θpar(c)) functions,
we can define DOT coefficients for groups of parameters
rather than individual ones.

To make the benefit of different degrees of transfer coef-
ficients concrete, consider a document classification task
as a motivating example. Suppose that the child class is the
‘biology textbook’ topic with a small number of training in-
stances and the parent class is the ‘science textbook’ topic,
with a significantly larger number of training instances.
The frequency of the word ‘experiment’, represented by the
multinomial parameter θexperiment, is likely to be similar for
both the child and parent class. On the other hand, the pa-
rameter θgene corresponding to the word ‘gene’ is likely to
be misrepresented at the parent class. We therefore stand to
gain from penalizing the distance between child and parent
more for θexperiment and less for θgene.

Incorporating the degree of transfer coefficients λ
c,par(c)
i ,

our objective now becomes:

Fjoint(Θ,Λ;D) = −
∑

c∈L
Fdata(Dc, Θc)

+ β
∑

c∈C

∑

i

1

λ
c,par(c)
i

Div(θc
i , θ

par(c)
i ) (8)

This allows us the flexibility to turn sharing on and off in
a continuous fashion for the various edges in the hierarchy.
For instance, if we set λ

c,par(c)
i near zero, we are effec-

tively forcing the parameters to agree, whereas if we make
it large, we are allowing as much flexibility as is necessi-
tated by the likelihood term.

Naively, we might try treating these factors as parameters
of the joint transfer objective of Eq. (8) and optimize with
respect to both the class parameters and transfer factors.
Upon examination of the objective in Eq. (8), however, we
notice that the optimal value occurs when all transfer pa-
rameters approach infinity (λc,par(c)

i → ∞) and all model
parameters are set to their independent maximum likeli-
hood values. This should not come as a surprise, as the
transfer parameters play the role of a prior strength, which
is usually estimated using cross validation or some other
external means. Obviously, while such an approach can be
used to estimate the global weight β, we cannot hope to
cross validate the large number of λ parameters. How then
can we estimate the parameter values in a meaningful way?

Our first option is to choose a reasonable constant value
for λ

c,par(c)
i before we optimize the parameters Θ. We de-

scribe an empirical Bayes bootstrap approach for doing so
in Section 4.1. In Section 4.2, we describe a different ap-
proach that places a prior over the λ coefficients and opti-
mizes them along with the model parameters Θ.

4.1 Undirected Empirical Bayes Estimation

In order to choose an appropriate constant value for each
λ

c,par(c)
i , recall that it represents the inverse strength of the

divergence penalty between a child and parent parameter.
Thus, it should be assigned a lower value if we expect the
parameter to be near its parent, and a higher value if we
expect it to be far. One way to quantify this is to consider
randomly sampled subsets of the child dataDc: if the max-
imum likelihood estimate for a parameter θc

i is consistently
close to the corresponding parent parameter θ

par(c)
i across

the sampled datasets, then we want to encourage higher
similarity; otherwise, we set a lower penalty coefficient.

Formally, we define a random variable δi,c = θc
i − θ

par(c)
i

and wish to estimate the expected variance of this variable
across all possible datasets. We use the bootstrap approach
of Efron and Tibshirani (1993) to approximate this expec-
tation. That is, for each class, we create K random datasets
of size equal to the original training set by uniformly sam-
pling with replacement from the original dataset. For each
of these sets we then estimate the standard (regularized)
maximum likelihood parameters θc and θpar(c), and com-
pute the empirical variance of the difference δi,c across the
K trials, which we denote by σ̂2

c,par(c),i. We then use this
disparity measure to set the transfer coefficients:

λ
c,par(c)
i = σ̂2

c,par(c),i

Using this approach together with, for example, the
quadratic penalty, our objective becomes

Fjoint(Θ;D,Λ) =−
∑

c∈L
Fdata(Dc,Θc)

+ β
∑

c∈C

∑

i

(θc
i − θ

par(c)
i )2

σ̂2
c,par(c),i

. (9)

Under this formulation, we see that the penalty terms in the
objective represent a product of Gaussian priors over the
difference between the parent and child values of parame-
ter θi. If we were to fix the parent parameter to its boot-
strap value, this would reduce to empirical Bayes using the
parent bootstrap estimates as parameters of the Gaussian
prior. We therefore call this approach the undirected em-
pirical Bayes estimation of the transfer factors.

The approach proposed in this section is appealing from a
computational perspective for two reasons. First, the com-
plexity of the estimation of the transfer factors is propor-
tional to the complexity of the estimation of the ML pa-
rameters of each class independently. Second, given the



transfer factors that are computed only once, the objec-
tive Eq. (9) is convex for many typical learning tasks and
choices of the divergence function Div(Θc,Θpar(c)) and
can thus be efficiently optimized.

4.2 Hyperprior-Based Estimation

A second approach is to estimate each DOT transfer co-
efficient along with the model parameters themselves. To
ensure that these DOT coefficients are not driven to infinity,
we can add a prior that pushes the factors towards smaller
values. Specifically, we can add an inverse-Gamma prior
to the transfer factors, forcing them to be positive. This
is a natural choice since the inverse-Gamma is the conju-
gate prior distribution for Gaussian variances, and we can
(loosely) interpret λ as the variance of a Gaussian prior for
the model parameter. In this case, our objective expands to:

Fjoint(Θ,Λ;D) =
∑

c

−` (Dc; Θc)

+ β
∑

c∈L

∑

i

(θc
i − θ

par(c)
i )2

λ
c,par(c)
i

−
∑

c∈C

∑

i

log G−1(λc,par(c)
i ) (10)

where G−1 is the density function of the inverse-Gamma
distribution. We choose the parameters of the inverse-
Gamma distribution such that the mean is equal to the boot-
strapped value σ̂2

c,par(c),i as in Section 4.1.

Importantly, if our data objective (e.g., log-likelihood)
function is concave, our entire objective is jointly convex in
the model parameters (θ’s) and the DOT coefficients (λ’s).
This is an attractive aspect of our formulation, and allows
for efficient and guaranteed optimal inference of the MAP
values for the parameters.

5 Experimental Evaluation

In this section, we demonstrate how our reformulation of
the hierarchical Bayes model as a Markov random field
allows us to effectively transfer across classes. We con-
sider the task of density estimation for multivariate Gaus-
sian shape models as well as a document classification task.
In all experiments we compare our hierarchical approach to
a CV Reg model for which each class is learned indepen-
dently. The parameters of CV Reg are chosen to maxi-
mize the regularized likelihood, and the regularization co-
efficients are determined using cross-validation. To provide
an additional baseline, we also compare to a Shrinkage ap-
proach (see below for the details in each application).

5.1 Mammal Shape Model Learning

We adopt the notion of object shape modeled by a Gaus-
sian distribution as in Elidan et al. (2006) and attempt to

learn a shape model for several classes of mammals. Each
instance is a set of 60 landmarks from hand-outlined im-
ages represented as a 120-dimensional vector (using the x
and y coordinates of each landmark). Our dataset consists
of 40 such instances of Elephants, Bison, Rhinos, Giraffes,
and Llamas. Since these classes are well-represented on
a lower-dimensional manifold, we use PCA to reduce the
dimensionality to 20. The objective formulation and co-
variance matrix regularization are explained in Section 3.2.

We evaluate the benefit of transferring between pairs of
mammal classes. We train each method using N =
{3, 5, 10, 15} instances for each child class, evaluating the
log-likelihood of 20 test instances for each child class. We
report averages using five fold cross-validation.

To demonstrate the usefulness of the degree of trans-
fer (DOT) coefficients, we consider three variants of our
method. Bootstrap uses bootstrapping to estimate the DOT
coefficients as described in Section 4.1. Hyperprior uses
the approach described in Section 4.2 to define a hyper-
prior distribution over the DOT coefficients and estimate
the DOT coefficients together with the other model param-
eters. In both these cases we set the global weight β to
1. To evaluate whether including the DOT coefficients pro-
vides any advantage, the CV Const method does not use
DOT coefficients, instead cross-validating β in the range of
10−6 to 1 (a typical value range of the coefficient when us-
ing Bootstrap). To make it as competitive as possible, we
cross-validate specifically for each mammal pair and for
each number of training instances N .

We compare these variants of our method to the indepen-
dent CV Reg baseline, which uses cross-validated regu-
larization as described in Section 3.2. Our experiments
showed that a standard Shrinkage approach performs very
poorly in this case due to the fact that linearly interpolat-
ing covariance matrices yields nonsensical (and possibly
invalid) distributions. We attempted a version of shrink-
age over the diagonal entries of the covariance alone, but
this also resulted in poor performance, as the appropriate
interaction between the variance (diagonal) and covariance
(off-diagonal) elements is disturbed. We therefore omit the
Shrinkage variant from the graphs reported below.

Figure 2 shows the difference in test log-likelihood be-
tween our methods and the CV Reg baseline. (a) shows
the benefit of our Hyperprior approach for all mammal
pairs. The benefit of our approach is evident and typically
lies in the range of 5−10 bits per instance on test data. Out
of 10 mammal pairs, our method is not superior to CV Reg
in only a single case and only when the number of training
instances of each class is 3.

In Figure 2(b) we consider the rhino-bison mammal pair,
which is “close” in shape, and compare the success of the
different variants of our method. The benefit of having in-
dependent DOT coefficients is clear as CV Const is in-
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Figure 2: Results for transfer between mammal pairs. The numbers reported are the average across 5 randomized folds
of the improvement in test log-likelihood per mammal per instance (y-axis) over the regularized CV Reg baseline, as
a function of number of samples (x-axis). (a) shows average improvement in performance for all mammal pairs of our
method with a Hyperprior over the degree of transfer (DOT) coefficients; (b) compares Hyperprior with our Bootstrap
estimation of the DOT coefficient as well as the cross-validated CV Const for the “similar” bison and rhino pair; (c) is the
same as (b) for the “dissimilar” llama and rhino pair. In (c), the CV Const method is omitted, as it is at least 100 bits per
instance worse than CV Reg for all training set sizes. Typically, Hyperprior training time was approximately 90 seconds.

ferior, due to the fact that samples are scarce and cross-
validation is not robust. Figure 2(c) shows an example of
the giraffe-rhino mammal pair that are farther apart. For
this pair, CV Const was at least 100 bits per instance worse
than CV Reg for all training set sizes, so it is omitted from
the graph. Although the Hyperprior method is somewhat
more advantageous than the Bootstrap approach, we note
that overall the methods are quite competitive.

5.2 Newsgroup Posting Classification

In order to demonstrate our method on a larger and more in-
volved hierarchy than the simple mammal pairs, we use the
Newsgroup dataset, which consists of 18,827 newsgroup
postings drawn from 20 distinct newsgroups. For the exper-
iments described here, we use a hierarchy over 15 classes,
gathered into the abstract classes Religion, Politics, Vehi-
cles, Sports, and Computers, as in McCallum et al. (1998).
This creates a hierarchy with 15 leaf nodes, five middle
level node, and one root node, as shown in Figure 3(a).

Documents are tokenized and all tokens occurring only one
time are removed to produce a corpus with 55,989 unique
words. When individual experiments are performed, we
use 100 test documents, and all words not present in the
training or test set for that particular experiment are re-
moved (to improve efficiently and clarity of the results),
typically leaving around 20000 words. We report average
results using 5 fold cross validation.

In addition to the regularized CV Reg model, we imple-
mented a slightly simplified variant of hierarchical Shrink-
age (McCallum et al., 1998) for which, starting from the
root of the node, each node’s parameters are shrunk toward
its parent using a single parameter learned by k-fold cross

validation. Due to the size of the optimization problem in
this case, we use a simplified Undirected HB version of
our approach that does not make use of the individual DOT
coefficients and where we set the global weight β to 1.

For both the baselines as well as our method, we use a naive
Bayes model as an instantiation of the approach described
in Section 3.3. A document d in this framework is modeled
as a bag of words, where di indicates the number of times
that word i appears in the document. We model each class
as a probability distribution over words, where each word
in the document is considered independently:

P (d | c) =
∏

i

P (wi | c)di .

We use a multinomial distribution as in Section 3.3 for
P (wi | c). The full data objective for this model is:

Fdata(Dc,Θc)

≡
∑

d∈Dc

∑

i

(di + α) · {θc
i − log

∑

j

exp(θc
j)}

We evaluate each method using its classification rate on
test instances. To highlight the importance of regulariza-
tion (through the parameter α), we also present the base-
line Likelihood that simply uses the maximum likelihood
parameters for each class without regularizing. Figure 3
shows the consistent advantage of our Undirected HB ap-
proach over all baselines. The advantage of the regular-
ized CV Reg over Likelihood is also clear, demonstrating
the extent to which even simple regularization, once cross-
validated, can be beneficial. This also explains why the reg-
ularized CV Reg model achieves a better classification rate
than the Shrinkage method that uses Laplacian smoothing
(setting α = 1), as in McCallum et al. (1998).
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Figure 3: (left) A hierarchy of topics for the Newsgroup dataset adopted from McCallum et al. (1998). (right) Results
for the 15 class Newsgroup hierarchy. Shown is average classification accuracy across 5 random train and test splits (y-
axis) as a function of number of samples (x-axis). Our Undirected HB approach is compared to the recursive Shrinkage
approach, the regularized CV Reg model, and to non-regularized Likelihood. The typical Hyperprior training time was
approximately 30 minutes, comparable to that of Shrinkage.

6 Summary and Future Directions

In this work, we proposed an undirected reformulation of
the hierarchical Bayes framework that replaces proper pri-
ors with similarity measures for the purpose of posterior
point estimation in high-dimensional transfer hierarchies.
We introduced the notion of “degree of transfer” weights
that afford our model flexibility not available in other stan-
dard hierarchical methods, and suggested two approaches
for automatically estimating these weights. Finally, we
showed how the general approach can be applied to the sce-
nario of shape modeling using a multivariate Gaussian den-
sity and to document topic classification. In both settings,
we demonstrated the superiority of our approach over both
independent learning and a shrinkage-based competitor.

The benefits of our reformulation are threefold. First, while
retaining the hierarchical Bayes appeal of using a prior as
the mechanism for transfer, our method is straightforward
and allows for straightforward specification of the objec-
tive. Second, by writing a Markov random field objective,
we can use convex optimization techniques to find point
estimates of the posterior distributions for a large range
of learning scenarios and similarity measures. Third, our
framework allows for different degrees of transfer for dif-
ferent parameters so that some parts of the distribution can
be transferred to a greater extent than others.

There are several extensions to this work to explore. The
first is learning the structure of transfer itself, at the class
and parameter level. The PAH framework (Segal et al.,
2001) allows the structure of the hierarchy to be learned;
one could adapt their approach to both identify hierarchy
edges and discover which parameters (e.g., those that cor-
respond to a coherent part of a mammal) transfer together.
Furthermore, unlike the classical hierarchical Bayes ap-

proach, there is nothing in our framework that prevents a
class from having multiple parent classes. Such hierarchies
are common in many settings (including the Wordnet hier-
archy and the GO hierarchy in biology), and it would be
interesting to explore whether this added flexibility can be
of benefit in a Bayesian learning task.
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