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Abstract

We conjecture that the worst case number of
experiments necessary and sufficient to dis-
cover a causal graph uniquely given its ob-
servational Markov equivalence class can be
specified as a function of the largest clique
in the Markov equivalence class. We pro-
vide an algorithm that computes intervention
sets that we believe are optimal for the above
task. The algorithm builds on insights gained
from the worst case analysis in Eberhardt et
al. (2005) for sequences of experiments when
all possible directed acyclic graphs over N
variables are considered. A simulation sug-
gests that our conjecture is correct. We also
show that a generalization of our conjecture
to other classes of possible graph hypotheses
cannot be given easily, and in what sense the
algorithm is then no longer optimal.

1 INTRODUCTION

Suppose we have a set of variables V = {X1, . . . , Xn}
and we are interested in discovering the causal rela-
tions among these variables. That is, we want to find
out which variable influences which other variable di-
rectly or indirectly. This problem is common in both
the natural sciences (e.g. gene regulatory networks,
drug testing etc.) and the social sciences (e.g. econo-
metrics, policy decisions etc). Depending on the area
of research the scientist will have different tools to in-
vestigate this problem and different model space as-
sumptions and background knowledge will be appro-
priate or available. The main problem for the scientist
is to determine and justify these assumptions and to
use tools of investigation that will distinguish the true
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causal structure from other possible causal structures,
i.e. the scientist must reduce and, if possible, rule out
underdetermination of the causal structure.

For any particular set of causal variables, the scientist
will consider a set of possible hypotheses that describe
the causal relations among these variables. Causal
Bayes nets (Spirtes et al. 2000; Pearl 2000) provide
a concise framework by representing causal structures
in terms of directed acyclic graphs (DAGs) connect-
ing the variables, and a probability distribution over
these variables, that factors according to the DAG. If
nothing is known about the causal structure then the
set of hypotheses is large, namely, all possible DAGs
over the set of variables, including maybe structures
that involve latent variables. For these cases search
procedures can and have been devised (see Eberhardt
2007 for details and references) that – given a set of as-
sumptions over the model space – determine the causal
structure uniquely, or give a precise specification of the
remaining underdetermination. In particular, the fol-
lowing result is relevant to this paper. In Eberhardt
et al. (2005) we showed that:

Theorem 1.1 (Worst Case Bound for Complete Hy-
pothesis Space). Given a set of N causally sufficient
variables blog2(N)c+ 1 experiments are sufficient and
in the worst case necessary to discover the causal struc-
ture uniquely if multiple variables can be subject to an
intervention simultaneously and independently.

That is, if all that is known about the true causal
structure among N variables is that there are no la-
tent common causes, then the structure can be deter-
mined uniquely in at most blog2(N)c+ 1 experiments,
where each experiment may involve a randomization of
several variables. The bound is based on the combina-
torics of different ideal experiments, assuming one has
access to an oracle for the independence constraints of
the (manipulated) distribution, i.e. it applies to the
large sample limit.

But in actual science, it is rarely the case that the



hypothesis set is so general and uninformative. Often
substantial knowledge about parts of the causal struc-
ture is already available, and only a search among a
restricted set of hypotheses is required. In this case the
search procedures implied by the worst case bound are
overkill. Something more adaptive is required. Take a
simple case, where we only have three variables X,Y
and Z and suppose we are sure (for whatever reason)
that they can only be causally related as in one of the
following two DAGs:

X Y// Y Z//
Y Z//
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Suppose, for the sake of argument, that no other vari-
ables – measured or unmeasured – are relevant, i.e.
X, Y and Z are causally sufficient. In this case, the
search procedure is simple: The cheapest way of dis-
tinguishing the DAGs is probably to collect passive
observational data: If X⊥⊥Z|Y then the first structure
is true, otherwise the second. But as is well known,
passive observation does not distinguish all possible
causal structures. In particular, the following three
structures cannot be distinguished based alone on the
independence relations they imply:

X → Y → Z X ← Y → Z X ← Y ← Z

Together they form a so-called observational Markov
equivalence class (OME) of causal structures, where
each DAG in the OME implies the same independence
constraints. There are more and less obvious ways to
proceed: A less obvious one is that if the causal re-
lations among the variables form a linear structural
equation model with non-Gaussian error terms, then
these three causal hypotheses can be distinguished
with passive observational data alone (Shimizu et al.
2006). The more obvious procedure is to perform an
experiment: If we intervene with a randomization on
Y then we are able to uniquely distinguish the three
hypotheses: If the first one is true, then under the
randomization of Y we have X⊥⊥Y , since the random-
ization makes the intervened variable (Y ) independent
of its normal causes (X in this case). This feature
of randomization is what is sometimes referred to as
“edge-breaking”. We do not find this independence for
the other two structures under the same manipulation.
For similar reasons, if the third hypothesis is true, then
Y⊥⊥Z under a randomization of Y , whereas under the
same circumstances Y⊥⊥/ Z for hypotheses one and two.

Obviously, if the hypothesis set were different, then an
experimental intervention on Y would not necessarily
distinguish (all) the hypotheses. In the simplest case,

suppose we just have two variables and just two possi-
ble hypotheses: Either X causes Y or the two variables
are causally separate. In that case an intervention on
Y would be useless, since under a randomization of
Y the two structures are equivalent: Both imply that
X⊥⊥Y given that Y was randomized. Depending on the
hypothesis space and the sequence of experiments, un-
derdetermination can be difficult to resolve. So, anal-
ogously to an OME, we refer to structures that imply
the same independence constraints in a sequence of
experiments as forming a manipulated Markov equiv-
alence class (MME) for that sequence of experiments.

Given OMEs and MMEs as common examples of more
restricted hypothesis spaces, the obvious question is
whether we can provide efficient search procedures
that ensure that we reduce the underdetermination as
fast as possible. Can we state guarantees on those
search procedures, just as Theorem ?? gives guaran-
tees for search procedures on the complete hypothesis
space?

1.1 BACKGROUND

Traditionally, causal discovery algorithms split into
two categories: constraint based and score based al-
gorithms. Score based algorithms, such as the GES-
algorithm (Chickering 2002), compute a score for each
model given the measured data. The model with the
highest score is then deemed to be the most likely
or most plausible model given the data. In contrast,
constraint based algorithms (e.g. the PC-algorithm
(Spirtes et al. 2000)) test for particular constraints in
the measured data and select models that match the
discovered constraints. Most commonly, independence
constraints are used, but many other constraints can
also be considered.

Without further assumptions (such as time order, non-
Gaussian errors etc.) both types of search algorithms
are asymptotically limited to the discovery of OMEs
or MMEs of causal structures. But as structure search
algorithms they are uninformative about which exper-
iment(s) should be performed, if a sequence of exper-
iments is necessary to further reduce underdetermi-
nation. Tong & Koller (2001), Murphy (2001) and
Cooper and Yoo (1999) have presented Bayesian ap-
proaches on how to select the next experiment given
an OME or MME. Generally speaking, all of their ap-
proaches are based on selecting the next experiment
that maximally reduces the entropy among the remain-
ing hypotheses. This is computationally extremely ex-
pensive since an optimization over all possible param-
eterizations of all possible models has to take place.
All of the cited approaches use different computational
shortcuts to approximate the computation.



A similar procedure based on the qualitative graphi-
cal structure, which would be much more suited for
constraint based algorithms, has not been given, al-
though various suggestions for measures of selecting
the next best experiment in such circumstances have
been made in Meganck et al. (2005). We are unaware
of any algorithmic implementations of how to compute
the intervention sets efficiently given the measures, or
of bounds on the search procedure that these mea-
sures imply. The advantage of an algorithm for the
selection of experiments based only on qualitative fea-
tures of the causal structure is that it does not require
any distribution over the hypothesis space or any pa-
rameterization of the causal structures, both of which
may only be rarely available at the beginning of actual
scientific inquiries.

1.2 CLASSES OF HYPOTHESES

There are many ways in which information may be
available that restricts the hypothesis set of causal
structures. We will use a knowledge graph to charac-
terize types of structural constraints that restrict the
hypothesis set.

Definition 1.2 (Knowledge Graph). A knowledge
graph is a mixed graph over a set of vertices V such
that any two vertices are connected by exactly one of
the following edge-types:

direct cause: A directed edge represents the knowl-
edge that one vertex, the start, is a direct cause of
the other, the end (relative to V): X Y//

non-adjacency: The absence of an edge represents
the knowledge that neither vertex is a direct cause
of the other: X YX Y

adjacency: An undirected edge represents the
knowledge that there is a direct causal connection
between the two vertices, but that it is not known
in which direction it goes: X Y

semi-directed: A semi-directed edge from vertex X
to Y represents the knowledge that neither vari-
able is a direct cause of the other or that X is a
direct cause of Y : X Y//___

no knowledge: A no-knowledge edge represents the
lack of any knowledge about the direct connection
between the two vertices: X Y?

An edge in a knowledge graph is considered known if
it is of one of the first two edge-types, otherwise it
is unknown. A knowledge graph is said to represent
a causal structure uniquely when each of its edges is
known and the structure is acyclic.

A knowledge graph, like a pattern for an OME, can
be used to represent an equivalence class of graphs
that imply the same independence constraints. The
main difference to a pattern is that a knowledge graph
can represent information about independence rela-
tions resulting from interventions. Clearly, an OME
of a causally sufficient set of variables can be rep-
resented as a knowledge graph, since only the first
three edge-types are required. The fourth edge-type
is used when exactly one variable of a pair is subject
to an intervention and the pair is found to be inde-
pendent in the experimental data set. The fifth edge-
type is used when no information is available about
the causal relation between two variables, for example
when two variables are subject to interventions simul-
taneously. Knowledge graphs can represent OMEs and
MMEs, but not all knowledge graphs represent classes
of graphs that are OMEs or MMEs. For example, for
three variables, if each pair is connected by a semi-
directed edge, then we would have a knowledge graph,
but no passive observation or sequence of one or more
experiments would ever yield such an equivalence class.

1.3 EXAMPLE

We can now illustrate with an example how interven-
tion sets should be selected when the hypothesis space
is restricted. Suppose that for a set of four variables
W, X, Y, Z, the following knowledge graph is known –
it could be the output of a causal search algorithm
given data generated in an experiment where X was
randomized:

W X//____ X

Y77oooooooo

Y

Z

X

Z
''OOOOOOOO

Clearly, the next intervention should be an interven-
tion on Y or Z (and possibly, but not necessarily W
also). To resolve the orientation of the undirected edge
we must intervene on one of its endpoints: indepen-
dence between the endpoints will indicate an incoming
edge on the intervened endpoint (given the knowledge
graph), while dependence for all conditioning sets will
indicate an edge outgoing from the intervened end-
point. The semi-directed edge can be resolved if both
its endpoints are passively observed or if W is sub-
ject to an intervention. In both cases, if W and X
are found to be dependent, then – given the knowl-
edge graph – we know that W → X, otherwise we
know that there is no direct causal link between the
variables.

This was easy. Now suppose we have an OME over
the set of variables V = {V,W,X, Y, Z} represented



by the following knowledge graph:1
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This knowledge graph represents 12 distinct causal hy-
potheses (substantially less than the 29, 281 possible
DAGs over 5 variables). Without further assumptions,
passive observational data is not going to help. But we
can intervene, the question is where? Note that if we
can orient one edge, we can determine additional ori-
entations that are implied (see Meek Rules in Meek
1995). For example, if we find that Z → Y , then this
also implies Y → W → V and Y → X → V . But in-
tuitively, intervening on Z might seem like a bad idea
given this OME. X or W may appear to be better can-
didates, and rightly so: The advantage of intervening
on X is that there are particular structures (two in
fact) in the equivalence class, that, if true, would be
uniquely distinguished within the equivalence class by
a single experiment randomizing X. The following is
one such structure:

V W//V
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The same is true, albeit for other structures, for inter-
ventions on V,W and Y , but not for an intervention
on Z: No matter what the true structure is, an in-
tervention on Z will not uniquely resolve this Markov
equivalence class. Further, brief inspection shows that
there is no intervention set (of any size) that guar-
antees discovery of the true causal structure in one
experiment.

How does one compute intervention sets for knowledge
graphs for which intuitions fail us?

The algorithm we propose builds on insights from the
analysis underlying Theorem ??. The key difficulty
in uniquely identifying the true causal structure is to
determine the orientation of edges in cliques. Cliques
are subsets of the vertex set for which every pair of
vertices is connected by an edge in the true causal
structure. A clique makes edge-orientations maximally
independent, because fewer orientations are implied
(there are no v-structures2; only acyclicity constraints

1We use the example from Meganck et al. (2005).
2Variables X, Y, Z form a v-structure if X → Y and

Z → Y and there is no direct causal connection between X
and Z. V-structures are also known as unshielded colliders,
and due to their unique independence implications, can be
identified in passive observational data.

imply orientations). An algorithm aiming to minimize
the number of experiments must therefore break down
cliques of connected variables as fast as possible. For
a clique of size |C|, an experiment that intervenes on
k variables in the clique determines the orientation of
k(|C| − k) of the clique’s edges. This value is max-
imized for k = |C|/2. So our algorithm, presented
below, works as follows:

Given the knowledge graph it determines all maxi-
mal cliques of variables connected by so-called un-
known (undirected, semi-directed or no-knowledge)
edges. In our example we have: C1 = {V,W,X}, C2 =
{W, X, Y } and C3 = {Y,Z}. However, we only have to
consider C1 and C2, since orientation of all edges in a
3-clique will take 2 experiments in the worst case, and
so we can leave resolution of C3 to the second exper-
iment, since it only requires a single experiment (and
may anyway get resolved for free in the first experi-
ment). Ideally we should intervene on |Ci|/2 variables
simultaneously for each clique Ci. However, since the
cliques may (and in our case do) overlap, the selection
of the variables to subject to interventions cannot be
done for each clique independently. Consequently, we
count for each vertex how many cliques it is part of to
determine which vertices are in the most cliques. By
considering maximal cliques in order of size and their
vertices in order of their prevalence in the cliques, the
algorithm greedily approximates the optimal choice of
intervention set. In our example, W and X are in 2
(relevant) cliques, while V and Y are only in one. The
choice between X and W is random, since there is no
a priori reason to prefer one over the other. Once, say,
X is selected, all cliques are updated as to whether
a sufficient number of their vertices are contained in
the intervention set (see algorithm for details). In our
case, the selection of X for the intervention set would
imply that C1 and C2 have sufficient vertices in the
intervention set, since inclusion of any additional ver-
tex from those cliques would not necessarily reduce the
number of experiments needed. (Note, that one could
include Z in the intervention set to resolve C3, but
one need not.) Suppose that upon intervening on X
we find the same independence constraints as in the
OME. We can then update our knowledge graph to
reflect the intervention test:
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We were unlucky; a further experiment is required, but
note that the orientation of the Y Z-edge was implied
by the orientation of the XY -edge resulting from the
intervention. Now only the V –W–Y connection has



to be resolved: W is added to the new intervention
set for the next experiment, since it is the only vertex
that is part of two cliques. We know from the dis-
cussion earlier that this intervention will be sufficient
to uniquely determine the true graph. Our algorithm
determined intervention sets that could have resolved
the OME in a single experiment, but that ensured that
it was resolved in what we knew to be the worst case
theoretical bound for this particular knowledge graph:
two experiments.

2 THEORY

We conjecture that the above procedure works quite
generally for knowledge graphs that are OMEs, and
that the number of experiments that are in the worst
case necessary, is a function of the largest clique in the
OME:

Conjecture 2.1 (Experiments on OMEs). Given an
OME of the true graph, if multiple simultaneous and
independent interventions can be performed in each
experiment, then dlog2(|Cmax|)e experiments are suf-
ficient and in the worst case necessary to recover the
true causal graph, where Cmax is the largest clique in
the OME.

Depending on the size of the largest clique in the OME,
this bound is substantially lower than the bound of
Theorem ??. But if the largest clique in the OME con-
tains all N variables, then the bounds coincide. (The
one additional experiment in Theorem ?? only makes
a difference when N is a power of 2. In those cases
the adjacency information – present in an OME, but
not assumed in Theorem ?? – cannot be established
completely in the log2(N) experiments.)

An algorithm that reduces by half the size of all cliques
of undirected edges, for which no edge-orientation is
known, clearly satisfies the conjectured bound. In gen-
eral, the requirement is a little weaker: If all undi-
rected cliques C>h, that are larger than h variables,
where h is the closest power of 2 below |Cmax|, are re-
duced to cliques of size h in each experiment, then the
conjectured bound is satisfied.

The conjecture currently remains without proof be-
cause it is not entirely clear whether it is possible to
find intervention sets for any OME that break down all
such cliques sufficiently fast. Since cliques may over-
lap, a proof of the conjecture must guarantee that in-
tervention sets can always be found that resolve all of
the overlapping cliques at once. In particular, consider
a knowledge graph containing an undirected five-cycle
as shown below. Here we have four overlapping maxi-
mal cliques of size 2. Again, one experiment should be
sufficient to recover the causal structure, but in this

case it is impossible to find an intervention set that
resolves all four cliques simultaneously.
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Any selection would result in one clique for which ei-
ther both or no variable is contained in the interven-
tion set. However, the five-cycle is not a counterex-
ample to the conjecture since an undirected five-cycle
(or any other cordless cycle greater than three) can-
not occur in any OME – it would always imply a v-
structure). Hence, the conjecture does not hold for
arbitrary knowledge graphs, but is dependent on the
assumption that the graph is an OME or derived from
one.

For arbitrary knowledge graphs there is a general neg-
ative graph theoretic result due to Folkman (1970).
It relates the problem of intervention set selection to
coloring theorems:

Theorem 2.2 (Folkman Clique Theorem – para-
phrased). For any clique-size c ≥ 3, there is a graph
G, whose largest clique has size c and for which every
edge two-coloring has a clique of size c in one color.

Considering only the undirected edges of an OME, let
an edge be colored red in experiment E if it connects
an intervened and a non-intervened variable, and blue
if it connects variables that are both subject to an in-
tervention or both passively observed. In some cases,
only the red edges will be oriented as a result of the
experiment. Folkman’s theorem implies that for any
integer c ≥ 3, there is a graph G whose largest clique
has c members. Any coloring, so in particular the col-
oring we defined, would result in a clique of size c of
blue or red edges only. Due to the way our coloring is
defined, it is impossible for the clique to be among red
edges, since three variables cannot be fully connected
by red edges. Consequently, the clique is among blue
edges, and since the intervened variables are separated
from the non-intervened ones (by red edges), the clique
must be either among the intervened variables only or
among the unintervened variables only. That is, after
the experiment, we may be left with a clique the same
size as we started off with. Since there is no way to re-
duce cliques of unknown edges by more than half, the
conjectured bound does not hold for general knowledge
graphs, not even for general adjacency graphs. How-
ever, our simulations give hope – as with the five-cycle
– that the knowledge graphs that satisfy Folkman’s
theorem are not OMEs and not derivable from OMEs
by sequences of experiments. If that fails, an argument



is needed that such graphs are sufficiently rare so as
not to be of practical worry.

3 ALGORITHM

The algorithm takes as input a knowledge graph over
the set of variables V. It associates with each vertex
a boolean field that specifies whether the vertex is ad-
missible to the intervention set or not. A vertex may
not be admissible to an intervention set if it is part of
a clique for which too many vertices are already part
of the intervention set. The free parameter maxInter
limits how many nodes may be simultaneously subject
to an intervention in one experiment. As it stands, the
algorithm is not optimal if maxInter ≤ N/2, but see
the discussion below.

Algorithm 3.1 (OPTINTER: Intervention Set Selec-
tion). Given a knowledge graph over a set of vertices
V, each vertex in V can be determined to be admissi-
ble or inadmissible and each vertex has a counter (of
clique memberships). Let maxInter be the maximum
size of the intervention set I for the next experiment.

1. Mark all vertices as admissible and set the coun-
ters for each vertex to 0.

2. Initialize the intervention set I to be the empty
set.

3. Find all maximal cliques of vertices connected by
unknown edges and order them Cmax to Cmin by
the number of vertices they contain. (No need to
resolve ties.)

4. Each clique can be either resolved or unresolved.
Mark all maximal cliques as unresolved.

5. Compute h = 2dlog2(|Cmax|)e−1 (the closest power
of 2 with 2n < |Cmax|).

6. Let the relevant cliques C1, ..., Ck be the cliques
with |Ci| > h.

7. Sort all relevant cliques in order of size, place
among equal sized cliques the ones with the most
inadmissible nodes first.

8. Let Ccurr be the first (largest) unresolved clique
in the list of relevant cliques.

9. For each vertex U ∈ Ccurr, set its counter to the
number of unresolved relevant cliques Ci it is part
of.

10. While (|I| < maxInter)&&(|Ccurr ∩ I| < |Ccurr| − h),
select vertex V ∈ Ccurr such that V is admissible
and has the highest count; select randomly among
ties. Place it in I.

(a) For any relevant clique Ci, if |Ci∩I| = |Ci|−
h, then mark Ci as resolved.

(b) For any relevant clique Ci, if |Ci ∩ I| = h,
mark its vertices as inadmissible.

11. Return to 7 and start over until all relevant cliques
are resolved or when no further relevant cliques
can be resolved.

12. (Post Process: While possible with regard to the
constraints (a) and (b) of step 10, add vertices to
the intervention set to resolve additional maximal
cliques.)

13. Return the intervention set.

4 SIMULATION

Since we know that Conjecture ?? is not true for gen-
eral knowledge graphs and we have reason to believe
that it holds true for OMEs, we tested the conjec-
ture in a simulation. Since the space of DAGs grows
super-exponentially in the number N of variables we
have for even very small N a space for which there is
no obvious technique on how to generate a reasonable
sample of graphs that could be called a representative
test of the conjecture. In addition, if we just sampled
randomly from the space of all possible DAGs over
a set of variables, we would get a sample of graphs
which – for the most part – would have very similar
(and in fact quite small) maximum clique sizes. Us-
ing an MCMC technique to wait for a random DAG
with a large clique and then test that, is not feasible
given how rare graphs with large cliques are. Con-
structing graphs with large cliques deterministically
runs the risk that our construction method may ex-
clude those graphs that would be a counterexample to
the conjecture.

So here is what we did: We considered DAGs with 12
vertices. This was the maximum N for which we could
sample and compute a large number of DAGs. We did
not consider DAGs with fewer vertices since we as-
sumed that these would occur as subgraphs of the 12-
DAGs anyway. By sampling randomly from the space
of all possible 12-DAGs we were easily able to generate
a large enough number of DAGs whose OME contained
maximal cliques with sizes between 1 and 4. To obtain
samples of 12-DAGs with OMEs with larger cliques, we
constructed 12-DAGs that were completely connected
and then randomly deleted 2 edges, and then gener-
ated the OME from the remaining DAG. This yielded
a decent number of OMEs with cliques between 3 and
10. 11-node cliques are impossible in 12-DAGs if two
edges are deleted, but since there is only one DAG –
modulo variable renaming – with a maximum clique
containing 11 nodes, we confirmed the conjecture in



this case by hand, similarly for the complete 12-DAG.
(Consequently they are listed as only “1∗” sample in
the table below). Our sample is in no obvious sense
representative, but it does contain randomly sampled
graphs that imply OMEs with a large variety of differ-
ent maximum clique sizes.

We used the OME generated from the independence
constraints that a sampled 12-DAG implied as the
knowledge graph at the outset of our sequence of ex-
periments. We recorded the size of the largest clique
in the OME, and then performed a sequence of exper-
iments, in which for each experiment the intervention
set was determined by OPTINTER. In each experi-
ment we assumed that we had access to an oracle for
the independence constraints of the manipulated dis-
tribution, and we updated our knowledge graph af-
ter each experiment given the new independence con-
straints. We recorded the number of experiments nec-
essary to uniquely determine the DAG.

In the plot below we show the number of experiments
required to uniquely determine the causal structure
given the OME of 12-DAGs with various maximum
clique sizes (x-axis). We plot the mean and the max-
imum number of experiments that were required, and
show how they compare against the conjectured num-
ber of experiments. (Theoretically the minimum num-
ber of experiments is always 1 for maximal cliques
greater or equal to two in an OME.)

●

● ●

● ● ● ●

● ● ● ●

2 4 6 8 10 12

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Number of Experiments for 12 Variable OMEs 
 with different maximum clique sizes

size of largest clique in OME

nu
m

be
r 

of
 e

xp
er

im
en

ts

●

● ●

● ● ● ●

● ● ● ●

●

●

●

●

●

● ●

●
●

conjecture
max
mean

The plot shows that the conjecture is not violated
and that it in fact appears to be tight in the sense
that the maximum number of experiments necessary
to uniquely determine the causal graph does in fact co-
incide with the conjectured bound. Furthermore, we
see that the mean number of experiments grows more

slowly, despite the fact that we sampled very dense
graphs (with 53 out of a possible 55 edges) to test
maximal clique sizes of 5 and greater. OPTINTER
selects variables for the intervention set randomly if
there is no reason to prefer one over the other, and so
the lower mean is due to “lucky” samples of interven-
tion variables. Of course, the particular growth rate of
the mean should not be taken as informative because
of our sampling method. The mean is based on dif-
ferent sample sizes in each case. The following table
shows how many OMEs each data point in the plot is
based on:

MaxClqSize 1 2 3 4 5 6
# of OMEs N/A 495 349 253 278 286
MaxClqSize 7 8 9 10 11 12
# of OMEs 242 152 123 46 1* 1*

5 DISCUSSION

So far we only considered experiments involving mul-
tiple simultaneous interventions on an OME. The dif-
ficulty in specifying a bound on the number of ex-
periments given an OME, when only single (or only
very few) interventions are permitted per experiment,
is due to the interdependence of the orientation of two
adjacent edges. For example, if we know from passive
observation that the OME of the true causal graph is
a chain of undirected edges,

X1 X2 XN

then we know that this chain cannot contain any v-
structures, since they would have been discovered in
the passive observation. But it could contain a com-
mon cause at any vertex (except the ends). Conse-
quently, if only a single intervention can be performed
per experiment, the most efficient strategy would be to
intervene on the middle vertex, resulting in a sequence
of log2(N) experiments in the worst case to recover
the causal structure. OPTINTER, without constraints
on maxInter would perform a single experiment with
every other variable in the intervention set. With
maxInter = 1, OPTINTER might well take N/2 ex-
periments. Similar arguments apply to tree structures
and particular planar networks made up of triangles
or diamond shapes. Ultimately, if there are many de-
pendencies between the directions of edges, then these
can be exploited to improve the efficiency of discovery,
but greedy procedures like OPTINTER are subopti-
mal. In general the number of experiments necessary
and sufficient to discover the causal graph given an
OME when only single interventions can be performed
per experiment, is bounded by the

∑
i(|Ci|−1), where

the Ci are non-overlapping maximal cliques. But we



have no results on how tight this bound is, nor do we
have a method, other than brute force, to compute
the appropriate intervention sets. For similar reasons,
the intervention sets computed by OPTINTER are not
minimal with regard to the number of variables sub-
ject to an intervention in one experiment or over the
entire sequence of experiments.

Computing the appropriate intervention set given a
knowledge graph is closely related to the MAX-CUT
problem, which is in general NP-complete. There are
approximation algorithms, with the best offering a
0.878-approximation (Goemans & Williamson 1995).
The approximation MAX-CUT algorithm is, of course,
not designed with the specific aim to orient edges in
cliques. Hence, an approximate MAX-CUT might not
be sufficient to guarantee the conjectured bound (even
if true). The OPTINTER algorithm is a greedy al-
gorithm that selects the intervention set specifically
in light of the above conjectured bound. But since
OPTINTER is computationally expensive (due to the
clique search), a MAX-CUT approximation algorithm
may be a better choice for large graphs even if the
guarantees supplied may be weaker than those of OPT-
INTER.

6 CONCLUSION

We have provided an algorithm for the computation
of intervention sets based on the qualitative structural
constraints on hypothesis spaces that can be repre-
sented by knowledge graphs. Knowledge graphs pro-
vide a concise representation of hypotheses that char-
acterize the underdetermination of causal structures
from passive observational data (observational Markov
equivalence classes) and underdetermination resulting
from sequences of experiments. We conjecture that the
number of experiments sufficient and in the worst case
necessary to discover the true causal structure in an
OME is a function of the largest undirected clique in
the OME, and we have shown why this conjecture can-
not be generalized to all knowledge graphs. In simula-
tions we have shown that our OPTINTER algorithm
determines intervention sets that generate sequences
of experiments that satisfy the conjecture. As a re-
sult, we have a search procedure that is adaptive and
therefore much more efficient (in the number of experi-
ments) than procedures that satisfy worst case bounds
for the space of all DAGs. Consequently, we think this
algorithm is much more relevant to actual scientific
practice.
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