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Abstract

This paper describes a new algorithm to
solve the decision making problem in In-
fluence Diagrams based on algorithms for
credal networks. Decision nodes are asso-
ciated to imprecise probability distributions
and a reformulation is introduced that finds
the global maximum strategy with respect
to the expected utility. We work with Lim-
ited Memory Influence Diagrams, which gen-
eralize most Influence Diagram proposals and
handle simultaneous decisions. Besides the
global optimum method, we explore an any-
time approximate solution with a guaran-
teed maximum error and show that imprecise
probabilities are handled in a straightforward
way. Complexity issues and experiments
with random diagrams and an effects-based
military planning problem are discussed.

1 INTRODUCTION

An influence diagram is a graphical model for deci-
sion making under uncertainty [13]. It is composed
by a directed graph where utility nodes are associated
to profits and costs of actions, chance nodes represent
uncertainties and dependencies in the domain and de-
cision nodes represent actions to be taken. Given an
influence diagram, a strategy defines which decision to
take at each node, given the information available at
that moment. Each strategy has a corresponding ex-
pected utility. One of the most important problems in
influence diagrams is strategy selection, where we need
to find the strategy with maximum expected utility.
A simple approach is to evaluate each possible strat-
egy and compare their expected utilities. However, the
number of strategies grows exponentially in the num-
ber of decision to be taken.

In this paper, we propose a new idea to find the best

strategy based on a reformulation of the problem as
an inference in a credal network [4]. We show through
experiments that this approach can handle small and
medium diagrams exactly, and provides an anytime
approximation in case we stop the process early. Our
idea works with a very general class of influence di-
agrams, named Limited Memory Influence Diagrams
(LIMIDs) [15]. Limited Memory means that the as-
sumption of no-forgetting usually employed in Influ-
ence Diagrams (that is, values of observed variables
and decisions that have been taken are remembered at
all later times) is relaxed. This class of diagrams is
interesting because most other influence diagram pro-
posals can be efficiently converted into LIMIDs.

To solve strategy selection, many approaches work on
special cases of influence diagrams, exploiting their
characteristics to improve performance. In many
cases, it is assumed that there is an ordering on which
the decisions are to be taken and the no-forgetting rule,
so as previous decisions are assumed to be known in
the moment of the current decision [14, 18, 19, 20, 21].
The ordering of decision nodes is exploited to eval-
uate the optimal strategy. There are also proposals
in the class of simultaneous influence diagrams, where
decisions are assumed to have no antecedents. This
assumption reduces the number of possible strategies
and allows for factorization ideas [22]. LIMIDs do not
have assumptions about no-forgetting and ordering for
decisions, even though it is possible to convert dia-
grams that have such assumptions into LIMIDs.

In order to test our method, we generate a data set
of random influence diagrams. Empirical results indi-
cate that the accuracy of our method is better than
other approaches’. We also apply our idea to solve
an Effects-based operations (EBO) military planning.
The EBO approach seeks for a campaign objective by
considering direct, indirect and cascading effects of
military, diplomatic, psychological and economic ac-
tions [6, 11]. We use an influence diagram to model an
EBO hypothetical problem.



Section 2 introduces our notation for influence dia-
grams and the problem of strategy selection. Section 3
describes the framework of credal networks and the in-
ference problem on such networks. Section 4 presents
how we solve strategy selection through a reformula-
tion of the problem as an inference in credal networks.
Section 5 presents some experiments, including the
EBO military planning problem, and finally Section
6 concludes the paper and indicates future work.

2 INFLUENCE DIAGRAMS

A Limited Memory Influence Diagram I is composed
by a directed acyclic graph (V , E) where nodes are
partitioned in three types: chance, decision and utility
nodes. Let C, D and U be the set of chance, decision
and utility nodes, respectively, and let X = C ∪ D.
Links of E characterize dependencies among nodes.
Explicitly, links toward a chance node indicate prob-
abilistic dependence of the node on its parents; links
toward a decision node indicate which information is
available to take such decision, and links toward utility
nodes represent that an utility for those parents is to
be considered (utility nodes may not have children).
Associated to each node, there are some parameters:

1. A chance node has an associated categorical ran-
dom variable C with finite domain ΩC and con-
ditional probability distributions p(C|πj(C)), for
each configuration πj(C) of its parents π(C) in
the graph. j is used to indicate a configuration of
the parents of C, that is, πj(C) ∈ Ωπ(C), where
the notation ΩV′ = ×V ∈V′ ΩV , for any V ′ ⊆ V .

2. A decision node D is associated to a finite set of
mutually exclusive alternatives ΩD. Parents of D

describe the information that is available at the
moment on which decision D has to be taken.

3. An utility node U is associated to a rational func-
tion fU : Ωπ(U) → Q. The value corresponding to
a parent configuration is the profit (cost is viewed
as negative profit) of such parent configuration.
Utility nodes have no children.

A simple example is depicted in Figure 1. De-
cision nodes are represented by rectangles, chance
nodes by ellipses and utility nodes by diamonds.
do ground attack has an associated cost, which is de-
picted by the corresponding utility node. The same is
modeled for bomb bridge. The goal is to achieve ter-
ritory occupation, which also has an utility (the profit
of the goal). ground attack and bridge condition repre-
sent the uncertain outcomes of the corresponding ac-
tions. Note that there is no known ordering on which

cost_of
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of_goal
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bomb_bridge
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Figure 1: Simple Influence Diagram example.

decisions must be taken. Although decision nodes have
no parents in this example, there is no such restriction.

A policy δD for the decision node D is a function
δD : ΩD∪π(D) → [0, 1] defined for each alternative
of D and each configuration of π(D) such that, for
each πj(D) ∈ Ωπ(D) we have

∑

d∈ΩD
δD(d, πj(D)) = 1.

A pure policy is a policy such that its image is inte-
ger (δD : ΩD∪π(D) → {0, 1}), and thus specifies with
certainty which action (alternative of D) is taken for
each parent configuration (in a pure policy, only one
δD(d, πj(D)) for each πj(D) will be non-zero as they
sum 1). A strategy ∆ is a set of policies {δD : D ∈ D},
one for each decision node of the diagram. A pure
strategy is composed only by pure policies.

The expected utility EU(∆) of a strategy ∆ is evalu-
ated through the following equation:

∑

x∈ΩX

(

∏

C

p(xC |πj(C))
∏

D

δD(xD)
∑

U

fU (πj′ (U))

)

,

(1)
where xC , πj(C), xD and πj′ (U) are respectively the
projections of x in ΩC , Ωπ(C), ΩD∪π(D) and Ωπ(U).
This equation means that, given a strategy, its ex-
pected utility is the sum of the utility values weighted
by the probability of each diagram configuration (for
all configurations). The maximum expected utility is
obtained over all possible strategies:

MEU = max
∆

EU(∆).

The problem of strategy selection is to obtain the
strategy that maximizes its expected utility, that is,
argmaxmax∆ EU(∆).

3 CREDAL NETWORKS

We need some concepts of credal networks before pre-
senting the reformulation to solve strategy selection.
A convex set of probability distributions is called a



credal set [4]. A credal set for X is denoted by K(X);
we assume that every random variable is categori-
cal and that every credal set has a finite number of
vertices. Given a credal set K(X) and an event A,
the upper and lower probability of A are respectively
maxp(X)∈K(X) p(A) and minp(X)∈K(X) p(A). A condi-
tional credal set is a set of conditional distributions,
obtained by applying Bayes rule to each distribution
in a credal set of joint distributions.

A (separately specified) credal network N = (G, X, K)
is composed by a directed acyclic graph G = (V, E)
where each node of V is associated with a random
variable Xi ∈ X and with a collection of conditional
credal sets K(Xi|π(Xi)) ∈ K, where π(Xi) denotes
the parents of Xi in the graph. Note that we have a
conditional credal set related to Xi for each configura-
tion πj(Xi) ∈ Ωπ(Xi). A root node is associated with
a single marginal credal set. We take that in a credal
network every random variable is independent of its
non-descendants non-parents given its parents; this is
the Markov condition on the network. In this paper
we adopt the concept of strong independence1: two
random variables Xi and Xj are strongly independent
when every extreme point of K(Xi, Xj) satisfies stan-
dard stochastic independence of Xi and Xj (that is,
p(Xi|Xj) = p(Xi) and p(Xj|Xi) = p(Xj)) [4]. Strong
independence is the most commonly adopted concept
of independence for credal sets, probably due to its
connection with standard stochastic independence.

Given a credal network, its extension is any joint credal
set that satisfies all constraints encoded in the net-
work. The strong extension K of a credal network is
the largest joint credal set such that every variable
is strongly independent of its non-descendants non-
parents given its parents. The strong extension of a
credal network is the joint credal set that contains ev-
ery possible combination of vertices for all credal sets
in the network [5]; that is, each vertex of a strong ex-
tension factorizes as follows:

p(X1, . . . , Xn) =
∏

i

p(Xi|π(Xi)) . (2)

Thus, a credal network can be viewed as a represen-
tation for a set of Bayesian networks with distinct pa-
rameters but sharing the same graph.

3.1 INFERENCE

A marginal inference in a credal network is the com-
putation of upper (or lower) probabilities in an exten-
sion of the network. If Xq is a query variable, then a
marginal inference is the computation of tight bounds

1We note that other concepts of independence are found
in the literature [3, 10].

for p(xq) for one or more categories xq of Xq. For in-
ferences in strong extensions, it is known that distribu-
tions that maximize p(xq) belong to the set of vertices
of the extension [12]. So, an inference can be produced
by combinatorial optimization, as we must find a ver-
tex for each local credal set K(Xi|π(Xi)) so that Ex-
pression (2) leads to a maximum of p(xq). In general,
inference offers tremendous computational challenges,
and exact inference algorithms based on enumeration
of all potential vertices face serious difficulties [4].

A different way to solve the problem is to recognize
that an upper (or lower) value for p(xq) may be ob-
tained by the optimization of a multilinear polynomial
over probability values, subject to constraints. This
idea is discussed in the literature and different methods
to reformulate the inference problem were proposed
[7, 9]. Empirical results suggest that this is the most
effective way for exact inferences. In the next section,
we describe an idea based on bilinear programming
[9] to perform inferences in credal networks and show
how it can be employed to solve the strategy selection
problem of influence diagrams.

4 STRATEGY SELECTION AS A

CREDAL NET INFERENCE

Suppose we want to find the strategy ∆opt that max-
imizes the expected utility in an influence diagram I,
that is, ∆opt = argmaxMEU. Let f and f be the
minimum and maximum utility values specified in the
diagram for all possible utility nodes and parent con-
figurations, that is,

f = min
U,πj(U)

fU (πj(U)), f = max
U,πj(U)

fU (πj(U)).

We create an identical influence diagram I ′ except that
the utility function f ′

U (for each node U) is defined as

∀πj(U) f ′
U (πj(U)) =

fU (πj(U)) − f

f − f
.

The denominator is positive because f < f (if f =

f , then the influence diagram is trivial as all utility
values are equal). We note that this transformation is
similar to that proposed by Cooper [2]. It is not hard
to see that argmaxMEU = argmaxMEU’ (just take
the terms out of summations in Equation (1)), and

max
∆

EU’(∆) =
max∆ EU(∆) − |U|f

f − f
.

This implies that strategy selection in I is the same as
strategy selection in I ′. Now, we translate the selec-
tion problem of I ′ to a credal network inference. Sup-
pose we define a credal network with a similar graph
as I ′ such that:



• Chance nodes are directly translated as nodes of
the credal network (parents are the same as in I ′).

• Utility nodes are translated to binary random
nodes. Let U be an utility node with function fU .
In the credal network, U becomes a binary node
(with the same parents as before) and categories
u and ¬u such that: p(u|πj(U)) = fU (πj(U)) and
p(¬u|πj(U)) = 1 − p(u|πj(U)) [2].

• Decision nodes are translated to probabilistic
nodes with imprecise distributions such that poli-
cies become probability distributions (in fact, ac-
cording to our definition of policy, they are al-
ready greater than zero and sum 1). Thus,
p(d|πj(D)) = δD(d, πj(D)) for all d and πj(D).
Note that p(D|πj(D)), for each πj(D), is a dis-
tribution with unknown probability values (this
interpretation of decision nodes as imprecise prob-
ability nodes is discussed by Antonucci and Zaf-
falon, see e.g. [1]).

Using this credal network formulation, the expected
utility of a strategy ∆ can be written as

EU’(∆) =
∑

x∈ΩX

(

∏

X

p∆(x|πj(X))
∑

U

p(u|πj′(U))

)

,

where x, πj(X) and πj′ (U) are projections of x into
the corresponding domains, X ranges on all nodes cor-
responding to chance and decision nodes of the influ-
ence diagram, and p∆ represents the distribution in-
duced by the strategy ∆, that is, when the strategy is
chosen, p∆ is a known probability distribution.

With some simple manipulations, we have:

EU’(∆) =
∑

x∈ΩX

(

p∆(x)
∑

U

p(u|πj′(U))

)

,

EU’(∆) =
∑

x∈ΩX

(

∑

U

p(u|πj′ (U))p∆(x)

)

,

EU’(∆) =
∑

U

∑

x∈ΩX

p∆(u,x) =
∑

U

p∆(u),

and then

MEU’ = max
∆

∑

U

p∆(u) = max
p∈K

∑

U

p(u),

where p ∈ K means that we select a distribution p in
the extension of the credal network. In fact the only
places p may vary are related to the imprecise proba-
bilities of the former decision nodes. When we select
p, we get a precise distribution that has a correspond-
ing strategy ∆. So, we have a credal network and
need to find a distribution p that maximizes the sum
of marginal probabilities of the U nodes.

4.1 INFERENCE AS AN OPTIMIZATION

PROBLEM

The sum of marginal inferences in the credal network
can be formulated as a multilinear programming prob-
lem. The goal is to maximize the expression

∑

U

p(u) =
∑

U

∑

x∈ΩX

(

p(u|πj′(U))
∏

X

p(x|πj(X))

)

,

(3)
where x, πj′ (U) and πj(X) are the projections of x in
the corresponding domains, and where some distribu-
tions p(X |πj(X)) are precisely known and others are
imprecise. In this formulation we must deal with a
large number of multilinear terms. To avoid them, we
briefly describe the bilinear transformation procedure
proposed by de Campos and Cozman [9] to replace
the large Expression (3) by simple bilinear expressions.
We refer to [9] for additional details.

The idea is based on a precedence ordering of the net-
work variables, which is an ordering where all ances-
tors of a given variable in the network’s graph appear
before it in the ordering. The bilinear transformation
algorithm processes the network variables top-down:
at each step some constraints are generated that de-
fine the relationship between the query and the cur-
rent variable being processed. A variable may be pro-
cessed only if all its ancestors have already been pro-
cessed. The active nodes at each step form a path-
decomposition of the network’s graph.

To better explain the method, we take the exam-
ple of Figure 1. For simplicity, assume that vari-
ables are binary2 (with categories b and ¬b) re-
named as follows: do ground attack is D1, bomb bridge
is D2, cost of attack is U1, cost of bombing is U2,
ground attack is C1, bridge condition is C2, terri-
tory occupation is C3, and finally profit of goal is U3.

After the translation of the utility functions into prob-
ability distributions and the replacement of decision
nodes by nodes with imprecise probabilities (as previ-
ously described), we have a credal network and need to
maximize the sum of the marginal probabilities of the
U nodes. In fact this is an extension of the standard
query in a credal network, because we have a summa-
tion instead of a single probability to maximize. So
the objective function is max p(u1) + p(u2) + p(u3)
(there are three utility nodes in the example) sub-
ject to constraints that define each marginal proba-
bility p(u1), p(u2) and p(u3). To create these con-
straints, we run a symbolic inference based on the
precedence ordering for each of the marginal proba-
bilities. The constraints for p(u1) and p(u2) are very

2The method works on non-binary variables as well.
The assumption is made here for ease of expose.



simple: p(u1) = p(u1|d1)p(d1) + p(u1|¬d1)p(¬d1) and
p(u2) = p(u2|d2)p(d2)+p(u2|¬d2)p(¬d2), because they
only depend on one other variable. Note that p(d1),
p(¬d1), p(d2), and p(¬d2) that appear in these con-
straints are unknown and thus become optimization
variables in the bilinear problem.

To write the constraints for p(u3), we need to choose
a precedence ordering. We will use the ordering
D2, C2, D1, C1, C3, U3 (variables U1 and U2 do not ap-
pear in the order as they are not relevant to evaluate
the marginal p(u3)). Hence, the first variable to be
processed is D2. We write a constraint that relates
the query u3 and probabilities p(D2) (which are de-
fined in the network specification):

p(u3) =
∑

d∈{d2,¬d2}

p(d) · p(u3|d).

D2 now appears in the conditional part of p(u3|d),
which may be viewed as an artificial term in the opti-
mization, as it does not appear in the network. Be-
cause of that, we must create constraints to define
p(u3|d) in terms of network parameters (for all cat-
egories d ∈ D2). According to our chosen ordering,
the current variable to be processed is C2. Thus,

p(u3|d2) =
∑

c∈{c2,¬c2}

p(c|d2) · p(u3|c),

p(u3|¬d2) =
∑

c∈{c2,¬c2}

p(c|¬d2) · p(u3|c).

Note that p(u3|c) = p(u3|c, d) (for any d), so we use
the simpler. At this stage, our query is conditioned on
C2. Following the same idea, we process D1, obtaining

p(u3|c2) =
∑

d∈{d1,¬d1}

p(d) · p(u3|c2, d),

p(u3|¬c2) =
∑

d∈{d1,¬d1}

p(d) · p(u3|¬c2, d).

Now the current variable to be treated is C1, and our
query is conditioned on C2, D1, that is, we must de-
fine how to evaluate p(u3|C2, D1) for all configurations.
Thus, for all c ∈ {c2,¬c2} and d ∈ {d1,¬d1}:

p(u3|c, d) =
∑

c′∈{c1,¬c1}

p(c′|c, d) · p(u3|c, c
′).

At this moment, u3 is conditioned on C1, C2 in the
artificial term p(u3|c, c

′) (D1 is not present in the ar-
tificial term as C1, C2 separate u3 from D1). Now we
process C3: for all c′ ∈ {c1,¬c1} and c ∈ {c2,¬c2}

p(u3|c, c
′) =

∑

c′′∈{c3,¬c3}

p(c′′|c, c′) · p(u3|c
′′).

Note that, as p(u3|c
′′) is specified in the network, we

can stop. All artificial terms are related (through con-
straints) to parameters of the network. Besides all
these constraints, we also include simplex constraints
to ensure that probabilities sum 1.

Hence, we have a collection of linear and bilinear con-
straints on which non-linear programming can be em-
ployed [7]. It is also possible to use linear integer pro-
gramming [9]. The steps to achieve a linear integer
programming formulation are simple, because the only
non-linear terms of the problem have the format b · t,
where b ∈ {0, 1} and t ∈ [0, 1]. b is an unknown proba-
bility value of the credal network (which is zero or one
because the solution we look for lies on extreme points
of credal sets [12]) and t is a constant or an artificial
term created in the procedure just described. To lin-
earize the problem, b · t is replaced by an additional
artificial optimization variable y and the following con-
straints are inserted: 0 ≤ y ≤ b and t − 1 + b ≤ y ≤ t.
After replacing all non-linear terms using this idea, the
problem becomes a linear integer programming prob-
lem, where a solution is also a solution for the strategy
selection in the initial influence diagram.

We emphasize that, as we are translating the strat-
egy selection problem into a credal network inference,
it is straightforward to use imprecise probabilities in
the chance nodes of the influence diagram. Intervals
or sets of probabilities may be used. The translation
works in the same way, but the generated problem will
have more imprecise probabilities to optimize.

The following theorem shows that, when reformulat-
ing the strategy selection problem as a modified credal
network inference, we are not making use of “more ef-
fort” than necessary, that is, strategy selection has the
same complexity as inference in credal networks.

Theorem 1 Let I be a LIMID and k a rational. De-
ciding whether there is a strategy ∆ such that MEU
is greater than k is NP-Complete when I has bounded
induced width,3 and NPPP-Complete in general.

Proof sketch: Pertinence for the bounded induced
width case is achieved because (given a strategy) we
can compute MEU and verify if it is greater than k

in polynomial time (using the reformulation and the
sum of marginal queries, each marginal query takes
polynomial time in a bounded induced width Bayesian
network); in the general case, we can perform this ver-
ification using a PP oracle. Hardness for the bounded
induced width case is obtained with the same reduc-

3The maximum clique and the maximum degree in the
moral graph are bounded by a logarithmic function in the
size of the input needed to specify the problem, which for
instance includes polytrees.



tion as in [8] from the MAXSAT problem (replacing
the credal nodes with decision nodes and introducing
a single utility node). In the general case, the same re-
duction as in [17] from E-MAJSAT can be used (MAP
nodes are replaced by decision nodes). �

5 EXPERIMENTS

We conduct two experiments with the procedure.
First, we use random generated influence diagrams
to compare the solutions obtained by our procedure
(which we call CR for credal reformulation) against the
Single Policy Updating (SPU) of Lauritzen and Nils-
son [15]. Later we work with a practical EBO military
planning problem and compare the method against the
factorization of Zhang and Ji [22].4

Concerning random influence diagrams, we have gen-
erated a data set based on the total number of nodes
and the number of decision nodes. The configurations
chosen are presented in the first two columns of Table
1. We have from 10 to 120 nodes, where 3 to 35 are
decision nodes. The number of utility nodes is cho-
sen equal to the number of decision nodes. Each line
in Table 1 contains the average result for 30 random
generated diagrams within that configuration. The
third column of the table shows the approximate aver-
age number of distinct strategies in the diagrams that
would need to be evaluated by a brute force method.

The three columns of the CR method show the time
spent to solve the problem, the number of nodes evalu-
ated in the branch-and-bound tree of the optimization
procedure (which is significantly smaller than the total
number of strategies in brute force) and the maximum
error of the solution (all numbers are averages). Af-
ter the reformulation, the CPLEX solver [16] is used,
which includes a heuristic search before starting the
branch-and-bound procedure. The evaluations of this
heuristic search are not counted in the fifth column of
Table 1. Note that the first five rows are separated
from the last three because they strongly differ on the
size of the search space (exact solutions were found
only for the former). The maximum error of each so-
lution is obtained straightforward from the relaxation
of the linear integer problem. The last two columns
of Table 1 show the time and maximum error of the
SPU approximate procedure. Although very fast, the
SPU procedure has worse accuracy than the “approxi-
mate” CR (solution was approximate in last three rows
because we have imposed a time-limit of ten minutes
for each run). Furthermore, SPU does not provide an
upper bound for the best possible expected utility, as
obtained by CR. Still, a possible improvement is to use

4The factorization idea only works on simultaneous in-
fluence diagrams, so it was not used in the other test cases.

SPU to provide an initial guess to the optimization.

5.1 EBO MILITARY PLANNING

In this section we describe the performance of our
method in an hypothetical Effects-based Operations
planning problem [11]. An influence diagram similar
to the model described by Zhang and Ji [22] is
employed. Its graph is shown in Figure 2. The goal is
to win a war, which is represented by the Hypothesis
node (on top of Figure 2). Just below there are the
subgoals Air superiority, Territory occupation, and
Commander surrender, which are directly related
to the main goal. There are eleven decision nodes
(represented by rectangles): destroy C2 (C2 stands
for Command and Control), destroy Radars, de-
stroy Communications, launch air strike, destroy RD,
destroy storage, destroy assembly, launch ground
attack, launch broadcasting, capture bodyguard,
use special force. Just above decision nodes, we have
chance nodes representing the outcomes of performing
such actions (they indicate the workability of such
systems), and below we have utility nodes (diamond-
shaped nodes) describing the cost of each action.
Furthermore, we have six chance nodes (in the center
of the figure) indicating general workability of IADS
(Integrated Air Defense System), Air force, Artillery,
Ground force, Morale and Commander in custody
with respect to enemy forces. The overall profit of
winning is given by the node UH , child of Hypothesis.

As this is an hypothetical example, we define utility
functions and probability distributions as follows:

• Probability of Hypothesis is one given that all
subgoals are achieved. If one of subgoals is not
achieved, then the probability of Hypothesis is
60%; if two of them are not achieved, then the
probability of success is 30%; if none of subgoals
is achieved, then we certainly fail in the campaign.

• For the subgoals Air superiority, Terri-
tory occupation, and Commander surrender,
we define that the subgoal is accomplished
with probability one when both children were
achieved, 50% when only one child is achieved,
and zero when none is achieved.

• For the probabilities of IADS, Air force, Ar-
tillery, Ground force, Morale and Comman-
der in custody, we define a decrease of 50% for
each unaccomplished child (with a minimum of
zero, of course). Any node has probability zero if
two or more of its children are not achieved.

• The outcomes of actions (chance nodes above de-
cision nodes) have 90% of success. For exam-



Nodes Approx.# of CR SPU
Total Decision Strategies Time(sec) Evals (B&B) Max.Error(%) Time(sec) Max.Error(%)
10 3 217 0.66 5 0.000 0.10 0.740
20 6 234 1.73 125 0.000 0.39 2.788
50 10 251 30.42 4048 0.000 1.62 2.837
60 15 252 29.77 2937 0.000 2.99 1.964
70 20 254 125.06 7132 0.000 5.52 3.448
120 25 2102 254.80 15626 0.544 11.58 2.193
120 30 2116 403.13 5617 4.639 13.79 7.281
120 35 2120 578.99 9307 5.983 16.87 11.584

Table 1: Average results on 30 random influence diagrams of different sizes for the CR and SPU methods.

ple, destroy Radars will have EW/GCI radars de-
stroyed with 90% of odds (EW/GCI means Early
Warning/Ground Control Interception).

• The reward of achieving the main goal is 1000,
while not achieving it costs 500.

• Costs of actions are as follows: ground attack is
150, use special force is 100, capture bodyguard is
80, air strike is 50, and other actions cost 20 each.

For this problem, the best strategy found by SPU
has expected utility of −55.2825, and suggests to
take all action except destroy RD, destroy storage, de-
stroy assembly and launch ground attack. The global
optimum strategy is found in less than 5 seconds with
our method and has expected utility equal to 156.4051
(all actions are taken). This is much faster than the
solution reported by [22] (around 45 seconds).

6 CONCLUSION

We discuss in this paper a new idea for strategy selec-
tion in Influence Diagrams. We work with the Limited
Memory Influence Diagram, as it generalizes many of
the influence diagram proposals. The main contribu-
tion is the reformulation of the problem as a credal
network inference, which makes possible to find the
global maximum strategy for small- and medium-sized
influence diagrams. Experiments indicate that many
instances can be treated exactly. As far as we know,
no deep investigation of exact procedures for this class
of diagrams has been conducted.

Because of the characteristics of our procedure, an
anytime approximate solution with a maximum guar-
anteed error is available during computations. It is
clear that large diagrams must be treated approxi-
mately. Nevertheless, in the conducted experiments,
our method produced results that surpass existing al-
gorithms. Although spending more time, many sit-
uations require a solution to be as good as possible,

while time is a secondary issue. The ability of our ap-
proach to provide an upper bound for the result is also
valuable, which is not available with the SPU method.

We also discuss the theoretical complexity of the prob-
lem, which is derived from the known properties of
MAP problems in Bayesian networks and belief up-
dating inferences in credal networks. The complex-
ity results show that the proposed idea is not making
use of a harder problem to solve a simpler one, as
the complexity of strategy selection is the same as the
complexity of inferences in credal networks.

Because strategy selection in influence diagrams and
inferences in credal networks are related, improve-
ments on algorithms of credal networks can be directly
applied to influence diagram problems. The applica-
tion of other approximate techniques based on credal
networks seems a natural path for investigation. We
also intend to explore other optimization criteria for
influence diagrams with imprecise probabilities, be-
sides expected utility. Proposals in the theory of im-
precise probabilities might be applied to this setting.
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