
Bounds on the Bethe Free Energy for Gaussian Networks

Botond Cseke

Faculty of Science
Radboud University Nijmegen

Toernooiveld 1, 6525 ED
Nijmegen, The Netherlands

Tom Heskes

Faculty of Science
Radboud University Nijmegen

Toernooiveld 1, 6525 ED
Nijmegen, The Netherlands

Abstract

We address the problem of computing ap-
proximate marginals in Gaussian probabilis-
tic models by using mean field and fractional
Bethe approximations. As an extension of
Welling and Teh (2001), we define the Gaus-
sian fractional Bethe free energy in terms of
the moment parameters of the approximate
marginals and derive an upper and lower
bound for it. We give necessary conditions
for the Gaussian fractional Bethe free en-
ergies to be bounded from below. It turns
out that the bounding condition is the same
as the pairwise normalizability condition de-
rived by Malioutov et al. (2006) as a sufficient
condition for the convergence of the message
passing algorithm. By giving a counterexam-
ple, we disprove the conjecture in Welling and
Teh (2001): even when the Bethe free energy
is not bounded from below, it can possess a
local minimum to which the minimization al-
gorithms can converge.

1 Introduction

Calculating marginal probabilities of a set of variables
given some observations is one of the major tasks of
probabilistic inference. In the case of Gaussian mod-
els, the computation of the marginal probabilities has
a computational complexity that scales cubically with
the number of variables, while for models with discrete
variables, it often leads to intractable computations.
Computations can be made faster or tractable by using
approximate inference methods like mean field approx-
imation (e.g., Jaakkola, 2000) and Bethe approxima-
tion (e.g., Yedidia et al., 2000). These methods were
developed mainly for discrete probabilistic graphical
models, but they are applicable in Gaussian models
as well. However, there are important differences in

their behavior for the discrete and Gaussian cases.
For example, while the error function of the Bethe
approximation—also called Bethe free energy—in dis-
crete models is bounded from below, in Gaussian mod-
els this is not always the case (see Welling and Teh,
2001).

The study of the Bethe free energy of Gaussian mod-
els is also motivated by their importance for the study
of conditional Gaussian models. Conditional Gaussian
or hybrid graphical models, such as switching Kalman
filters (e.g., Zoeter and Heskes, 2005), combine both
discrete and Gaussian variables. Approximate infer-
ence in these models can be carried out by expecta-
tion propagation (e.g., Minka, 2004, 2005). Expecta-
tion propagation can be viewed as a generalization of
the Bethe approximation where marginalization con-
straints are replaced by expectation constraints (e.g.,
Heskes et al., 2005). Therefore, studying the proper-
ties of the Bethe free energy can reveal some of the
convergence properties of expectation propagation. In
order to understand the properties of the Bethe free
energy of hybrid models a good understanding of the
two special cases of discrete and Gaussian models is
needed. While the properties of the Bethe free energy
of discrete models have been studied extensively in
the last decade and are well understood (e.g., Yedidia
et al., 2000; Heskes, 2003; Wainwright et al., 2003),
the properties of the Gaussian Bethe free energy have
been studied much less.

The message passing algorithm is a well established
method for finding the stationary points of the Bethe
free energy (e.g., Pearl, 1988; Yedidia et al., 2000;
Heskes, 2003). It works by locally updating the ap-
proximate marginals and has been successfully ap-
plied in both discrete (e.g., Murphy et al., 1999; Wain-
wright et al., 2003) and Gaussian models (e.g., Weiss
and Freeman, 2001; Rusmevichientong and Roy, 2001;
Malioutov et al., 2006). The problem of finding suffi-
cient conditions for the convergence of message passing
in Gaussian networks has been successfully addressed



by many authors. Using the computation tree ap-
proach, Weiss and Freeman (2001) proved that mes-
sage passing converges whenever the information—
inverse covariance—matrix of the probability distri-
bution is diagonally dominant1. With the help of an
analogy between message passing and walk–sum anal-
ysis, Malioutov et al. (2006) derived the stronger con-
dition of pairwise normalizability2. A different ap-
proach was taken by Welling and Teh (2001), who
directly minimized—with regard to the parameters of
approximate marginals—the Bethe free energy, conjec-
turing that Gaussian message passing converges if and
only if the free energy is bounded from below. Their
experiments showed that message passing and direct
minimization either converge to the same solution or
both fail to converge.

Following Welling and Teh (2001), instead of analyzing
the message passing updates, we turn our attention to
the properties of the Bethe free energy expressed as
a function of the moment parameters of approximate
marginals. We derive a lower bound for the Gaussian
fractional Bethe free energies and give necessary con-
ditions for them to be bounded from below.

2 Background

The probability distribution of a Gaussian undi-
rected probabilistic graphical model—also known
as Gaussian Markov random field—is usually de-
fined in terms of canonical parameters, namely
p(x) ∝ exp

{

hT x − 1
2x

TJx
}

—with J symmetric and
positive definite. Such canonical parameterizations
often result from Bayesian computations, for example
from a model with a Gaussian likelihood and Gaussian
prior. The calculation of marginals requires matrix
inversions, that is they can be computed as p(xI) ∝

exp
{

(hI − JI,RJ−1
R,RhR)TxI − 1

2x
T
I JI,RJ−1

R,RJR,IxI

}

,

for any I ∩ R = ∅ with I ∪ R = {1, . . . , N}—here,
N is the number of variables in the model. In
sparse models, the complexity of computations can be
reduced to scale with the number of non-zero elements
of JR,R, but computing marginals for several groups
of variables can still be costly. Trading correctness
for speed, one can opt for computing approximate
marginals.

A popular method to approximate marginals is ap-
proximating p with a distribution q having a form that

1The matrix A is diagonally dominant if |Aii| >
P

j 6=i
|Aij | for all i.

2Following Malioutov et al. (2006), we call a Gaus-
sian distribution pairwise normalizable if it can be factor-
ized into a product of normalizable “pair” factors, that is
p(x1, . . . , xn) =

Q

ij
Ψij(xi, xj) such that all Ψij-s are nor-

malizable.

makes marginals easy to identify. The most common
quantity to measure the difference between two proba-
bility distributions is the Kullback-Leibler divergence
D [q||p]. It is often used (e.g., Jaakkola, 2000) to char-
acterize the quality of the approximation and formu-
late the computation of approximate marginals as the
optimization problem

q(x) = argmin
q∈F

∫

q(x) log

[

q(x)

p(x)

]

dx. (1)

Here, F is the set of distributions with the above men-
tioned form. Since it is not symmetric, the Kullback-
Leibler divergence is not a distance, but D [q||p] ≥ 0
for any proper q and p, D [q||p] = 0 if and only if p = q
and it is convex in both q and p.

A family F of densities possessing a form that makes
marginals easy to identify is the family of distributions
that factorize as q(x) =

∏

k

qk(xk). In other words, in

problem (1) we approximate p with a distribution that
has independent variables. An approximation q of this
type is called mean field approximation (e.g., Jaakkola,
2000). Writing out in detail the right hand side of (1)
one gets

FMF ({qk}) = −

∫

log p(x)
∏

k

qk(xk)dx

+
∑

k

∫

qk(xk) log qk(xk)dxk.

Using notation qk(xk) = N(xk|mi, σ
2
i ),m =

(m1, . . . , mN )T and σ = (σ1, . . . , σN )T , this simplifies
to

FMF (m, σ) = −

{

hTm −
1

2
mTJm −

1

2

∑

k

Jkkσ2
k

}

−
∑

k

log(σk) + CMF , (2)

where CMF is an irrelevant constant. Although

D

[

∏

k

qk||p

]

might not be convex in (q1, . . . , qN ), one

can easily check that FMF is convex in its variables m

and σ and its minimum is obtained for m = J−1h

and σ = 1/
√

diag (J). Since [J−1]kk = 1/(Jkk −

JT
k,\k

[

J\k,\k

]−1
J\k,k), one can easily see that the

mean field approximation underestimates variances.
Note that the mean field approximation computes a
solution in which the means are exact, but the vari-
ances are computed as if there were no interactions
between the variables, namely as if the matrix J were
diagonal, thus giving poor estimates of the variances.

In order to improve the estimates for variances, one
has to choose approximating distributions q that are



able to capture dependencies between the variables in
p. It can be verified that any distribution in which the
dependencies form a tree graph can be written in the
form

p(x) =
∏

n(i,j)

p(xi, xj)

p(xi)p(xj)

∏

k

p(xk),

where i and j run through all the connections or edges
n(i, j) of the tree and k runs through {1, . . . , N}. Al-
though in most cases the undirected graph generated
by the connections in J is not a tree, based on the
“tree intuition” one can construct q from one and two
variable marginals as

q(x) ∝
∏

n(i,j)

qij(xi, xj)

qi(xi)qj(xj)

∏

k

qk(xk) (3)

and constrain the functions qij and qk to be
marginally consistent and normalize to 1, that is
∫

qij(xi, xj)dxj = qi(xi) for any i and j and
∫

qk(xk)dxk = 1 for any k. An approximation of
the form (3) together with the constraints on qij–s
and qk–s is called a Bethe approximation. Denot-
ing the family of such functions by FB, by choosing
qij(xi, xj) = qi(xi)qj(xj) one can easily check that
FMF ⊂ FB, thus FB is non-empty. Assuming that
the approximate marginals are correct and q normal-
izes to 1 and then substituting (3) into (1), we get an
approximation of the Kullback–Leibler divergence in
(1) called the Bethe free energy. Since the interactions
between the variables in p are pairwise, we can fac-
torize p as p(x) ∝

∏

n(i,j)

Ψi,j(xi, xj), and express the

Bethe free energy as

FB({qij ,qk}) = −
∑

n(i,j)

∫

qij(xi,j) log Ψij(xi,j)dxi,j

+
∑

n(i,j)

∫

qij(xi,j) log

[

qij(xi,j)

qi(xi)qj(xj)

]

dxi,j

+
∑

k

∫

qk(xk) log qk(xk)dxk. (4)

Yedidia, Freeman, and Weiss (2000) showed that the
fixed point iteration for finding the constrained min-
ima of the function in (4), boils down to the message
passing algorithm of Pearl (1988). The algorithm is
derived from the Karush–Kuhn–Tucker conditions of
the constrained minimization. As it was mentioned in
the introduction, in case of Gaussian models this al-
gorithm does not always converge, and the reason for
this appears to be that the approximate marginals may
get indefinite or negative definite covariance matrices.
Welling and Teh (2001) pointed out that this can be
due to the unboundedness of the Bethe free energy.

Since FMF is convex and bounded and the Bethe free
energy could be unbounded, it seems plausible to an-
alyze the fractional Bethe free energy

Fα({qij , qk}) = −
∑

n(i,j)

∫

qij(xi,j) log Ψij(xi,j)dxi,j

+
∑

n(i,j)

1

αij

∫

qij(xi,j) log

[

qij(xi,j)

qi(xi)qj(xj)

]

dxi,j

+
∑

k

∫

qk(xk) log qk(xk)dxk (5)

introduced by Wiegerinck and Heskes (2003). Here,
α denotes the set of variables {αij}. They showed
that the fractional Bethe free energy “interpolates”
between the mean field and the Bethe approximation.
That is for αij = 1 we get the Bethe free energy, while
in the case when all αij–s tend to 0 the mutual in-
formation between variables xi and xj is highly pe-
nalized, therefore, (5) enforces solutions close to the
mean field solution. They also showed that the frac-
tional message passing algorithm derived from (5) can
be interpreted as Pearl’s message passing algorithm
with the difference that instead of computing local
marginals—like in Pearl’s algorithm—one computes
local αij–marginals3. The local αij–marginals corre-
spond to “true” local marginals when αij = 1 and to
local mean field approximations when αij = 0.

Power expectation propagation by Minka (2004) is an
approximate inference method that uses local approx-
imations with α–divergences. It turns out that in case
of Gaussian models power expectation propagation—
with a fully factorized approximating distribution—
boils down to the same message passing algorithm as
the one derived from (5) and the appropriate con-
straints.

Starting from the idea of creating a convex upper
bound of the Bethe free energy when p and q are expo-
nential distributions, Wainwright et al. (2003) derived
a form of (5) where the αij–s are chosen such that it
is convex in ({qij}, {qk}). Thus, they derived a form
of the fractional Bethe free energy that has a unique
global minimum.

3 Main results

In this section we analyze the parametric form of (5).
Setting all αij values equal, we show that the frac-
tional Gaussian Bethe free energy is a non-increasing
function of α. By letting α tend to infinity, we ob-
tain a lower bound for the free energies. It turns out

3Here, we define the α–marginals of a distribution p as

argmin{qk} Dα

»

p ‖
Q

k

qk

–

, where Dα is the α–divergence.



that the condition for the lower bound to be bounded
from below is the same as the pairwise normalizability
condition.

Conforming to Malioutov et al. (2006) and without loss
of generality, we work with the “normalized” informa-
tion matrix, that is we use J = I+R where diag(R) =
0. We define |R| as the matrix formed by the abso-
lute values of R’s elements. Following Welling and
Teh (2001), we use qij(xi,j) = N(xi,j |mij ,Σij) and
qk(xk) = N(xk|mk, σ2

k), where m = (m1, . . . , mN)T ,
mi,j = (mi, mj)

T and Σij =
[

σ2
i , σij ; σij , σ2

j

]

, and
thus we embed the marginalization and normaliza-
tion constraints into the parameterization. The ma-
trix formed by diagonal elements σ2

k and off-diagonal
elements σij is denoted by Σ and the vector of stan-
dard deviations by σ = (σ1, . . . , σN )T . Substituting
qij and qk into (5) one gets

Fα (m,Σ) = −

{

hT m −
1

2
mTJm −

1

2
Tr(JT Σ)

}

−
1

2

∑

n(i,j)

1

αij
log

(

1 −
σ2

ij

σ2
i σ2

j

)

−
∑

k

log(σk) + Cα (6)

where Cα is an irrelevant constant. Note that the
variables m and Σ are independent, hence the mini-
mizations of Fα (m,Σ) with regard to m and Σ can
be carried out independently.

Property 1. Fα (m,Σ) is convex and bounded in
(m, {σij}i6=j) and at any stationary point we have

m∗ = J−1h (7)

σij
∗ = −sign(Rij)

(

1 + (2αijRij)
2σ2

i σ2
j

)1/2
− 1

2αij |Rij |
.

Proof: By definition J is positive definite, therefore,
the quadratic term in m is convex and bounded. The
variables m and Σ are independent and the minimum
with regard to m is achieved at m∗ = J−1h.

One can check that the second order derivative of
Fα(m,Σ) with regard to σij is non-negative and
the first order derivative has only one solution when
−σiσj ≤ σij ≤ σiσj (Welling and Teh, 2001). Since
the variables σij are independent, one can conclude
that Fα(m,Σ) is convex in {σij}. From the indepen-
dence of m and Σ, it follows that Fα is convex in
(m, {σij}). �

Since Σij is constrained to be a covariance matrix, we
have σ2

ij ≤ σ2
i σ2

j , thus the first logarithmic term in
(6) is negative. As a consequence, by setting all αij–s

equal, we get,

Fα1
(m,Σ) ≥ Fα2

(m,Σ) for any α1 ≤ α2.

This leads to the following property.
Property 2. With αij = α, Fα is a non-increasing
function of α.

Using Property 1 and substituting σ∗
ij into Fα we de-

fine the constrained function

F c
α
(m, σ) =

1

2
mJ−1m − hTm +

1

2

∑

k

σ2
k

−
1

2

∑

n(i,j)

1

αij

(

(

1 + (2αijRij)
2σ2

i σ2
j

)1/2
− 1
)

−
1

2

∑

n(i,j)

1

αij
log

(

2

(

1 + (2αijRij)
2σ2

i σj
2
)1/2

− 1

(2αijRij)2σ2
i σ2

j

)

−
∑

k

log(σk) + Cc
α

(8)

where Cc
α

is an irrelevant constant. From Property 2,
it follows that when choosing αij = α, the function in
(8) is a non-increasing function of α. It then makes
sense to take α → ∞ and verify whether we can get a
lower bound for (8).

Lemma For any σ > 0, 0 ≤ α1 ≤ 1 and α2 ≥ 1 the
following inequalities hold.

FMF (m, σ) ≥ F c
α1

(m, σ) ≥ FB(m, {σ∗
ij}, σ)

FB(m, {σ∗
ij}, σ) ≥ F c

α2
(m, σ) . . .

. . . ≥ FMF (m, σ) −
1

2
σ

T |R|σ

Moreover, they are tight, that is

lim
α→0

Fα(m, {σ∗
ij(α)}, σ) = FMF (m, σ)

and

lim
α→∞

Fα(m, {σ∗
ij(α)}, σ) = FMF (m, σ) −

1

2
σ

T |R|σ.

Proof: Since the Bethe free energy is the specific case
of the fractional Bethe free energy for α = 1, the in-
equalities on FB(m, {σ∗

ij(α)}, σ) follow from Property
2. Now, we show that the upper and lower bounds are
tight. The function (1 + x2)1/2 − 1 behaves as 1

2x2 in
the neighborhood of 0, therefore,

lim
α→0

σ∗
ij(α) = 0

and

lim
α→0

log
(

1 −
σ∗

ij
2(α)

σ2

i
σ2

j

)

α
= −

1

σ2
i σ2

j

lim
α→0

σ∗
ij

2(α)

α
= 0,



showing that FMF (m, σ) is a tight upper bound.
As α tends to infinity, we have

lim
α→∞

(

1 + (2αRij)
2σ2

i σ2
j

)1/2
− 1

2α
= |Rij |σiσj

and

lim
α→∞

1

α
log

(

(

1 + (2αRij)
2σ2

i σj
2
)1/2

− 1

(2αRij)2σ2
i σ2

j

)

= 0,

yielding

lim
α→∞

Fα(m, {σ∗
ij(α)}, σ) = FMF (m, σ) −

1

2
σ

T |R|σ.

�

Let λmax(|R|) be the largest eigenvalue of |R|. Ana-
lyzing the boundedness of the lower bound, we arrive
at the following theorem.

Theorem For the fractional Bethe free energy in (6)
corresponding to a connected Gaussian network, the
following statements hold

(1) if λmax(|R|) < 1, then Fα is bounded from below
for all α > 0,

(2) if λmax(|R|) > 1, then Fα is unbounded from be-
low for all α > 0,

(3) if λmax(|R|) = 1 then Fα is bounded from below
if and only if 1

2

∑

i

∑

n(i,j)

1
αij

≥ N.

Proof: Since in Fα there is no interaction between the
parameters m and Σ and the term depending on m

is bounded from below due to the positive definiteness
of J, we can simply neglect this term when analyzing
the boundedness of Fα. Let us write out in detail the
lower bound of the fractional Bethe free energies in the
form

FMF (m, σ) −
1

2
σ

T |R|σ =
1

2
mTJ−1m − hT m

+
1

2
σ

T (I − |R|)σ −
∑

k

log(σk) + C, (9)

Statement (1): The condition λmax(|R|) < 1 implies
that I − |R| is positive definite. Now, log(x) ≤ x − 1,
thus 1

2σ
T (I − |R|)σ − 1T log(σ) ≥ 1

2σ
T (I − |R|)σ −

1T
σ + N . The latter is bounded from below and so

it follows that (9) is bounded from below as well. Ac-
cording to the Lemma, boundedness of (9) implies that
all fractional Bethe free energies are bounded from be-
low.

Statement (2): Since we assumed that the Gaus-
sian network is connected and undirected, it fol-
lows that |R| is irreducible (e.g., Horn and John-
son, 2005). According to the Frobenius-Perron the-
ory of non-negative matrices (e.g., Horn and John-
son, 2005), the non-negative and irreducible ma-
trix |R| has a simple maximal eigenvalue λmax(|R|)
and all elements of the eigenvector umax correspond-
ing to it are positive. Let us take the fractional
Bethe free energy and analyze its behavior when
σ = tumax and t → ∞. Since for large val-

ues of t we have
(

1 + (2αijRij)
2(ui

maxuj
max)2t4

)1/2
≃

2αij |Rij |ui
maxuj

maxt2, the sum of the second and third
term in (8) boils down to (1 − λmax(|R|))t2 and this
term dominates over the logarithmic ones as t → ∞.
As a result, the limit is independent of the choice of
αij and it tends to −∞ whenever λmax(|R|) > 1.
Statement (3): If λmax(|R|) = 1, then the only di-
rection in which the quadratic term will not dom-
inate is σ = tumax. Therefore, we have to an-
alyze the behavior of the logarithmic terms in (8)
when t → ∞. For large t-s these terms behave

as

(

1
2

∑

i

∑

n(i,j)

1
αij

− N

)

log(t). For this reason, the

boundedness of F c
α
—and thus of Fα—depends on the

condition in statement (3). �

It was shown by Malioutov et al. (2006) that the condi-
tion λmax(|R|) < 1 is an equivalent condition of pair-
wise normalizability. Therefore, pairwise normalizabil-
ity is not only a sufficient condition for the message
passing algorithm to converge, but it is also a neces-
sary condition for the fractional Gaussian Bethe free
energies to be bounded.

Example In the case of models with K–regular ad-
jacency matrix (non-zero entries of R) and equal in-
teraction weights Rij = r, the maximal eigenvalue
of |R| is λmax(|R|) = Kr and the eigenvector cor-
responding to this eigenvalue is 1. (We define 1 as the
vector that has all its elements equal to 1.) Verify-
ing the stationary point conditions, it turns out that
for some choice of r and α there exists a local min-
imum which is symmetrical, that is it lies in the di-
rection 1. One can show that when the model is not
pairwise normalizable (Kr > 1), the critical r below
which the fractional Bethe free energy possesses this
local minimum is rc(K, α) = 1/2

√

α(K − α) and for
any valid r the critical α below which the fractional
Bethe free energies possesses this local minimum is

αc(K, r) = 1
2K

(

1 −
√

1 − 1/(Kr)2
)

. These results

are illustrated in Figure 1. (Note that for 2–regular
graphs, all valid models are pairwise normalizable and
possess a unique global minimum.) �

For K–regular graphs convexity of the fractional Bethe
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Figure 1: Visualizing critical parameters for a symmetric K-regular Gaussian model with Rij = r. Plots in
the left panel correspond to the constrained fractional Bethe free energies F c

α in the direction 1 for an 8 node
4–regular Gaussian model with r=0.27 (Kr > 1) and varying α. Plots in the right panel correspond to the
constrained Bethe free energies F c

1 in the direction 1 for an 8 node 4–regular Gaussian model with varying r.
Here, rvalid is the supremum of r–s for which the model is valid—J is positive definite.

free energy in terms of {qij , qk} requires α ≥ K, a
much stronger condition than α ≥ αc(K, r). Thus, if
we choose α sufficiently large such that the Bethe free
energy is guaranteed to have a unique global minimum,
this minimum is unbounded.

4 Experiments

We implemented both direct minimization and frac-
tional message passing and analyzed their behavior for
different values of λmax(|R|). For reasons of simplic-
ity we set all αij equal. The results are summarized
in Figure 2. Note that there is a good correspondence
between the behavior of the fractional Bethe free ener-
gies in the direction of the eigenvalue corresponding to
λmax(|R|) and the convergence of the Newton method.
The Newton method was started from varying initial
points. We experienced that when λmax(|R|) > 1 and
setting the initial value to tumax , the algorithm did
not converge for high values of t. This can be ex-
plained by the plots in Figure 2: for high values of
t the initial point is not in the convergence region of
the local minimum. For the fractional message pass-
ing algorithm we used two types of initialization: (1)
when λmax(|R|) < 1 we set Ψij such that they are all
normalizable and set initial messages to 1, (2) when
λmax(|R|) ≥ 1, we used a symmetric partitioning of p
into Ψij-s —symmetric partitioning of the diagonal el-
ements of J—and set messages to identical values such
that in the first step of the algorithm all approximate
marginals become normalizable.

We experienced a behavior similar to that described

by Welling and Teh (2001) for standard message pass-
ing, namely fractional message passing and direct min-
imization either both converge or both fail to con-
verge. Our experiments in combination with the The-
orem show that when λmax(|R|) > 1 standard mes-
sage passing at best converges to a local minimum of
the Bethe free energy. If standard message passing
fails to converge, one can decrease α and search for a
stationary point—preferably a local minimum—of the
corresponding fractional free energy.

It can be seen from the results in the right panels of
Figure 1 and 2, that when the model is no longer pair-
wise normalizable, the local minimum and not the un-
bounded global minimum is the natural continuation
of the (bounded) global minimum for pairwise normal-
izable models. This explains why the quality of the ap-
proximation at the local minimum for models that are
not pairwise normalizable is still comparable to that at
the global minimum for models that are pairwise nor-
malizable. Note that when the model is pairwise nor-
malizable both the upper and lower bounds are convex
in t. This may be obscured by the use of logarithmic
axes.

5 Conclusions and future research

As we have seen, FMF and FMF − 1
2σ

T |R|σ provide
tight upper and lower bounds for the Gaussian frac-
tional Bethe free energies. It turns out that pairwise
normalizability (see Malioutov et al., 2006) is not only
a sufficient condition for the message passing algorithm
to converge, but it is also a necessary condition for the
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Figure 2: Left panels show the constrained fractional Bethe free energies of an 8 node Gaussian network in the
direction of the eigenvector corresponding to λmax(|R|) for λmax(|R|) = 0.9 (top) and λmax(|R|) = 1.1 (bottom).
The thick lines are the functions FMF (dashed), FB (dashed dotted) and the lower bound FMF − 1

2σT |R|σ
(continuous). The thin lines are the constrained α-fractional free energies F c

α for α ∈ [10−2, 102]. Center panels
show the final function values after the convergence of the Newton method. Right panels show the || · ||2 error
in approximation for the single node standard deviations σ. Missing values indicate non-convergence.

Gaussian fractional Bethe free energies to be bounded
from below.

If the model is pairwise normalizable, then the lower
bound is bounded from below, therefore, both direct
minimization and fractional message passing are con-
verging for any choice of α > 0. Experiments show
that regardless of the initialization, they converge to
the same minimum. This suggests that in the pair-
wise normalizable case, fractional Bethe free energies
possess a unique global minimum.

If the model is not pairwise normalizable, then none of
the fractional Bethe free energies is bounded from be-
low. However, experiments show that there is always
a range of α values for which both direct minimization
and fractional message passing converge. By decreas-
ing α towards zero, one gets closer to the mean field
energy and a local minimum to which the minimiza-
tion algorithms can converge may appear.

As mentioned in Section 2, αij–s correspond to using
local αij divergences when applying power expectation
propagation with a fully factorized approximating dis-
tribution. Several papers on continuous models (e.g.,
Minka, 2004; Qi et al., 2005) report that when expec-
tation propagation does not converge, applying power
expectation propagation with α < 1 helps to achieve

convergence. In the case of the problem addressed in
this paper this behavior can be explained by the obser-
vation that small α–s make local minima more likely to
occur and thus prevents the covariance matrices from
becoming indefinite or even non positive definite.

Wainwright et al. (2003) propose to convexify the
Bethe free energy by choosing αij–s sufficiently large
such that the fractional Bethe free energy has a unique
global minimum. This strategy appears to fail for
Gaussian models. Convexification makes the possi-
bly useful local minima dissapear, leaving just the un-
bounded global minimum. In the case of the more
general hybrid models the use of the convexification is
still unclear.

Note that the example in the previous section dis-
proves the conjecture in Welling and Teh (2001): even
when the Bethe free energy is not bounded from below,
it can possess a local minimum to which the minimiza-
tion algorithms converge.

Our future goals are to find sufficient conditions for
the Bethe free energy to possess local minima and to
derive algorithms that are guaranteed to find those.



Acknowledgements

We would like to thank Jason K. Johnson for suggest-
ing us to try a case study of models with K–regular
adjacency matrix and equal interaction weights, and
sharing his ideas about the the walk–sum analysis of
these models. The authors would like to acknowledge
the support from the Vici grant 639.023.604 (second
author) and Marie Curie EST program MEST-CT-
2004-514510 (first author).

References

T. Heskes. Stable fixed points of loopy belief prop-
agation are minima of the Bethe free energy. In
S. Becker, S. Thrun, and K. Obermayer, editors,
Advances in Neural Information Processing Systems
15, pages 359–366, Cambridge, MA, 2003. The MIT
Press.

T. Heskes, M. Opper, W. Wiegerinck, O. Winther,
and O. Zoeter. Approximate inference techniques
with expectation constraints. Journal of Statistical
Mechanics: Theory and Experiment, 2005:P11015,
2005. URL http://www.iop.org/EJ/jstat/.

R. A. Horn and C.R. Johnson. Matrix Analysis. Cam-
bridge University Press, Cambridge, UK, 2005.

T. Jaakkola. Tutorial on variational approximation
methods. In M. Opper and D. Saad, editors, Ad-
vanced mean field methods: theory and practice,
pages 129–160, Cambridge, MA, 2000. The MIT
Press.

D. Malioutov, J. Johnson, and A. Willsky. Walk-sums
and belief propagation in Gaussian graphical mod-
els. Journal of Machine Learning Research, 7:2031–
2064, October 2006.

T. Minka. Power EP. Technical report, Microsoft
Research Ltd., Cambridge, UK, MSR-TR-2004-149,
October 2004.

T. Minka. Divergence measures and message passing.
Technical report, Microsoft Research Ltd., Cam-
bridge, UK, MSR-TR-2005-173, December 2005.

K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief
propagation for approximate inference: An empiri-
cal study. In Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence, pages 467–
475, San Francisco, CA, 1999. Morgan Kaufmann
Publishers.

J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan
Kaufman Publishers, San Mateo, CA, 1988.

Y. Qi, M. Szummer, and T. Minka. Bayesian
conditional random fields. In Robert G. Cow-
ell and Zoubin Ghahramani, editors, AISTATS05,

pages 269–276. Society for Artificial Intelligence
and Statistics, 2005. (Available electronically at
http://www.gatsby.ucl.ac.uk/aistats/).

P. Rusmevichientong and B. Van Roy. An analysis of
belief propagation on the turbo decoding graph with
Gaussian densities. IEEE Transactions on Informa-
tion Theory, 47:745–765, 2001.

M. Wainwright, T. Jaakkola, and A. Willsky.
Tree-reweighted belief propagation algorithms and
approximate ML estimation via pseudo-moment
matching. In C. Bishop and B. Frey, editors, Pro-
ceedings of the Ninth International Workshop on Ar-
tificial Intelligence and Statistics. Society for Artifi-
cial Intelligence and Statistics, 2003.

Y. Weiss and W. T. Freeman. Correctness of belief
propagation in Gaussian graphical models of arbi-
trary topology. Neural Computation, 13(10):2173–
2200, 2001.

M. Welling and Y. W. Teh. Belief optimization for
binary networks: a stable alternative to loopy belief
propagation. In J. S. Breese and D. Koller, editors,
Proceedings of the 17th Conference in Uncertainty in
Artificial Intelligence, pages 554–561. Morgan Kauf-
mann Publishers, 2001.

W. Wiegerinck and T. Heskes. Fractional belief prop-
agation. In S. Becker, S. Thrun, and K. Obermayer,
editors, Advances in Neural Information Processing
Systems 15, pages 438–445, Cambridge, MA, 2003.
The MIT Press.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Gen-
eralized belief propagation. In Advances in Neural
Information Processing Systems 12, pages 689–695,
Cambridge, MA, 2000. The MIT Press.

O. Zoeter and T. Heskes. Change point problems
in linear dynamical systems. Journal of Machine
Learning Research, 6:1999–2026, 2005.


