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Abstract

Assume that cause-effect relationships be-
tween variables can be described as a directed
acyclic graph and the corresponding linear
structural equation model．We consider the
identification problem of total effects in the
presence of latent variables and selection bias
between a treatment variable and a response
variable. Pearl and his colleagues provided
the back door criterion, the front door cri-
terion (Pearl, 2000) and the conditional in-
strumental variable method (Brito and Pearl,
2002) as identifiability criteria for total ef-
fects in the presence of latent variables, but
not in the presence of selection bias. In or-
der to solve this problem, we propose new
graphical identifiability criteria for total ef-
fects based on the identifiable factor models.
The results of this paper are useful to iden-
tify total effects in observational studies and
provide a new viewpoint to the identification
conditions of factor models.

1 INTRODUCTION

The evaluation of total effects from observational stud-
ies is one of the central aims in many fields of prac-
tical science. In observational studies, there may ex-
ist latent variables, for example, a variable measured
with error, or an unmeasured confounder. On the
other hand, observational data may suffer from selec-
tion bias, if a sample is selected according to some
selection criteria. The existence of latent variables
and selection bias hinder the evaluation of total effects
from observational data. Many researchers have pro-
vided approaches to deal with latent variables in ob-
servational studies (Brito and Pearl, 2002; Pearl, 2000;
Stanghellini, 2004; Stanghellini and Wermuth, 2005;
Tian, 2004). Recently, selection bias has attracted at-

tention from epidemiologists (Greenland, 2003; Her-
nan et al., 2004), AI researchers (Cooper, 2000) and
statisticians (Stanghellini and Wermuth, 2005; Kuroki
and Cai, 2006).

In observational studies, it is not rare that both la-
tent variables and selection bias exist in one dataset.
However, when we examine current results on latent
variables and selection bias, we find that most of them
deal with either latent variables or selection bias sepa-
rately, only a few of them take into account these two
situations at the same time. In the presence of latent
common causes between a treatment and a response,
Pearl and his colleagues provided the back door crite-
rion, the front door criterion (Pearl, 2000) and the con-
ditional instrumental variable (IV) method (Brito and
Pearl, 2002) as identifiability criteria for total effects
in the framework of linear structural equation models.
In addition, in the framework of nonparametric struc-
tural equation models, Shpitser and Pearl (2006) and
Huang and Valtorta (2006) solved the identification
problems of causal effects and provided the complete
algorithms to derive the causal effects in the presence
of latent variables. In general, these criteria are based
on the idea that some observed variables which have no
direct association with the latent common causes are
used to evaluate the total effects. However, in many
practical studies, such latent variables may have an ef-
fect on some important observed variables to be used
to identify total effects. Under such situations, it is dif-
ficult to apply these identification criteria to evaluate
the total effects.

On the other hand, when both confounding bias and
selection bias may be at work, Spirtes et al. (1999)
described the FCI algorithm (Spirtes et al., 2000) as
a method to test whether there is a causal path from
one variable to another. In addition, Richardson and
Spirtes (2002) introduced ancestral graph models as a
graphical model in the presence of latent variables and
selection bias, and clarified some properties regarding
the ancestral graph models. However, these studies fo-



cused on the specification problem of causal structure,
but not on the identification problem of total effects.

In this paper, we assume that cause-effect relation-
ships between variables can be described as a directed
acyclic graph and the corresponding linear structural
equation model．Then, we consider the problem of
identifying total effects from observational studies with
latent variables and selection bias between a treatment
variable and a response variable．Based on the the-
ory of the identifiable factor model, we propose new
graphical identifiability criteria to identify total effects
under situations where it is difficult to use the identi-
fiability criteria provided by Pearl and his colleagues
and Huang and Valtorta (2006). Different from the
identification problem of the factor models, it should
be noted that we are interested in evaluating the to-
tal effects but not the whole causal model. That is,
it will be shown in section 3 that there are some situ-
ations where the total effect is identifiable even when
the whole causal model is not identifiable. These new
criteria are useful to identify total effects in observa-
tional studies, and they also provide a new viewpoint
to the identification conditions of factor models.

2 PRELIMINARIES

In statistical causal analysis, a directed acyclic graph
that represents cause-effect relationships is called a
path diagram. A directed graph is a pair G = (V , E),
where V is a finite set of vertices and the set E of
arrows is a subset of the set V ×V of ordered pairs of
distinct vertices. For graph theoretic terminology used
in this paper, see, for example, Lauritzen (1996).

Suppose a directed acyclic graph G = (V , E) with a
set V = {V1, V2, · · · , Vn} of variables is given. The
graph G is called a path diagram, when each child-
parent family in the graph G represents a linear struc-
tural equation model

Vi =
∑

Vj∈pa(Vi)

αvivj Vj + εvi i = 1, . . . , n, (1)

where pa (Vi) is a set of parents of Vi. In this paper, if
there is no special statement, εv1 , . . . , εvn are assumed
to be independent and normally distributed with mean
0. In addition, αvivj (�=0) is called a path coefficient.

The conditional independence induced from a set of
equations (1) can be obtained from the graph G ac-
cording to the d-separation (Pearl, 2000), that is, when
Z d-separates X from Y in a path diagram G, X is
conditionally independent of Y given Z in the corre-
sponding linear structural equation model (e.g. Spirtes
et al., 2000). In this paper, it is assumed that a path
diagram G and the corresponding joint distribution

are faithful to each other; that is, the conditional in-
dependence relationship in the joint distribution is also
reflected in G, and vice versa (Spirtes et al., 2000).

Here, we denote some notations for further discus-
sion. Let σxy·zs∗ = cov(X, Y |Z = z, a≤S≤b) and
σyy·zs∗ = var(Y |Z = z, a≤S≤b) and βyx·zs∗ =
σxy·zs∗/σxx·zs∗(s∗ indicates that each element of s is
conditioned by the interval). For disjoint sets X , Y ,
Z and S, let Σxy·zs∗ be a conditional covariance ma-
trix of X and Y given Z = z and a≤S≤b. We use
the same notations in the case where either X or Y
is univariate. In addition, let Σyy·xs∗ be a conditional
covariance matrix of Y given X = x and a≤S≤b.
When S or Z is an empty set, they are omitted from
these arguments. Furthermore, let Byx·z = Σyx·zΣ−1

xx·z
be the regression coefficient matrix of x in the regres-
sion model of Y on x∪z. The similar notations are
used for other parameters.

A total effect τyx of X on Y is defined as the total sum
of the products of the path coefficients on the sequence
of arrows along all directed paths from X to Y . In this
paper, it is assumed that the readers are familiar with
the identifiability criteria for total effects, for exam-
ple, the back door criterion, the front door criterion
(Pearl, 2000) and the IV method (Bowden and Turk-
ington, 1984; Brito and Pearl, 2000). When a total
effect can be determined uniquely from the covariance
parameters of observed variables, it is said to be iden-
tifiable, that is, it can be estimated consistently.

When Z d-separates X from Y in a path diagram G,
then both σxy·z = βyx·z = 0 and Byz·x = Byz hold
true (e.g. Spirtes et al., 2000).

3 IDENTIFICATION OF TOTAL
EFFECTS

3.1 LEMMA

To derive new graphical identifiability criteria for total
effects, we first introduce the following lemmas:

LEMMA 1

When {X, Y } ∪ S ∪ T are normally distributed,
βyx·s = βyx·st + Byt·xsBtx·s, (2)

σyy·xs = σyy·x − Bys·xΣss·xB′
ys·x. (3)

�

Equations (2) and (3) are the results of Cochran (1938)
and Whittaker (1990), respectively. In addition, the
following lemma is given by Wermuth (1989).

LEMMA 2

When {X, Y }∪S∪T are normally distributed, if T is
conditionally independent of X given S or Y is condi-



tionally independent of T given {X}∪S, then βyx·st =
βyx·s holds true. In addition, if T is conditionally in-
dependent of Y given S∪{X}, then σyy·xst = σyy·xs

holds true. �

3.2 DUALITY BETWEEN LATENT
VARIABLES AND SELECTION BIAS

In this section, we consider two different situations:
one is a situation where a latent variable exists shown
in Fig.1 (a); the other is a situation where selec-
tion bias exists shown in Fig.1 (b), where X =
(X1, · · · , Xp) is a set of observed variables, and U is a
latent variable which has an effect on X. In addition,
Fig.1(b) indicates that the data have been observed ac-
cording to the selection criterion a≤S≤b (both a and
b are possible values of S).

Regarding Fig.1 (a), the corresponding linear struc-
tural equation model can be provided as

(a): Latent Variable Case (b): Selection Bias Case

Fig.1: Graphical representation

Xi = αxiuU + εxi , i = 1, . . . , p, (4)

which is called a single factor model (with correlated
errors). Then, the covariance matrix of X can be pro-
vided as

Σxx = Σxx·u + BxuB′
xuσuu

= Σxx·u + Ω(u)Ω(u)′, (5)

where Ω(u) is a p dimensional vector, which is called a
factor loading in this paper. Here, it should be noted
that Σxx can be observed but σuu, Σxx·u or Σxu can
not be observed.

On the other hand, regarding the Σ−1
xx , by the

Sherman-Morrison-Woodbury formula for matrix in-
version (Rao, 1972), the inverse matrix of Σxx can be
represented as the form of

Σ−1
xx = Σ−1

xx·u − Λ(u)Λ(u)′, (6)

where Λ(u) is a p dimensional vector.

Regarding Fig.1 (b), the corresponding linear struc-
tural equation model can be provided as

S =
p∑

j=1

αsixj Xj + εsi . (7)

Then, the covariance matrix of the selected population
can be provided as

Σxx·s∗ = Σxx − BxsB
′
xs(σss − σs∗s∗)

= Σxx − Ω(s)Ω(s)′, (8)

where Ω(s) is a p dimensional vector (Johnson and
Kotz, 1972). Here, σ̌ss = σss − σss·s∗≥0 since σss·s∗ =
var(S|a≤S < ≤b) is the variance of a doubly-truncated
normal distribution. In the selected population, it
should be noted that Σxx·s∗ can be observed but Σxx,
σ̌ss or Bxs can not be observed.

On the other hand, regarding Σ−1
xx·s∗ , we can obtain

Σ−1
xx·s = Σ−1

xx + Λ(s)Λ(s)′, (9)

where Λ(s) is a p dimensional vector, which is also
called a factor loading in this paper.

In addition, when we discuss latent variable problems
and selection bias problems based on conditional dis-
tribution given Z, the following equations hold true:

Σxx·z = Σxx·uz + Bxu·zB′
xu·zσuu·z

and
Σxx·zs∗ = Σxx·z − Bxs·zB′

xs·z ˇσss·z,

where σ̌ss·z = σss·z − σss·zs∗≥0.

From these equations, we can understand that equa-
tions (5) and (6) take the same form as equations (9)
and (8), respectively. In this paper, such relationships
are called the duality between latent variables and se-
lection bias. By using the dual relationships, we will
show below that the identification conditions of factor
models are useful to solve the selection bias problems.

Let Gx·u
cov be the undirected graph obtained by con-

necting any two variables Xi and Xj (i�=j) in X by
an undirected edge only if the conditional covariance
of Xi and Xj given U is not equal to zero. Let Gx·u

con be
the undirected graph obtained by connecting any two
variables Xi and Xj (i�=j) in X by an undirected edge
only if the conditional covariance of Xi and Xj given
{U} ∪ X\{Xi, Xj} is not equal to zero. When we are
concern with the covariance structure of X not condi-
tioning on U , U are omitted from these arguments.

Then, Stanghellini and Wermuth (2005) provided the
following lemma.

LEMMA 3

Equations (5)( or equation (6)) can be solved with re-
spect to Σxx·u and Ω(u)Ω(u)′ (or Σ−1

xx·u and Λ(u)Λ(u)′)
if and only if one of the following conditions holds true:

(1) Ω(u)�=0 and the structure of zeros in Σxx·u is such
that every connectivity component of the complemen-
tary graph of Gx·u

cov contains an odd cycle;



(2) Λ(u)�=0 and the structure of zeros in Σ−1
xx·u is such

that every connectivity component of the complemen-
tary graph of Gx·u

con contains an odd cycle. �

The similar results hold true for equations (8) and (9)

3.3 IDENTIFIABILITY CRITERION:
LATENT VARIABLE CASE

It is well known that the graphical identifiability cri-
teria proposed by Pearl and his colleagues are useful
to evaluate total effects. However, Stanghellini (2004)
pointed out that there are some situations where these
identifiability criteria can not be applied to evaluate
total effects. As an example, we consider the problem
of evaluating the total effect τyx of X on Y based on
the path diagram shown in Fig. 2, where U is an un-
observed variable and {X, Y, Z, W} is a set of observed
variables．

Fig. 2: Path Diagram (1)

In Fig. 2, since U is an unobserved variable，we can
not apply the back door criterion relative to (X, Y ) to
evaluate the total effect τyx. In addition，since we can
not observe a set of variables that satisfies the front
door criterion relative to (X, Y ), the front door cri-
terion can not be applied, either. Furthermore, since
there are arrows pointing from the unobserved vari-
able U to every observed variable，the conditional IV
method can not be applied．Under such a situation,
it is necessary to propose new identifiability criteria
different from current results.

When we consider the linear structural equation model
corresponding to the directed acyclic graph obtained
by deleting from Fig. 2 an arrow pointing from W
to Y (i.e., αyw = 0)，since we can obtain the same
covariance structure as the identifiable single factor
model (e.g. Stanghellini, 1997), the total effect τyx

is identifiable (Stanghellini, 2004)．However，in Fig.
2, since there is an arrow pointing from W to Y，the
number of observed covariances is less than that of the
path coefficients, which indicates that the whole linear
structural equation model can not be identifiable even
if the variance information on U is known (e.g. σuu =
1). However, the path coefficient αyx is identifiable.
This result is summarized as follows (Kuroki, 2007):

THEOREM 1

Suppose that a set {X, Y, W,Z}∪T of observed vari-
ables and an unobserved variable U satisfy the follow-

ing conditions in a directed acyclic graph G:

(1) {X, U}∪T d-separates Y from Z,

(2) {U}∪T d-separates {X, Z} from W , and

(3) {X}∪T does not d-separate Z from W .

When X is an nondescendant of Y , if {U}∪T satisfies
the back door criterion relative to (X, Y ), then the
total effect τyx of X on Y is identifiable and is given
by the formula

τyx =
σxw·tσyz·t − σzw·tσxy·t
σxw·tσzx·t − σzw·tσxx·t

. (10)

�

PROOF OF THEOREM 1

Since {U}∪T satisfies the back door criterion relative
to (X, Y )，τyx = βyx·ut can be obtained. In addition,
from Lemma 1, the following can be derived:

σyz·t = βyz·xutσzz·t + βyx·uztσxz·t + βyu·xztσuz·t,
σxy·t = βyx·utσxx·t + βyu·xtσux·t,
σxz·t = βzx·twσxx·t + βzw·txσwx·t,
σzw·t = βzw·xtσww·t + βzx·twσxw·t.

From condition (1)，since Y is conditionally indepen-
dent of Z given {X, U}∪T , βyz·xut = 0 can be ob-
tained. In addition，by using Lemma 2，we can obtain
βyx·uzt = βyx·ut and βyu·xzt = βyu·xt．Noting these re-
sults, we have

σyz·t = βyx·utσxz·t + βyu·xtσuz·t.

Then, we can obtain

σxw·tσyz·t − σzw·tσxy·t
= βyx·ut(σxw·tσxz·t − σzw·tσxx·t)

+βyu·xt(σxw·tσuz·t − σzw·tσux·t).

Here，since βzw·tx �=0 holds true from condition (3) and
the faithful condition, from Lemma 1 and

σxw·t = βxw·utσww·t + βxu·twσuw·t,
σzw·t = βzw·utσww·t + βzu·twσuw·t,

we can obtain

σxw·tσxz·t − σzw·tσxx·t
= −βzw·txσww·t(σxx·t − βxw·tσwx·t)
= −βzw·txσww·tσxx·tw �= 0.

Thus，by noting that βxw·ut = βzw·ut = 0 can be ob-
tained from condition (2), we have

σxw·tσuz·t − σzw·tσux·t = 0.

By noting these results, equation (10) can be derived.
Q.E.D.



It should be noted that the assumption of the variance
of an unobserved variable U is not required in Theorem
1, which is different from the identification condition
of factor models (e.g. Stanghellini, 1997).

In the case where there are more than one unmeasured
confounder, Kuroki (2007) pointed out that the identi-
fication condition for multi-factor models (e.g.Grzebyk
et al., 2004) is also useful to identify the total effects.
The results can be summarized as follows.

THEOREM 2

Let X = {X1, · · · , Xp} be a set of observed variables
and U = {U1, · · · , Uk} a set of unobserved variables in
the path diagram G. When a linear structural equa-
tion model obtained by conditioning on {U1, · · · , Ui−1}
and marginalizing on {Ui+1, · · · , Uk} is regarded as a
single factor model of Ui, if the single factor model
of Ui is identifiable for any i(1≤i≤k)，Σxx·u is also
identifiable.

PROOF OF THEOREM 2

First，the covariance matrix corresponding to the lin-
ear structural equation model which is marginalized
on {U2, · · · , Uk} is given by

Σxx = Σxx·u1 +
1

σu1u1

Σxu1Σ
′
xu1

.

Then, Σxx·u1 is identifiable from the assumption．

Here, we assume that Σxx·u1···ui−1 is identifiable for
i(≥2). Then, the covariance matrix correspond-
ing to the linear structural equation model which is
marginalized on {Ui+1, · · · , Uk} and conditioned on
{U1, · · · , Ui−1} is given by

Σxx·u1···ui−1

= Σxx·u1···ui +
1

σuiui·u1···ui−1

Σxui·u1···ui−1Σ
′
xui·u1···ui−1

.

Thus, Σxx·u1···ui is identifiable from the assumption．
By repeating this procedure, the result can be ob-
tained. QED

When Theorem 2 holds true for {X, Y }∪Z⊂X，if
Z∪U satisfies the back door criterion relative to
(X, Y )，the total effect τyx is identifiable．

As an example, we consider the problem of evaluating
total effect τyx in the path diagram shown in Fig. 3.
Although we can not apply the identifiability criteria
proposed by Pearl and his colleagues, since Theorem
2 holds true, the total effect τyx is identifiable and is
given by the formula

τyx =
σyz1σz2w1 − σyw1σz1z2

σxz1σz2w1 − σxw1σz1z2

.

It is interesting that the above equation does not in-
clude the covariance parameter about W2.

Fig. 3: Path Diagram (2)

3.4 IDENTIFAIBLITY CRITERION:
SELECTION BIAS CASE

Selection bias is another case that the identifiability
criteria proposed by Pearl and his colleagues can not
be applied to evaluate total effects. Consider the iden-
tification problem for the total effect τyx based on the
path diagram shown in Fig. 4, which indicates that
sample selection is conducted according to a criterion
a≤S≤b. Then, S is called a selection variable. In ad-
dition, {X, Y, Z, W} is a set of observed variables.

Fig. 4: Path Diagram (3)

In Fig. 4, since a sample is selected from the popula-
tion using such a criterion as a≤S≤b, the statistical de-
pendencies among {X, Y, Z, W} are biased. Thus, we
can not apply any identifiability criteria proposed by
Pearl and his colleagues to identify the total effect. On
the other hand, when we consider the linear structural
equation model corresponding to the directed acyclic
graph obtained by deleting from Fig. 4 an arrow point-
ing from Y to W (i.e. αwy = 0), since the number of the
observed covariances is equal to that of the path coef-
ficients, the total effect τyx can be evaluated through
the observed covariances. However, in Fig. 4, since the
number of the observed covariances is less than that of
the path coefficients, the whole linear structural equa-
tion model is not identifiable. But, the total effect τyx

is identifiable through the following theorem.

THEOREM 3

Suppose a set {X, Y, W,Z}∪T of observed variables
and a selection variable S satisfy the following condi-
tions in a directed acyclic graph G:

(1) {X}∪T d-separates Y from Z,

(2) T d-separates {X, Z} from {W},
(3) {X}∪T does not d-separate S from Z, and



(4) T does not d-separate S from W .

When X is a nondescendant of Y , if T satisfies the
back door criterion relative to (X, Y ), then the total
effect τyx of X on Y is identifiable and is given by the
formula

τyx =
σxw·ts∗σyz·ts∗ − σzw·ts∗σxy·ts∗

σxw·ts∗σzx·ts∗ − σzw·ts∗σxx·ts∗
. (11)

�

PROOF OF THEOREM 3

Since T satisfies the back door criterion relative to
(X, Y )，τyx = βyx·t can be obtained. In addition, from
Lemma 1 and condition (2),

σyz·ts∗ = σyz·xt + βyx·tzσxz·t − βys·tβzs·tσ̌ss·t
σxy·ts∗ = σyx·t − βxs·tβys·tσ̌ss·t,
σzx·ts∗ = σzx·t − βzs·tβxs·tσ̌ss·t,
σzw·ts∗ = −βzs·tβws·tσ̌ss·t,
σxw·ts∗ = −βxs·tβws·tσ̌ss·t.

From conditions (1)，since Y is conditionally inde-
pendent of Z given {X}∪T，σyz·xt = 0 can be ob-
tained. In addition，from Lemma 2，we can obtain
βyx·zt = βyx·t．Using these results, we have

σyz·ts∗ = βyx·tσxz·t − βys·tβzs·tσ̌ss·t.

Thus, we can obtain

σxw·ts∗σyz·ts∗ − σzw·ts∗σxy·ts∗

= βyx·tβws·tσ̌ss·tσxx·t(βxs·tβzx·t − βzs·t)
= −βyx·tβws·tσ̌ss·tσxx·tσzs·xt/σss·t.

Here，since βws·tβzs·xt �=0 holds true from conditions
(3) and (4) and the faithful condition, according to
Lemma 1，we can obtain

σxw·ts∗σxz·ts∗ − σzw·ts∗σxx·ts∗

= −βws·tσxx·tσ̌ss·t(βzs·t − βxs·tβzx·t)
= −βws·tσ̌ss·tσxx·tσzs·xt/σss·t.

By noting these results, equation (11) is derived.
Q.E.D.

3.5 IDENTIFAIBLITY CRITERION:
LATENT VARIABLE AND
SELECTION BIAS CASE

Finally, we consider the case where both latent vari-
ables U and selection bias according to a selection cri-
terion a≤S≤b exist. Let X(X, Y ∈X) and T be sets
of observed variables, the steps for judging whether or
not the total effect is identifiable are as follows:

Step 1: Check whether or not the combination of a
subset of X\{X, Y } and U∪T satisfies the back door

criterion relative to (X, Y ). If the answer is affirma-
tive, go to Step 2.

Step 2: By noting that

Σxx·ts∗ = Σxx·t − Bxs·tB′
xs·tσ̌ss·t,

check whether or not the structure of zeros in Σxx·t
(or Σ−1

xx·t) is such that every connectivity component
of the complementary graph of Gx·t

cov (or Gx·t
con) contains

an odd cycle. If the answer is affirmative, since Σxx·t
is identifiable (Stanghellini and Wermuth, 2005), then
go to Step 3.

Step 3: Check whether Theorem 2 holds true for Σxx·t
with regard to U . If the answer is affirmative, since
Σxx·tu is identifiable, then we can evaluate the total
effect τyx of X on Y .

4 APPLICATION

The above results are applicable to analyze the data
from a study about setting up painting conditions of
car bodies, reported by Okuno et al. (1986). The data
was collected with the purpose of setting up the pro-
cess conditions, in order to increase transfer efficiency.
The size of the sample is 38 and the variables of inter-
est, each of which has zero mean and variance one, are
the following:

Painting Condition：Dilution Ratio (X1),
Degree of Viscosity (X2), Painting Temperature (X8)

Spraying Condition：Gun Speed (X3),
Spray Distance (X4), Atomizing Air Pressure (X5),
Pattern Width (X6), Fluid Output (X7)

Environment Condition：Temperature (X9),
Degree of Moisture (X10)

Response: Transfer Efficiency (Y )

Concerning this process, Kuroki et al. (2003) pre-
sented the path diagram shown in Fig. 5 (for the
detail, see Kuroki et al., 2003). Based on the path
diagram, Kuroki et al. (2003) presented the estimated
correlation matrix. We here provide a part of the cor-
relation matrix in Table 1. From Table 1, we assume
that the covariance information on X4 and X10 is not
obtained.

Although X1, · · · , X6 are considered to be controllable
variables in Okuno et al. (1986), X2 and X6 are taken
as treatment variables from controllable variables in
order to evaluate their total effects from nonexperi-
mental data in this paper.

Table 2 shows the selected variables for estimating
total effects. The treatment variables of interest are
listed in the first column. The second column shows



Fig. 5：Path Diagram (Kuroki et al., 2003)

Table 1：Estimated Correlation Matrix (Kuroki et al., 2003)
X1 X2 X5 X6 X8 X9 Y

X1 1.000 −0.736 0.028 −0.042 0.216 0.283 −0.091
X2 −0.736 1.000 −0.063 0.095 −0.684 −0.635 0.326
X5 0.028 −0.063 1.000 0.291 0.076 0.099 −0.277
X6 −0.042 0.095 0.291 1.000 −0.114 −0.149 −0.250
X8 0.216 −0.684 0.076 −0.114 1.000 0.761 −0.493
X9 0.283 −0.635 0.099 −0.149 0.761 1.000 −0.475
Y −0.091 0.326 −0.277 −0.250 −0.493 −0.475 1.000

Table 2：Estimates of Total Effects
treatment covariates total effect

X2 Z = X1,W = X9,T = X8 -0.116
X6 Z = X5,W = X9,T = φ -0.465

sets of covariates used for identifying total effects. The
third columns shows the estimates of total effects.
First, consider a situation that we wish to evaluate
the total effect of X2 on Y . Then, it can be recognized
that the total effect can not be evaluated based on the
back door criterion or the conditional IV method, be-
cause the covariance information on X10 can not be
obtained from Table 2. In addition, since X10 exists
in the back door path between X2 and X7, the front
door criterion can not be applied, either．However，
since a set of variables provided in the second column
satisfies the conditions in Theorem 1, the total effect
can be evaluated by using equation (10)．

Next, consider a situation that we wish to evaluate the
total effect of X6 on Y . Then, it can be recognized that
the total effect can not be evaluated based on the back
door criterion or the conditional IV method, because
the covariance information on X4 can not be obtained
from Table 2. In addition, there is not a set of variables
satisfying the front door criterion．However，since a
set of variables provided in the second column satisfies
the conditions in Theorem 1, the total effect can be
evaluated by using equation (10)．

5 DISCUSSION

This paper discussed identification problems for total
effects based on causal modeling in observational stud-
ies with latent variables and selection bias. In order
to derive the graphical identifiability criteria, we in-
troduced identification condition for factor models to
the identification problem of total effects. In addition,
we pointed out that there are some cases where the
total effect is identifiable even when the identification
condition for factor models does not hold true. Fur-
thermore, we proposed new identification conditions
of total effects, and provided the closed form expres-
sion of the identifiable total effects. The results of this
paper help us judge from graph structure whether the
total effect can be evaluated from observational studies
in the presence of latent variables and selection bias.
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