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Abstract

Decision circuits have been developed to per-
form efficient evaluation of influence dia-
grams [Bhattacharjya and Shachter, 2007],
building on the advances in arithmetic cir-
cuits for belief network inference [Darwiche,
2003]. In the process of model building and
analysis, we perform sensitivity analysis to
understand how the optimal solution changes
in response to changes in the model. When
sequential decision problems under uncer-
tainty are represented as decision circuits, we
can exploit the efficient solution process em-
bodied in the decision circuit and the wealth
of derivative information available to com-
pute the value of information for the un-
certainties in the problem and the effects of
changes to model parameters on the value
and the optimal strategy.

1 INTRODUCTION

Influence diagrams are powerful communication tools
and computational aids for the analysis of practical de-
cision problems [Howard and Matheson, 1984]. Deci-
sion circuits are a recent graphical representation that
have been introduced for the efficient evaluation of in-
fluence diagrams [Bhattacharjya and Shachter, 2007].
In this paper, we show that they are also useful for
efficient sensitivity analysis in influence diagrams.

The phrase sensitivity analysis refers, in general, to
understanding how the output for a system varies as
a result of changes in the system’s input(s). For in-
fluence diagrams, one may be concerned about how
the optimal solution and the certain equivalent (CE)
change with respect to a change in the parameters, i.e.
the probabilities and the utilities, or a change in the
informational assumptions of the problem. There are
many questions that we can use sensitivity analysis to

answer. For example, suppose we vary one parameter
keeping all other parameters constant. For what range
of this varying parameter is the current optimal strat-
egy still optimal? How does the value change as this
parameter is varied? What if the structure of the influ-
ence diagram changes and an uncertainty that would
not have been revealed before we make a decision is
now observed before the first decision is made? These
are only some of the queries on the model that we seek
to answer.

Several issues in sensitivity analysis of Bayesian belief
networks have been studied, using arithmetic circuits
[Darwiche, 2003] for efficient solutions [Chan and Dar-
wiche, 2002; 2004; 2006]. Our work builds on this
body of research. Arithmetic circuits are graphical
representations that have been shown to be efficient
at performing inference on belief networks. Decision
circuits promise similar benefits in the context of se-
quential decision problems.

In sections 2, 3 and 4 we briefly discuss some prelimi-
naries, and review literature on circuits and sensitivity
analysis in influence diagrams. In section 5, we intro-
duce key ideas of performing sensitivity analysis with
decision circuits for normal form influence diagrams,
i.e. influence diagrams involving a single decision node
with no parents. We show how to perform some ba-
sic sensitivity analysis with decision circuits, such as:
plotting the certain equivalent in a one-way sensitivity
analysis, finding the range of a parameter over which
the current optimal stays optimal, and computing the
value of information of uncertainties that are not af-
fected by decisions, using partial derivatives. This
serves as an introduction to section 6, where we present
results for influence diagrams that may contain multi-
ple decision nodes. We show the challenges and neces-
sary modifications from the previous section. Finally,
section 7 describes our conclusions and directions for
future work.
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Figure 1: (a) A belief network; (b) An influence diagram.

2 PRELIMINARIES

We assume that the reader is familiar with graphical
models such as Bayesian belief networks and influence
diagrams (see Shachter (2007) for an overview). Con-
sider the two examples shown in Figure 1. Figure 1a
presents a belief network with two nodes, labelled W
(Weather) and B (Bring umbrella). We are interested
in knowing whether a friend will bring an umbrella,
and we believe that it is easier to model this if we
condition on the weather. Figure 1b shows the in-
fluence diagram for a decision problem in which our
friend chooses whether to bring an umbrella based on
her belief about the weather and her preferences, rep-
resented by the node U (Utility). She will observe
a weather Report (R) before she makes her decision.
We use these examples to demonstrate the concepts in
later sections.

We make a distinction between extensive and normal
form influence diagrams. When there is only one de-
cision node and it has no parents, the diagram is said
to be in normal form [Savage, 1954; Raiffa, 1968]. We
extend that definition to allow for evidence, i.e. that
we observe certain variables taking on specific values.
Alternatively, when decisions are represented by sepa-
rate nodes, or when the diagram has a decision node
with at least one parent, the diagram is said to be
in extensive form. There can be a large number of
strategies in an influence diagram, one for each possi-
ble combination of observed uncertainties and decision
alternatives. Although it is possible to convert any ex-
tensive form influence diagram into a normal form in-
fluence diagram, it may not be efficient to do so. The
influence diagram shown in Figure 1b is in extensive
form because the decision node B has a parent R.

In this paper we assume that the influence diagram
has a single value node, referred to as utility node
U . When making decisions, we choose the alter-
native that maximizes the probability that utility
variable U = 1. The parents of utility node U ,
pa(U), are called the value attributes and we assess
P (U = 1|pa(U)) = u(v(pa(U))) where u(.) is a von
Neumann-Morgenstern utility function [von Neumann
and Morgenstern, 1947] such that U = 1 is at least
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Figure 2: An influence diagram example with numbers.

as good and U = 0 is at least as bad as anything
that can happen, and v(.) characterizes the value of
the attributes in terms of a single numeraire, which
we assume is dollars. Therefore, the certain equivalent
(CE) of an uncertain V , given by u−1(E[u(V )]), rep-
resents the certain payment that the decision-maker
finds indifferent to V . Our sensitivity results will
be expressed in terms of the certain equivalent be-
cause the utility values used for the internal compu-
tations have no intrinsic meaning. We also assume
that the utility function u(.) is strictly increasing and
continuously differentiable. The most common utility
functions are linear, u(v) = av + b, and exponential,
u(v) = −ae−v/ρ + b, where a > 0 and ρ > 0, both
of which allow us to express the value of information
exactly in closed form.

We will present some sensitivity analysis results for ex-
tensive form influence diagrams with the help of the
influence diagram shown in Figure 2. In this exam-
ple, our friend will decide whether to Gather evidence
(G) and purchase a weather report. Her information
gathering decision and the report will be known to
her when she decides whether to bring her umbrella.
If our friend does not gather evidence, the report is
not informative and always states “sunny”. The con-
ditional probability tables and the value function v(.)
are shown in the figure. We assume that the decision
maker has an exponential utility function u(.) with risk
tolerance ρ = .02. The optimal strategy is to gather
evidence and bring the umbrella when the report says
“rainy” and not to bring the umbrella when the re-
port says “sunny”. The CE of the decision problem is
$52.5.

3 ARITHMETIC AND DECISION
CIRCUITS

We review basic concepts regarding arithmetic and de-
cision circuits in this section. Throughout this paper,



variables are denoted by upper-case letters (X) and
their values by lower-case letters (x). A bold-faced
letter indicates a set of variables. If X is a variable
with parents Pa(X), then XPa(X) is called the fam-
ily for variable X. The values of a binary variable X
are denoted x and x̄.

3.1 Arithmetic Circuits

Belief networks are associated with a unique multi-
linear function over two kinds of variables, evidence
indicators and network parameters. An evidence in-
dicator λx is a binary (0-1) variable, with λx = 0
whenever X has been observed taking another value,
i.e. it is observed not to be x. There is an evi-
dence indicator associated with each possible instan-
tiation x of each network variable X. A network pa-
rameter θx|pa(X) represents a conditional probability,
θx|pa(X) = P (x|pa(X)), and there is a network pa-
rameter for each possible instantation xpa(X) of fam-
ily XPa(X). Each term in the multi-linear function
corresponds to one instantiation z of all the network
variables Z, involving the product of all evidence in-
dicators and network parameters consistent with z.
The multi-linear function for a belief network is given
as f =

∑
z

∏
xpa(X)∼z λxθx|pa(X) where the sum is

over every instantiation of all variables in the net-
work and xpa(X) ∼ z represents all families consis-
tent with z. For example, consider the belief network
of Figure 1a. Suppose that W and B are binary vari-
ables with states w and w̄, and b and b̄ respectively.
The multi-linear function for this network is: f =
λwλbθwθb|w+λw̄λbθw̄θb|w̄+λwλb̄θwθb̄|w+λw̄λb̄θw̄θb̄|w̄.

The multi-linear function is a useful construct for an-
swering inference queries in belief networks. By set-
ting the evidence indicators to 0 or 1, we can find the
probability of observing any set of network variables
E. For instance, if we assign evidence to be e = b̄ by
setting λb = 0 and all the other three evidence indica-
tors as 1, the function returns P (b̄) = θwθb̄|w +θw̄θb̄|w̄.
In general, the evidence indicators help in summing
the appropriate entries in the joint probability distri-
bution table for computing the probability of the ev-
idence, P (e). Furthermore, the partial derivatives of
the multi-linear function also provide solutions to sev-
eral common probabilistic inference queries. We list
two lemmas with important relationships between in-
ference queries and the multi-linear function, as proven
in Darwiche (2003):

Lemma 1. For evidence e, we have: P (e) = f(e).

Lemma 2. For every variable X and evidence e such
that X /∈ E, we have: P (x, e) = ∂f

∂λx
(e).

Arithmetic circuits are graphical structures that ef-
ficiently represent, evaluate, and differentiate multi-

linear functions. An arithmetic circuit is a rooted,
directed acyclic graph whose leaf nodes are constants
or variables and all other nodes represent either sum-
mation or multiplication. The size of an arithmetic
circuit is the number of edges it contains.

The value of the multi-linear function is computed at
the root of the circuit by evaluating the circuit in an
upward pass, starting from the leaves and ending at the
root. The result is denoted as f(e), where f(e) = P (e)
(see Lemma 1). We can calculate partial derivatives by
differentiating the circuit through a subsequent down-
ward pass, in which the parents are visited before the
children. The upward and downward passes are also
referred to as sweeps. For further details, please see
Darwiche (2003).

Compact arithmetic circuits have been devised for
belief networks that had previously been intractable
[Darwiche, 2002; Chavira and Darwiche, 2005]. The
circuit is compiled offline, where both the local struc-
ture (in the form of determinism and context-specific
independence) as well as the conditional independen-
cies of the graph at the global level are exploited. Sev-
eral inference queries on the network can then be pro-
cessed online, through subsequent operations on the
compiled arithmetic circuit. Efficient sensitivity anal-
ysis of the belief network is possible with sweeps of the
compiled circuit.

3.2 Decision Circuits

Decision circuits are arithmetic circuits augmented
with maximization nodes. They represent the dynamic
programming function corresponding to a sequential
decision problem. The size of a decision circuit is the
number of edges it contains. Figure 3 presents a de-
cision circuit corresponding to the influence diagram
shown in Figure 1b.

Decision circuits for influence diagrams can be con-
structed in the variable elimination order [Bhattachar-
jya and Shachter, 2007], similar to a construction tech-
nique for arithmetic circuits [Darwiche, 2000]. The
evidence indicator λd for decision D is initialized to
0 only if the alternative d is no longer available to
the decision maker. The network parameter θd|pa(D)

for a decision D is initialized to 1 if the alternative
is conditionally available under scenario pa(D), and 0
otherwise. Once compiled, the decision circuit can be
evaluated in an upward sweep analogous to evaluation
in arithmetic circuits. Decision circuits are evaluated
with evidence e′ = e ∪ {U = 1} when e is observed.
The best outcome U = 1 is also deemed to be observed
since this is an MEU problem and therefore the goal
is to find optimal policies that maximize the probabil-
ity of the best outcome given the evidence. The value



+

max

+

w
λ

w
λ

w
θ

w
θ

*

+ + + +

* * * * * * * *
|u b w

θ

u
λ

u
λ|u b w

θ

|u b w
θ |u b w

θ |u b w
θ

|u b w
θ

|u b w
θ

|u b w
θ

* * * * * * *

+ +

max

+

* * * *

b
λ

b
λ

rb|θ
rb|

θ
rb|

θ
rb|

θ

r
λ

r
λwr|θ wr|

θ
wr|

θ
wr|

θ

Figure 3: Decision circuit for the influence diagram shown
in Figure 1b.

of the root node of the circuit is denoted g(e′). The
optimal strategy is computed on the upward sweep
at the maximization nodes, where the alternative d∗

with the highest value is chosen, breaking ties arbi-
trarily. The network parameter θd|u is set to 0 for all
other alternatives d. The circuit can be differentiated
in a subsequent downward sweep, by treating the max-
imization nodes as summation nodes. Although opti-
mal policies are determined on the upward sweep, the
MEU and CE are calculated also using results from
the downward sweep. Specifically, from Bhattacharjya
and Shachter (2007):

Lemma 3. MEU = g(e′)
∂g
∂λu

(e′)+ ∂g
∂λū

(e′)
.

Lemma 4. For utility function u(.), we have:
CE = u−1 (MEU).

4 SENSITIVITY ANALYSIS IN
INFLUENCE DIAGRAMS

The conditional probabilities in an influence diagram
can be difficult to assess due to the paucity of data,
expert judgments about key uncertainties, the decision
maker’s imprecision regarding preferences, and several
other practical reasons. As a result, it is often benefi-
cial to inspect the change in the outputs of the decision
model based on variations in the inputs of the model.
Such issues fall under the umbrella of sensitivity anal-
ysis.

Sensitivity analysis has been an essential aspect of
decision analysis throughout the field’s development.
Sensitivity analysis aids in identifying the model’s crit-
ical elements, forming the basis for iterative refinement
of the model, and can also be used after the analysis for
defending a particular strategy to the decision maker

[Howard, 1983]. Sensitivity plots displaying the cer-
tain equivalents of different strategies can help iden-
tify the important variables. Sensitivity analysis for
decision problems can be broadly classified in terms of
whether one parameter is varied while others are kept
constant (one-way sensitivity analysis) or when multi-
ple parameters are simultaneously varied (n-way sen-
sitivity analysis). One-way sensitivity analysis throws
light upon the critical model variables whereas n-way
sensitivity analysis provides insights into the general
robustness of the model.

Sensitivity analysis in belief networks explores the sen-
sitivity of inference queries such as the probability of
evidence and conditional marginal probabilities given
the evidence, to the conditional probabilities of the
network [Laskey, 1995; Castillo et al, 1997; Kjaerulff
and van der Gaag, 2000; van der Gaag and Renooij,
2001]. Sensitivity to inference queries using arithmetic
circuits has also been studied [Chan and Darwiche,
2002; 2004] as has the sensitivity of Most Probable Ex-
planations to parameter changes [Chan and Darwiche,
2006]. Our work differs from this line of research in
that it uses decision circuits to determine sensitivity
of the optimal strategy and the certain equivalent to
parameter changes in decision problems.

To perform sensitivity analysis for decision problems,
we will vary the model output with respect to meta-
parameters, similar to Chan and Darwiche (2002) and
Nielsen and Jensen (2003). For a variable X, we ana-
lyze sensitivity to all parameters of the form θx|pa(X)

as linear functions of a meta-parameter τ . For ex-
ample if X is a binary variable with no parents, we
can set θx = τ and θx̄ = 1 − τ . In this paper we
assume that there are K meta-parameters, denoted
τk, k = 1, ...,K, each between 0 and 1, and that these
meta-parameters are drawn explicitly in the decision
circuit, although it is also possible to allow the meta-
parameters to be implicit [Chan and Darwiche, 2002].
We assume that each meta-parameter is associated
with only one variable. This ensures that the root
value of the decision circuit is a piecewise-linear func-
tion of each meta-parameter. This can be extended to
cases where the model inputs are non-linear functions
of the meta-parameters, such as sensitivity to risk tol-
erance.

5 ANALYZING NORMAL FORM
INFLUENCE DIAGRAMS

When there is only one decision node in an influence
diagram and it has no parents, the diagram is said
to be in normal form. We extend this definition to
allow the observation that E = e. We discuss sensitiv-
ity analysis for normal form influence diagrams in this



section.

5.1 Partial derivatives

Consider an influence diagram with a single decision
node D that has no parents. Let X be an arbitrary un-
certain variable, with parents Pa (Note that D can be
a parent of X). The dynamic programming function
corresponding to this normal form influence diagram
is given by g = maxd θdλd

∑
z

∏
x,pa(X)∼z θx|pa(X)λx

where d is an alternative for decision node D. In
normal form, each alternative represents a strat-
egy. Let EUd be the expected utility for strategy
d. Then MEU = maxdEUd, optimal strategy d∗ =
argmaxdEUd and CE = u−1(MEU). We will discuss
many of the normal form sensitivity results using the
following theorem, which outlines the significance of
derivatives of g(e′) and g(e). These are the root val-
ues of the decision circuit evaluated at evidence e′ and
e, respectively.

Theorem 1. If evidence e′ = e ∪ {U = 1} and e are
swept through a decision circuit constructed for a nor-
mal form influence diagram, then for any node v:

(i) ∂EUd
∂v = ∂

∂v

[
∂g(e′)
∂θd

g(e)

]
=

g(e)
∂2g(e′)
∂θd∂v

− ∂g(e)
∂v

∂g(e′)
∂θd

(g(e))2 .

(ii) If MEUPI is the maximal expected utility with per-
fect information on uncertainty X, then: MEUPI =∑
x maxd ∂EUd∂λx

.

(iii) ∂CEd
∂v =

∂EUd
∂v

u′(CEd) .

Proof. (i): On the downward sweep the maximiza-
tion nodes are treated as summation nodes, therefore
g =

∑
d θdλd

∑
z

∏
x,pa(X)∼z θx|pa(X)λx for the down-

ward sweep. Differentiating g with respect to θd and
evaluating at evidence e′ results in P (U = 1, e|d) since
only terms associated with alternative d remain in the
summation. The expected utility of alternative d is
P (U = 1|e, d), therefore EUd = 1

P (e)
∂g(e′)
∂θd

. The re-
sult follows by recognizing that P (e) = g(e) (e is not
responsive to any strategy d), and differentiating with
respect to node v using the quotient rule of differenti-
ation.
(ii): MEUPI =

∑
x P (x|e) maxd P (U = 1|e, x, d)

=
∑
x maxd P (U = 1, x|e, d)

=
∑
x maxd ∂EUd∂λx

.
We have used some results from the proof of part (i),
and the fact that the uncertain variable X is not af-
fected by the decision, thus P (x|e) = P (x|e, d)∀d.
(iii) EUd = u(CEd); the result follows from differenti-
ating both sides with respect to v using the chain rule
of differentiation.

Theorem 1 presents a recipe for computing ∂EUd
∂v and

∂CEd
∂v for any node v in the circuit, using g(e), g(e′)

and their derivatives. The single and double deriva-
tives of the form used in Theorem 1 can be obtained
in time linear in the size of the circuit [Darwiche, 2000].
The double derivatives ∂2g(e′)

∂θd∂v
are computed by sweep-

ing ∂g(e′)
∂θd

, for all strategies d, down the circuit. Thus
the time complexity for obtaining ∂EUd

∂v for all nodes
is O((NS)(dc)) where NS is the number of strategies
and dc is the size of the decision circuit. Note that
the slope of CEd with respect to v is not constant un-
less the utility function is linear; it will depend on the
value of CEd in general.

5.2 One-way sensitivity analysis plots

In this sub-section, we show how to create a graph of
the certain equivalent for the decision problem as a
function of a particular meta-parameter when all oth-
ers are kept at their reference values.

The expected utility for a particular strategy is
a multi-linear function of all the meta-parameters.
Therefore, the expected utility for a particular strategy
d is a linear function of a particular meta-parameter
τk, keeping all other meta-parameters at their refer-
ence values. We denote this linear function as EUd =
αd(τk). We already have a point on this line from the
initial sweep used to evaluate the circuit, which we de-
note as (τ0

k , α
0
d). We also have the slope of this line,

since it equals the partial derivative from part (i) of
Theorem 1 choosing v = τk. We denote the slope as
α′d,k. Plotting the decision problem’s CE with respect
to changes in τk entails applying the inverse utility
function u−1(.) to the maximum of the lines for all
strategies. If the required resolution is ε, then the
number of points required between 0 and 1 for the
plot is 1/ε. The time complexity for preparing the
plot for all meta-parameters, once we have the lines
for expected utilities of all strategies with respect to
all meta-parameters, is O(( 1

ε )(K)(NS)) where K is the
number of meta-parameters and NS is the number of
strategies.

Another approach to plotting the CE against a meta-
parameter is the standard method of sample points,
where the decision problem is re-evaluated for every
sample point over a range. If the required resolution
is ε, then the time complexity of this approach for ob-
taining plots for all meta-parameters isO(( 1

ε )(K)(dc)).

5.3 Admissible intervals

Another sensitivity question in the spirit of one-way
sensitivity analysis is the following one. Suppose a
certain meta-parameter is allowed to vary, keeping all
other meta-parameters constant at their reference val-
ues. What is the range of this meta-parameter over



which the current optimal strategy remains optimal?
We call this range the admissible interval for a meta-
parameter. In other words, we investigate how robust
the optimal strategy is, with respect to changes in any
meta-parameter.

The admissible intervals are easy to obtain for normal
form influence diagrams, based on the ideas from the
previous subsection. Since we have the lines for the
expected utilities of all strategies with respect to all
meta-parameters, we can obtain the admissible inter-
vals Ik for all meta-parameters simultaneously. Sup-
pose ∆+ and ∆− are the admissible positive and nega-
tive changes to τk from its reference value τ0

k such that
d∗ stays optimal. We present the following theorem,
without proof, for computing ∆+, ∆− and the inter-
vals Ik. The proof entails finding the points at which
another strategy overtakes d∗ and recognising that τk
lies between 0 and 1. The time complexity for com-
puting these intervals for all meta-parameters, once
we have the lines for expected utilities of all strategies
with respect to all meta-parameters, is O((K)(NS)).

Theorem 2. For meta-parameter τk, the admissible
positive change ∆+ = minds.t.α′d,k>α′d∗,k

[
α0
d∗−α

0
d

α′d,k−α
′
d∗,k

]
,

the admissible negative change ∆− =
maxds.t.α′d,k<α′d∗,k

[
α0
d∗−α

0
d

α′d,k−α
′
d∗,k

]
, and the admissible

interval Ik =
[
max

(
0, τ0

k + ∆+
)
,min

(
1, τ0

k + ∆−
)]

.

Binary search is another possible approach for finding
the admissible intervals. The admissible interval for
any meta-parameter τk is a convex set due to the lin-
earity of the expected utilities for all strategies with
respect to τk. We can therefore locate the end-points
of this interval by re-evaluating the circuit at points
chosen by binary search to check if the current optimal
strategy is still optimal. If the required resolution is
ε, then the number of sample points needed for the bi-
nary search is O(− ln(ε)). Thus the time complexity of
obtaining admissible intervals for all meta-parameters
by this method is O((− ln(ε)(K)(dc)).

5.4 Value of information

The value of information for a particular uncertainty
is a useful sensitivity analysis query in sequential de-
cision problems, specifying the maximum that the de-
cision maker should be willing to pay to observe the
uncertainty before making the first decision [Howard,
1966; Raiffa, 1968]. The double derivatives from part
(i) of Theorem 1 can also compute the value of in-
formation for all uncertainties that are not affected
by the decision, using part (ii) of Theorem 1 (choose
v = λx). Here MEUPI is the maximal expected util-
ity with perfect information on uncertain variable X.
If the decision maker’s utility function u(.) is linear or

exponential, then the value of information of the un-
certain variable X is the increase in the certain equiv-
alent u−1(MEUPI) − u−1(MEU). In general, this is
usually a good approximation for the value of informa-
tion, even if the decision maker’s utility function has
a form other than linear or exponential [Raiffa, 1968].

Once we have the results from Theorem 1, computing
the value of information involves summing and maxi-
mizing the partial derivatives. If the number of vari-
ables analyzed for value of information is ]var, and
assuming that the maximum number of possibilities
for all of these variables is bounded by some constant,
then the time complexity for obtaining the value of
information for all these variables is O((NS)(]var)).

6 ANALYZING EXTENSIVE FORM
INFLUENCE DIAGRAMS

Sensitivity analysis in normal form influence diagrams
is relatively easy to describe because we explicitly rep-
resent all the strategies. Here we discuss techniques
for analyzing extensive form influence diagrams. All
of these methods can also apply to normal form di-
agrams. We assume the standard conditions in the
influence diagram literature such as “no forgetting”
[Howard and Matheson, 1984; Shachter, 1986].

6.1 One-way sensitivity analysis plots

The sample points method from the previous section
directly applies for extensive form influence diagrams
as well. It is also possible to plot the CE for a partic-
ular strategy s against τk using decision circuits. To
do this, the network parameters for decisions θd|pa(D)

need to be set according to s. Note that these have
been preset according to the current optimal strategy
s∗ after the initial upward sweep to evaluate the op-
timal strategy, hence they need to be reset if s 6= s∗.
Once the network parameters for decisions are chosen
appropriately, we can sweep up and down the decision
circuit, treating the maximization nodes as summation
nodes on both sweeps.

Figure 4 is a one-way sensitivity analysis plot for the
influence diagram shown in Figure 2, with respect to
meta-parameter τ1, the probability that the weather
is sunny. The plot displays the variation in the CE of
the decision problem as well as the CE of the current
optimal strategy s∗ with respect to changes in τ1. We
observe that for most values of the meta-parameter,
the CE for the decision problem does not vary too
much, and thus the model is robust to small changes in
τ1 around its current value of 0.6. The figure supports
the intuition that for extreme values of the probability
of sunshine, it is optimal to decide whether to bring
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Figure 4: One way sensitivity analysis plot for an example.

the umbrella or not without paying for the evidence.

6.2 Admissible intervals

In this section, as an extension of our discussion in
the section on normal form influence diagrams, we
present the admissible interval algorithm, which re-
turns bounds on the range over a particular meta-
parameter for which the optimal strategy s∗ re-
mains optimal when all other meta-parameters are
kept at their reference values. The algorithm finds
these bounds for all meta-parameters simultaneously.
We assume that the optimal strategy s∗ and the
MEU have already been evaluated from initial sweeps
through the decision circuit. The algorithm computes
partial derivatives from a downward sweep starting
from every maximization node. Before we describe the
algorithm, we distinguish between active and inactive
max nodes in the decision circuit. Inactive max nodes
are those maximization nodes such that the derivative
of the root with respect to these nodes, from the ini-
tial downward sweep, equals 0. This condition implies
that an inactive node does not affect the expected util-
ity of s∗, because there is 0 probability of being in that
situation. Active max nodes are those max nodes in
the circuit that are not inactive.

Admissible Interval Algorithm: Given a decision
circuit constructed for an influence diagram and eval-
uated at evidence e′, with optimal strategy s∗ and
maximal expected utility MEU . Determine tight and
weak bounds on admissible intervals, IkT and IkW for
all meta-parameters τk, k = 1, 2, ...,K.

1. Initialize all intervals IkT and Ik
W to [0, 1].

2. Consider active max node v in the circuit. Find
the partial double derivatives for all alternatives
(as described in section 5) by sweeping down the

subcircuit rooted at v.

3. Find intervals for all meta-parameters over which
the current optimal alternative remains optimal
(as described in section 5). Take the intersection
of these intervals with the corresponding intervals
Ik
W from the previous iteration and reset IkW to

these new intervals.

4. Repeat steps 2 and 3 above for inactive max node
v in the circuit, using IkT in this case instead of
Ik
W .

5. Repeat steps 2 and 3 above for all active and in-
active max nodes in the decision circuit, updating
the two corresponding kinds of intervals.

6. Set IkT to be the intersection of the corresponding
intervals IkT and Ik

W that were computed from
previous steps.

If there are no inactive max nodes then clearly IkW =
Ik
T , and this interval is the exact admissible interval.

We now prove the correctness of this algorithm.

Theorem 3. If τk lies in the interval IkT then s∗ stays
optimal and if τk does not lie in the interval IkW then
s∗ is no longer optimal.

Proof. Consider any meta-parameter τk and its associ-
ated interval IkT . For τk ∈ IkT , the equations in step
3 hold for all max nodes, since the resulting interval
Ik
T is the intersection of intervals. Thus s∗ is the op-

timal strategy when τk ∈ IkT . Now if τk /∈ IkW , there
must be an active max node v such that the current
optimal alternative for v is no longer optimal. There-
fore, s∗ can no longer be the optimal strategy. When
τk /∈ Ik

T and τk ∈ Ik
W , we cannot be sure about

whether s∗ stays optimal because it is possible for an
inactive node to become active for the new value of
τk.

Results from applying the algorithm to the example
shown in Figure 2 are presented in Table 1. Two meta-
parameters are considered for sensitivity analysis: the
probability of the weather being sunny, τ1 = θw, and
the specificity of the report, τ2 = θr̄|w̄, which is a mea-
sure of the expected number of false positives from the
report. The table presents tight and weak intervals for
both meta-parameters. The exact admissible interval
for τ1 is [0.44, 0.84], as can be seen from Figure 4.
Note that this interval contains the tight interval but
lies within the weak interval. The algorithm is able to
compute the exact admissible interval for τ2 since the
specificity of the report does not affect the value when
evidence is not gathered.



Table 1: Results for the admissible interval algorithm
for an example.

Metaparameter Tight interval Weak interval
description (IkT ) (IkW )

τ1 = θw [.44, .67] [.44, .89]
τ2 = θr̄|w̄ [.57, 1] [.57, 1]

The admissible interval algorithm yields other useful
results as a by-product. If the decision maker is in-
terested in analyzing which alternative is optimal at a
particular max node in the circuit, given that all other
policies are made by the current optimal strategy, then
this is easy to compute with the help of the interme-
diate steps in the algorithm. In other words, the al-
gorithm helps in analyzing neighbouring strategies to
s∗, defined as strategies that differ from s∗ only by an
alternative in one active max node of the decision cir-
cuit. For instance, the decision maker could analyze
the optimal policy at the first decision by comparing
all strategies to s∗ that differ in only one alternative
at a max node in the decision circuit corresponding to
the first decision node in the influence diagram.

The binary search method from the previous sec-
tion directly applies in extensive form influence dia-
grams, for finding admissible intervals for all meta-
parameters. It computes these intervals exactly, one
meta-parameter at a time. The admissible interval
algorithm identifies bounds for these intervals, but
for all meta-parameters simultaneously. We suggest
that the analyst use the admissible interval algorithm
as an initial test to identify potentially critical meta-
parameters, and then use the binary search technique
to focus attention on specific meta-parameters.

6.3 Value of information

The challenge of performing value of information anal-
ysis for extensive form influence diagrams is that it is
difficult to keep track of all the derivatives for all the
strategies. We propose a simple method to find the
value of information for variables that are not affected
by any decision, if they were to be observed before the
first decision is made. The goal is to re-use the decision
circuit that was formulated in the offline phase.

Assuming that the decision circuit has been evaluated
and therefore that the probability of evidence P (e)
has already been computed, we can find the value of
information for any variable X with the help of some
upward sweeps. If we pass the evidence e, U = 1, x in
an upward sweep, once each for every possible value of

x, we obtain MEUPI (the maximal expected utility
with perfect information on uncertain variable X), as
shown in the following theorem. We state the theorem
without proof; the proof is similar to Theorem 1, part
(ii).
Theorem 4. If we sweep upward with evidence e, U =
1, x, for every possible value of x, we obtain MEUPI =

1
P (e)

∑
x g(U = 1, x, e).

If the number of variables analyzed for value of in-
formation is ]var, and assuming that the maximum
number of possibilities for all of these variables is
bounded by some constant, then the time complex-
ity for obtaining the value of information for all
these variables is O((dc)(]var)). For the example in
Figure 2, the value of information on the weather
is: $

[
u−1 (g(U = 1, w) + g(U = 1, w̄))− 52.5

]
, which

equals $21.3. The report already provides some infor-
mation about the weather, and further information is
not worth more than $21.3.

7 CONCLUSIONS AND FUTURE
RESEARCH

Decision circuits are a graphical representation for the
efficient analysis of influence diagrams, with the po-
tential to exploit both the conditional independence in
the graph as well as the local structure from asymme-
try of real-world decision problems. Recent methods
have been devised to create compact circuits using sep-
arability of the value function and operations such as
pruning and coalescence [Bhattacharjya and Shachter,
2008]. If the analyst can compile an efficient decision
circuit for an influence diagram, she can then use the
compiled circuit to evaluate the optimal strategy and
the CE, before performing sensitivity analyses of the
kind demonstrated in this paper.

We explored several one-way sensitivity analysis
queries and demonstrated techniques to answer them
using decision circuits. We discussed sensitivity analy-
sis for both normal form and extensive form influence
diagrams. Sensitivity analysis is an essential technique
to support decision problem modeling and it provides
valuable insight about the critical assessments. n-way
sensitivity analysis of influence diagrams can also be
performed with decision circuits using higher order
derivatives, similar to the techniques discussed in this
paper and in Chan and Darwiche (2004). Likewise, the
presented method for computing value of information
can be extended to multiple variables, by sweeping evi-
dence corresponding to every instantiation of the vari-
ables under consideration. Decision circuits allow a
wide variety of queries about the model that can be
addressed efficiently by decision circuit evaluation and
differentiation.
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