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Abstract

Chordal graphs can be used to encode depen-
dency models that are representable by both di-
rected acyclic and undirected graphs. This paper
discusses a very simple and efficient algorithm
to learn the chordal structure of a probabilistic
model from data. The algorithm is a greedy hill-
climbing search algorithm that uses the inclusion
boundary neighborhood over chordal graphs. In
the limit of a large sample size and under ap-
propriate hypotheses on the scoring criterion, we
prove that the algorithm will find a structure that
is inclusion-optimal when the dependency model
of the data-generating distribution can be repre-
sented exactly by an undirected graph. The algo-
rithm is evaluated on simulated datasets.

1 INTRODUCTION

A graphical probabilistic model makes use of a graph over
random variables to encode a dependency model, i.e. a set
of marginal and conditional independence relations. Di-
rected acyclic graphs (DAGs) and undirected graphs (UGs)
are two popular classes of graphs used to encode de-
pendency models, leading to graphical models known as
Bayesian networks and Markov networks (see [9]).

In this paper, we consider the class of graphical models
whose structure is a chordal graph, known as the class of
decomposable models. A chordal (or triangulated) graph
is an undirected graph where every cycle comprising more
than three lines has a chord. The class of dependency mod-
els defined by chordal graphs is the intersection of the class
of DAG dependency models and the class of UG depen-
dency models. The characterization of the independencies
of decomposable models has been exploited in [6] in or-
der to construct algorithms for recovering from indepen-
dence tests the exact chordal structure of a decomposable
model, and to build minimal chordal approximations of
UG-isomorphic dependency models.

Despite the chordality restriction on the structure, the class
of decomposable models is still fairly large and includes,
for example, graphical models with undirected tree struc-
ture. Also, exact marginalization using the junction-tree
algorithm for probabilistic inference over DAGs and UGs
is based on the prior transformation of these graphs into a
chordal graph [5].

A greedy hill-climbing search algorithm is often used to
learn the DAG structure of a Bayesian Network. Different
choices of search spaces and neighborhoods connecting the
search space are possible. In particular, the search may pro-
ceed over the set of Markov equivalence classes of DAG
structures by exploiting the inclusion boundary neighbor-
hood (see [1, 4]). Under appropriate assumptions on the
scoring criterion and on the data-generating distribution, a
greedy algorithm using this inclusion boundary neighbor-
hood returns an inclusion-optimal structure in the limit of
a large sample size (see [2] and [3]). Unfortunately, the
size of the inclusion boundary of an equivalence class of a
DAG structure is in the worst case exponential in the num-
ber of variables, which may prevent the application of this
strategy in domains with a large number of variables.

The notion of inclusion boundary neighborhood can also
be defined over sets of chordal graphs (see Section 2). In
this context, its size is bounded from above by the square
of the number of variables (pairs of vertices) and it can be
computed easily. In [7], this neighborhood is used to learn
the chordal structure of a decomposable Gaussian model
with a Monte Carlo procedure.

In this paper, we investigate the optimality properties of the
greedy hill-climbing search algorithm using the inclusion
boundary neighborhood to learn a chordal structure. We
describe a local asymptotic consistency property of scoring
criteria that ensures that a greedy search will produce an
inclusion-optimal chordal structure when the independence
relations holding in the data-generating distribution canbe
represented exactly by an undirected graph. We conjecture
that this property still holds when the independencies of the
data-generating distribution can be represented exactly by
a directed acyclic graph. Hence, we suggest that inclusion



boundary based learning of chordal models is an interest-
ing avenue for leveraging learning of graphical models to
domains with large numbers of variables.

The rest of the paper is organized as follows. Section 2
defines precisely the mechanism by which an undirected
graph encodes a dependency model. It also defines and
discusses the notions of inclusion-optimality and inclusion
boundary. Section 3 introduces a local consistency prop-
erty for scoring criteria defined over chordal structures and
proves that it holds for common criteria such as the BDe
score. Our claim that greedy search with the inclusion
boundary neighborhood yields inclusion-optimal solutions
is proved there. Section 4 presents some experimental re-
sults using simulated datasets.

2 BACKGROUND

Consider an undirected graphG = (X, L) whose vertex set
X is a set of random variables and whose set of undirected
edges (i.e. lines) is denoted byL. Given disjoints sets
A, B,C ⊆ X, we say thatA andB are separated byC in G if
all paths between a vertex inA and a vertex inB go through
at least one vertex inC. The dependency model encoded by
G consists of the set of marginal and conditional indepen-
dence relationsA ⊥ B|C such thatA andB are separated by
C in G. In the sequel, we sometimes identify an undirected
graph and its dependency model; when we want to distin-
guish them we will denote byI (G) the dependency model
encoded by the graphG.

As mentioned in the introduction, a chordal graph is an
undirected graph where every cycle more than three lines
long has a chord (see Figure 1).
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Figure 1: (a) is undirected, but not chordal since it has the
chordless cyclea, b, c, d, a of length four. (b), (c) and (d)
are all chordal.

Let us define the notion of inclusion-optimality (aka min-
imal I-mapness in the terminology of [9]) for chordal
graphs. Consider a particular dependency modelM0. We
say that achordal dependency modelM is inclusion-
optimal for M0 if M ⊆ M0 and there is nochordal de-
pendency modelM′ such thatM ( M′ ⊆ M0. This notion
has a simple graphical interpretation: a chordal graphG
encodes an inclusion-optimal dependency model forM0 if,
and only if, (a) it does not encode any independence as-
sumption that does not hold inM0 and (b) all its proper

chordal subgraphs1 encode such an incorrect independence
assumption. For example, suppose that Figure 1(a) encodes
M0. Then, the graphs of Figure 1(b) and Figure 1(c) are
both inclusion-optimal chordal graphs with respect toM0,
while the graph of Figure 1(c) is not. As a special case,
note that any chordal graph model is theuniquechordal
dependency model which is inclusion-optimal for itself.

To conclude this section, let us present the notion of inclu-
sion boundary in the context of chordal graphs. The inclu-
sion boundary of a chordal graphG is the set of chordal
graphsH satisfying

• I (G) ( I (H) and there is no chordal graphK such that
I (G) ( I (K) ( I (H), or

• I (H) ( I (G) and there is no chordal graphK such that
I (H) ( I (K) ( I (G).

It is straightforward to describe graphically the inclusion
boundary of a chordal graphG: it consists of the chordal
graphs that differ fromG by the addition or removal of a
single line. This is a consequence of the fact that, for any
two chordal graphsG,H such thatH is a subgraph ofG,
there exists a sequence of chordal graphsK0, . . . ,Kn such
that K0 = H, Kn = G and Ki+1 is obtained fromKi by
adding a single line (see [7]).

3 INCLUSION-OPTIMALITY OF
GREEDY SEARCH

In this section, we first introduce a property oflocal con-
sistency for scoring criteria defined over chordal graphs.
Then, we show that if a scoring criterion defined over
DAG dependency models is decomposable and consistent
in the classical sense (see, e.g. [8]) , then it is also locally
consistent when restricted to chordal dependency models.
Finally, we prove the claim that a greedy hill-climbing
search using the inclusion boundary neighborhood and a
consistent and locally consistent scoring criterion returns
an inclusion-optimal chordal graph when the dependency
model of the data-generating distribution can be encoded
exactly by an undirected graph.

Following the terminology of [3], we say that a scoring cri-
terion score(·) for chordal graphs islocally consistent for
a dependency modelI if, for any pair of verticesa, b and
chordal graphsG, H such thatH is obtained fromG by
removinga− b, we have

1. a ⊥ b|neG(a) ∩ neG(b) ∈ I ⇒ score(H) > score(G),

2. a ⊥ b|neG(a) ∩ neG(b) < I ⇒ score(G) > score(H),

1We say thatG′ = (X′, L′) is a (proper) subgraph ofG =
(X, L), iff X′ = X andL ( L′, i.e. L is a (proper) subset ofL′.



whereneK(a) denotes the sets of neighboring (i.e. adjacent)
vertices ofa in K.

Recall that a scoring criterion score(·) for a DAG depen-
dency model encoded byG is decomposable if it can be
written as a sum of terms that depend each on only one
vertex and its parents, i.e.

score(G) =
∑

v∈V

f
(

v, paG(v)
)

. (1)

The following proposition states that a consistent and lo-
cally consistent scoring criterion for chordal dependency
models can be obtained from a consistent and decompos-
able scoring criterion for DAG dependency models. More-
over, it allows us to compute the score difference between
neighboring chordal graphs incrementally.

Proposition 1. If score(·) is a scoring criterion over DAG
dependency models that is decomposable and consistent
for a dependency model I, then it is locally consistent for I
when restricted to chordal graphs and

score(G) − score(H) = f
(

b, {a} ∪ (neG(a) ∩ neG(b))
)

− f
(

b, neG(a) ∩ neG(b)
)

, (2)

for chordal graphs G and H such that H is obtained from
G by removing the line a− b.

P. Consider two chordal graphsG andH such thatH
is obtained fromG by removing the linea− b. SinceH is
chordal and does not havea−b, the subgraph ofH induced2

by neH(a)∩ neH(b) = neG(a)∩ neG(b) is complete. Hence,
the subgraph ofG induced by{a, b} ∪ (neG(a) ∩ neG(b))
is complete. Ifo1, . . . , ok is any ordering ofneG(a) ∩
neG(b), there exists a perfect orderingo of G starting with
a, o1, . . . , ok, b. Let K be the DAG obtained from directing
the lines ofG according too and letL be the DAG ob-
tained fromK by removinga→ b. Note thatK andL have
no v-structure, score(G) = score(K), score(H) = score(L),
paL(b) = neG(a) ∩ neG(b) andpaK(b) = {a} ∪ paL(b). By
decomposability of score(·), we thus have

score(G) − score(H) = f
(

b, {a} ∪ (neG(a) ∩ neG(b))
)

− f
(

b, neG(a) ∩ neG(b)
)

. (3)

Let A be a complete DAG obtained by orienting the lines of
a complete undirected graph according to a vertex ordering
starting witha, o1, . . . , ok, b and letB be the DAG obtained
from A by removinga → b. We havepaB(b) = paL(b),
paA(b) = paK(b), dim(B) < dim(A), I (A) = ∅ and

I (B) =
{

a ⊥ b|neG(a)∩neG(b), b⊥ a|neG(a)∩neG(b)
}

. (4)

By decomposability of score(·), we have

score(A) − score(B) = score(K) − score(L). (5)

2The subgraph ofG = (X, L) inducedby X′ ⊆ X is the graph
G′ = (X′, L′), whereL′ = L ∩ (X′ × X′).

By consistency of score(·) for I , the restriction of score(·)
over chordal graphs is thus also locally consistent forI . �

In practice, scoring criteria over DAG dependency models
only satisfy the consistency property asymptotically in the
limit of a large sample size. When restricted to chordal
dependency models, such scoring criteria will thus only be
locally consistent asymptotically.

3.1 Optimality for UG target dependency models

The main result of this paper can now be stated. Its proof
relies on results presented in the appendix.

Proposition 2. If score(·) is a scoring criterion for chordal
graphs that is consistent and locally consistent for a graph-
isomorph dependency model I, then local optima ofscore(·)
with respect to the inclusion boundary neighborhood are
inclusion-optimal for I.

P. Let G be a local optimum of score(·) with respect
to the inclusion boundary neighborhood. Let us show by
contradiction thatI (G) ⊆ I . Suppose thatI (G) \ I , ∅.
Since I satisfies the symmetry, decomposition and inter-
section properties (see Proposition 3 in the appendix), there
exist verticesa andb such thata ⊥ b|V \ {a, b} ∈ I (G) \ I .
Hence,G does not have the linea− b. Let us discuss sepa-
rately the cases where the addition ofa− b to G results in a
graphH which is chordal and the cases where the resulting
graphH is not chordal.

Suppose thatH is chordal. Then,H is in the inclusion
boundary ofG. By strong union,a ⊥ b|V \ {a, b} < I
implies thata ⊥ b|neH(a) ∩ neH(b) < I . By local consis-
tency, we thus have score(H) > score(G) andG is not a
local optimum.

Suppose thatH is not chordal. There exists a chordless cy-
cle in H of length≥ 4. Consider the set of chordless cycles
in H of maximum lengthm ≥ 4 and the corresponding set
of paths inG betweena andb of lengthn = m− 1 ≥ 3.
Let A0 = {a}, An = {b} and, fori = 1, . . . , n − 1, let Ai be
the set of vertices that can be reached starting froma by
hopping alongi lines on one of the above paths betweena
andb. By strong union,a ⊥ b|V \ {a, b} < I implies that
a ⊥ b|An−1 < I . By Lemma 4 (see the appendix), there thus
exists i ∈ {1, . . . , n − 1} such thatAi−1 ⊥ Ai+1|Ai < I or
a ⊥ Ai ∈ I . Let us discuss the two possibilities separately.
First, suppose thatAi−1 ⊥ Ai+1|Ai < I . By composition,
there existu ∈ Ai−1 andv ∈ Ai+1 such thatu ⊥ v|Ai < I .
By chordality ofG, note that each setAi induces a com-
plete subgraph. Hence there is a cycle of lengthm without
chord passing throughu andv in H and thus no line be-
tweenu andv in G. By maximality of this cycle, adding
u − v to G results in a chordal graphH′ in the inclusion
boundary ofG. SinceneG(u) ∩ neG(v) ⊆ Ai , we have
u ⊥ v|neG(u) ∩ neG(v) < I by strong union. By local con-
sistency, we thus have score(H′) > score(G) andG is not



a local optimum. Second, suppose thata ⊥ Ai ∈ I for
somei ∈ {1, . . . , n − 1} and consider any vertexu ∈ Ai .
By decomposition, we havea ⊥ u ∈ I . There exists a
path p1, . . . , pk in G betweenp1 = a and pk = u where
no line is a chord. By transitivity,a ⊥ u ∈ I implies that
p j ⊥ p j+1 ∈ I for some j ∈ {1, . . . , k − 1}. Since the line
p j − p j+1 is not a chord, the graphH′ obtained fromG by
removingp j − p j+1 is chordal andH′ is in the inclusion
boundary ofG. By strong unionp j ⊥ p j+1 ∈ I implies that
p j ⊥ p j+1|neG(p j) ∩ neG(p j+1) ∈ I . By local consistency,
we thus have score(H′) > score(G) andG is not a local
optimum.

To conclude the proof, let us show by contradiction that
there is no chordal graphH such thatI (G) ( I (H) ⊆ I .
SinceI (G) ( I (H), there existsK in the inclusion bound-
ary of G such thatI (G) ( I (K) ⊆ I (H). Also, we
have dim(K) < dim(G). By consistency, we thus have
score(K) > score(G) andG is not a local optimum. �

Note that Proposition 2 applies to all local maxima. The
greedy search may thus start at any chordal graph and will
return an inclusion-optimal chordal graph under the hy-
potheses of the proposition.

3.2 Extension to other graphical dependency models

Although we have not been able to prove it, we suspect that
Proposition 2 still holds when the target dependency model
I can no longer be represented perfectly by an undirected
graph, but rather by a DAG.

However, as illustrated by the graphs given in Figure 2, the
proposition no longer holds whenI is encoded by a DAG
structure with hidden variables.
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Figure 2: Suppose thatI is the set of independence relations
over the variables{a, b, c, d} encoded by the DAG given in
(a). Such a graph does not encode the relationa ⊥ b|c,
while the chordal graph given in (b) does encode it, and
is thus not inclusion-optimal forI . The neighbors of the
chordal graph are obtained by addinga − c, addingb −
d, removinga − d, removingb − c, or removingc − d.
Using the local consistency property, one can see that each
operation decreases the score. The chordal graph is thus a
local maximum.

4 EXPERIMENTAL RESULTS

This section describes the experiments performed to assess
the learning algorithm. The following settings were con-
sidered to generate simulated datasets:

• 20 or 50 binary random variables,

• a generating distribution with a chordal structure or a
DAG structure.

For each setting, 30 data-generating distributions were se-
lected with random parameters and random structure. DAG
structures were drawn randomly with at most 5 parents per
variable. Chordal structures were obtained by first drawing
DAG structures with at most 3 parents and then chordal-
izing them with a greedy minimum fill-in algorithm. For
each distribution, 30 independent datasets of 102, 103, 104

and, in the case of 20 variables, 105 observations were
generated. For each dataset, we learned a chordal struc-
ture with the greedy search algorithm using the inclusion
boundary. Also, we learned a DAG structure with the
greedy search algorithm using the neighborhood obtained
by legal arrow additions, removals and reversals. In both
case, the BDeu scoring criterion with an equivalent sam-
ple size of 1 was used and the search was started at the
empty structure. To measure KL divergences with the data-
generating distribution, we estimated the parameters of the
learned chordal structure, of the learned DAG structure
and of the data-generating structure with the Bayesian ap-
proach corresponding to our choice of score. Then, for each
dataset, the following quantities were measured:

• the dimension, i.e. number of independent parameters,
of the data-generating structure,

• the dimension of the learned chordal model,

• the dimension of the learned DAG structure,

• the KL divergence from the distribution with learned
parameters and learned chordal structure to the data-
generating distribution,

• the KL divergence from the distribution with learned
parameters and learned DAG structure to the data-
generating distribution,

• the KL divergence from the distribution with learned
parameters and data-generating structure to the data-
generating distribution,

• in the case of chordal data-generating structure,
the number of false positive lines, i.e the lines in
the learned chordal structure but not in the data-
generating structure, and the number of false negative
lines, i.e. the lines in the data-generating structure but
not the learned chordal structure.



The KL divergences between a learned distributionp and
a target data-generating distributiong were estimated on a
datasetD of 104 observations drawn independently of the
observations used for learning, according to the following
equation:

KL(g ‖ p) = |D|−1
|D|
∑

i=1

ln

(

Pg(Xi)

Pp(Xi)

)

, (6)

whereXi denotes theith observation of the test datasetD.

Box plots of the results are given in Figure 3 to Figure 12.
They are qualitatively similar for data-generating distribu-
tions with chordal or DAG structures. Depending on the
datasets sizes, one can distinguish three phases. A first
phase where the learned chordal model exhibits a lower KL
divergence and a lower dimension than the other models.
A transition phase where the divergences and dimensions
have close values. A final phase where the learned chordal
model has a higher dimension and higher divergence, al-
though the divergence tends to decrease. The first phase is
expected: the model with correct structure overfits the data,
while the learned model benefits from the use of a Bayesian
scoring criterion that favors small structures. As the num-
ber of observations increases and we enter the third phase,
the model with correct structure dominates. However, the
model with learned chordal structure seems able to adapt
and the difference in divergence keeps decreasing, as an
expected consequence of the inclusion-optimality property.

Consider the case of data-generating distributions with
chordal structures. As expected again, the number of false
positive and false negative lines tends to decrease. Also,
note that the number of false positives is in general much
lower than the number of false negatives. This is probably
due to the fact that the Bayesian score is naturally conserva-
tive and gives a high score only to independence relations
that are well supported by the data.

5 CONCLUSION

In this paper, we discussed the optimality properties of a
greedy hill-climbing algorithm using the inclusion bound-
ary neighborhood to learn the structure of a chordal graph-
ical model. We proved that such an algorithm will asymp-
totically return an inclusion-optimal chordal structure if the
scoring criterion is consistent and locally consistent andthe
dependency model of the data-generating distribution can
be represented exactly by an undirected graph. Our exper-
imental results show the practical interest of this algorithm
in the context of problems where the number of variables
is large and their dependency structure is sufficiently com-
plex, be it UG-faithful or DAG-faithful.

Further theoretical work should address the extension of
the above optimality property with respect to more general
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Figure 3: Estimated KL divergences to a data-generating
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each sample size, the leftmost plot measures the dimen-
sion d(p) of the learned chordal structure, the middle plot
measures the dimensiond(q) of the learned DAG structure,
and the rightmost plot measures the dimension of the data-
generating structured(g).

50

40

30

20

10

0

(a) N = 102

30

20

10

0

(b) N = 103

10

8

6

4

2

0

(c) N = 104

3

2

1

0

(d) N = 105
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with 20 binary random variables and a data-generating dis-
tribution with chordal structure
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Figure 6: Estimated KL divergences with 50 binary random
variables and a data-generating distribution with chordal
structure (the layout is the same as in Figure 3).
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tribution with chordal structure (the layout is the same as
in Figure 5).
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and a data-generating distribution with DAG structure (the
layout is the same as in Figure 4).

120

100

80

60

40

20

0

(a) N = 102

6

5

4

3

2

1

(b) N = 103

5

4

3

2

1

0

(c) N = 104

Figure 11: Estimated KL divergences with 50 binary ran-
dom variables and a data-generating distribution with DAG
structure (the layout is the same as in Figure 3).
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Figure 12: Dimensions with 50 binary random variables
and a data-generating distribution with DAG structure (the
layout is the same as in Figure 4).

conditions on the data-generating distributions. In partic-
ular, we believe that our optimality properties can be ex-
tended to the case where the latter is DAG faithful.

From a more practical side, it would be interesting to carry
out a more in-depth empirical investigation of inclusion
boundary search of chordal models with respect to inclu-
sion boundary search in the larger space of Markov equiv-
alence classes of DAG structures. Also, suitable combina-
tions of these two approaches might lead to further progress
for learning graphical models over large numbers of vari-
ables.

We believe also that it is of interest to further investigate
the possible uses of the greedy search of inclusion optimal
chordal models in the context of designing efficient approx-
imate inference algorithms, in particular in the framework
of variational approximations [10].
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APPENDIX

Proposition 3 (from [9]). A dependency model I can be
represented exactly by an undirected graph if, and only if,
it satisfies the following properties:

1. symmetry

X ⊥ Y|Z ∈ I ⇔ Y ⊥ X|Z ∈ I ,

2. decomposition

X ⊥ Y∪W|Z ∈ I ⇒ X ⊥ Y|Z ∈ I ∧ X ⊥W|Z ∈ I ,

3. intersection

X ⊥ Y|Z ∪W ∈ I ∧ X ⊥W|Z ∪ Y ∈ I

⇒ X ⊥ Y∪W|Z ∈ I ,



4. strong union

X ⊥ Y|Z ∈ I ⇒ X ⊥ Y|Z ∪W ∈ I ,

5. transitivity

X ⊥ Y|Z ∈ I ⇒ X ⊥ γ|Z ∈ I ∨ γ ⊥ Y|Z ∈ I ,

where W, X, Y, and Z are disjoints subsets of vertices and
γ is a singleton vertex.

Lemma 4. Let I be a graph-isomorph dependency model.
If A0, . . . ,An (n ≥ 3) are sets of vertices such that A0 = {x},
An = {y}, and Ai−1 ⊥ Ai+1|Ai ∈ I for i = 1, . . . , n− 1, then
we have

x ⊥ A1 ∈ I ∨ · · · ∨ x ⊥ An−1 ∈ I ∨ x ⊥ y|An−1 ∈ I .

P. By transitivity and symmetry, we have

A1 ⊥ A3|A2 ∈ I ⇒ x ⊥ A1|A2 ∈ I ∨ x ⊥ A3|A2 ∈ I .

By intersection, we have

x ⊥ A1|A2 ∈ I ∧ x ⊥ A2|A1 ∈ I ⇒ x ⊥ A1 ∪ A2 ∈ I .

Hence, we have

x ⊥ A1 ∪ A2 ∈ I ∨ x ⊥ A3|A2 ∈ I .

Repeating these steps, we obtain

x ⊥ A1 ∪ A2 ∈ I ∨ x ⊥ A2 ∪ A3 ∈ I ∨ . . .

∨ x ⊥ An−2 ∪ An−1 ∈ I ∨ x ⊥ y|An−1 ∈ I .

By decomposition, we thus have

x ⊥ A1 ∈ I ∨ · · · ∨ x ⊥ An−1 ∈ I ∨ x ⊥ y|An−1 ∈ I . �


