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Abstract

We present an algorithm that identifies the
reasoning patterns of agents in a game, by
iteratively examining the graph structure of
its Multi-Agent Influence Diagram (MAID)
representation. If the decision of an agent
participates in no reasoning patterns, then
we can effectively ignore that decision for the
purpose of calculating a Nash equilibrium for
the game. In some cases, this can lead to ex-
ponential time savings in the process of equi-
librium calculation. Moreover, our algorithm
can be used to enumerate the reasoning pat-
terns in a game, which can be useful for con-
structing more effective computerized agents
interacting with humans.

1 INTRODUCTION

Games are strategic interactions between agents that
have different capabilities, information and objectives.
Such games, which often involve uncertainty about
the world, have become vitally important in computer
science as the basis for describing multiagent inter-
action. The standard solution concept for games is
Nash equilibrium. Solving a game is usually taken
to mean finding a Nash equilibrium which will spec-
ify the strategies of agents. Unfortunately, however,
computing Nash equilibrium is a serious bottleneck
to using the game theoretic approach; as Daskalakis
et al. [2006] have shown, calculating a single Nash
equilibrium is PPAD complete. The UAI community
has developed graphical representations such as graph-
ical games [Kearns et al. 2001], action graph games
[Jiang and Leyton-Brown 2006] and multi-agent influ-
ence diagrams (MAIDs) [Koller and Milch 2001], all of
which have structural properties that assist in the so-
lution of games. Even in these frameworks, however,
computing Nash equilibria can still be very hard.

This paper addresses this bottleneck in two ways.
First, it presents a method for simplifying a game in
order to make it easier to solve. The method works
by analyzing a MAID to discover the reasoning pat-
terns that apply in the given situation. A reasoning
pattern is a form of argument that can lead to or mo-
tivate a decision. Pfeffer and Gal [2007] showed that
all reasoning patterns in MAIDs fall into one of four
graphical categories. Furthermore, they showed that
if no reasoning pattern holds for a particular decision,
the agent making the decision has no reason to prefer
one action over another.

We present an algorithm that identifies whether rea-
soning patterns hold for different decisions, and sim-
plifies the game if they do not. Our algorithm
relies on the definitions of reasoning patterns in
[Pfeffer and Gal 2007] and also integrates insights of
Koller and Milch [2008] that identify cases in which
edges can safely be removed from a MAID. We use an
iterative procedure in which the MAID is repeatedly
simplified. We prove that our algorithm is correct and
that it always results in a maximally simplified MAID.
In particular, the order in which nodes and edges are
considered for removal does not matter. We show that
our algorithm has polynomial running time, and also
demonstrate how memoization improves the complex-
ity of the algorithm. We present an example showing
that our algorithm leads to significant savings in the
cost of solving a MAID, in some cases exponential sav-
ings.

The second way we address the bottleneck is by pro-
viding support for non-equilibrium decision making.
Here the goal is to develop good strategies for games
which are not necessarily Nash equilibria. We extend
our algorithm to identify all the reasoning patterns in
a game. This might be helpful in a number of ways.
First, the reasoning patterns could be presented to a
human decision maker who makes the ultimate deci-
sions. By examining the reasoning patterns, the de-
cision maker can weigh the different arguments for



making decisions and come up with a good decision,
based on his or her beliefs about how others are mak-
ing their decisions. Second, reasoning patterns might
provide the basis for automatic approximate solution
of games. Instead of solving a single large game, one
might solve a number of simpler games and combine
the solutions to produce strategies for the large game.
Third, reasoning patterns can help characterize how
people actually play in games, and thereby help in de-
veloping strategies that best respond to people’s play.
For example, the reasoning pattern known as signaling
brings about issues of trust, while the pattern known
as manipulation focuses agents on the reciprocal as-
pects of their interaction. By making these social as-
pects of reasoning explicit, reasoning patterns facili-
tate understanding and modeling behavior. Finally,
even in games in which an equilibrium can be com-
puted, reasoning patterns may be useful in explaining
the equilibrium to human decision makers. Instead of
a dry suggestion “choose decision rule δ because it is
a Nash equilibrium,” the computer decision support
system will be able to say “choose δ because it will en-
courage another agent to help you without sacrificing
too much of your own utility.”

2 PRELIMINARIES

Multi-Agent Influence Diagrams (MAIDs) are an
extension of Influence Diagrams to the multi-agent
case [Koller and Milch 2001]. A MAID is a directed
acyclic graph with three types of nodes: Chance
nodes, represented as circles, contain conditional
probability distributions over their domains given
their inputs. Decision nodes, represented as rectan-
gles, are used to denote choices belonging to particular
agents. Edges incoming to a decision node reveal
the information that is available to the agent at the
time of his decision. Finally, utility nodes, which
are diamond-shaped and also belong to particular
agents, represent deterministic functions from the
values of their parents to real numbers. A strategy σA
for an agent A in a MAID is a set of decision rules,
one for each decision node belonging to A, which
maps each configuration of its parents Pa(D) to a
probability distribution over the actions in its domain
Dom(D). Similarly, a strategy profile σ for a MAID
is a set containing one strategy for each decision in
the MAID. A strategy profile σ defines a probability
distribution over all the MAID’s nodes Pσ(C,D,U) =∏
ci

Pr(ci|Pa(ci))
∏
dj

σj(dj |Pa(dj))
∏
uk

I[uk = Uk(Pa(uk))],

where C, D and U are the chance, decision and utility
nodes in the MAID and I[x] is the indicator of x. The
expected utility of an agent A under strategy profile
σ is given by EUσ(A) =

∑
U∈Ua

∑
u Pr

σ(U = u)u.
Solving a MAID requires calculating a Nash equilib-

rium, i.e., a strategy profile such that no agent may
hope to increase his expected utility by unilaterally
deviating from his chosen strategy.

In their paper, Koller and Milch [2008] describe an
algorithm for simplifying the structure of a MAID by
removing edges that are incoming to decision nodes. In
particular, their method relies on the fact that, when-
ever a parent of a decision node is d-separated from
its utilities given the decision and its other parents,
then one can remove the edge connecting this parent
to the decision. Our approach for simplifying a game is
based on examining the reasoning patterns of agents.
These are surprisingly simple graphical properties that
all decision nodes are expected to possess in a MAID,
if the strategies of these nodes are important to its so-
lution. We now define the concepts of a motivated and
effective decision node:

Definition 1. A decision node D of agent A is called
motivated if, for some configuration q of its parents,
EU<σ−A,d1>(A|q) 6= EU<σ−A,d2>(A|q) for d1, d2 ∈
Dom(D).

Intuitively, a motivated node is one where the agent
cares about his decision. A non-motivated node, by
contrast, is one where the agent has no reason to
choose one action over another, no matter what the
information available to him might be.

Definition 2. A decision node d of agent a is called
effective if it participates in at least one reasoning pat-
tern.

We briefly and informally present the four rea-
soning patterns below. The reader is referred to
[Pfeffer and Gal 2007] for formal definitions.

• Direct effect: This reasoning pattern is present
when the agent can directly or indirectly (but
not through another agent’s decision) influence
his own utility. An example of direct effect can
be seen in Figure 1a.

• Manipulation: Here an agent A may exert influ-
ence on another agent B, whose utility A can af-
fect. Agent B is “manipulated” to do what A
wants her to, through his effect on her utility. See
Figure 1b for an example of manipulation.

• Signaling: Here A has access to information that
is valuable to B, i.e., affects her utility, and may
choose an action so as to communicate this infor-
mation to B. The reason why he might do that is
because B, upon seeing his signal, will be expected
to choose an action that is favorable to him. An
example is shown in Figure 1c.

• Revealing-denying: In this reasoning pattern the
agent A has the ability to allow or obstruct the
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Figure 1: Examples of reasoning patterns

flow of information to another agent B. This way,
he effectively increases or reduces the level of cer-
tainty B has when making her decision, and thus
he may elicit a more favorable response to him.
An example is shown in Figure 1d.

To obtain their results, Pfeffer and Gal restrict the
strategy space by considering only well-distinguishing
(WD) strategies. This set contains all strategies that
do not differentiate between actions based on informa-
tion that is irrelevant to the decision. Pfeffer and Gal
show that WD strategies always contains a Nash equi-
librium. Moreover, under WD strategies, the following
theorem holds:
Theorem 1. Assuming all agents play WD strategies,
if a decision node is motivated, then it is always effec-
tive (proven in [Pfeffer and Gal 2007]).

3 SIMPLIFYING MAIDs

The discussion of reasoning patterns suggests that, un-
der some circumstances, some decision nodes will be
unmotivated. In this section we present an algorithm
for identifying unmotivated nodes; this will allow us to
simplify a MAID. We will be able to turn these nodes
into chance nodes and remove all edges incoming to
them.

The algorithm, presented as Algorithm 1, receives as
input a MAID M and returns a simplified version of
it. It works by iteratively going through two phases:
The first (lines 6-17) is a reasoning pattern identifica-
tion phase, where for each decision node the algorithm
tries to establish that it is motivated, i.e., at least one
reasoning pattern holds for it. Non-motivated deci-
sion nodes are those in which any action taken has
no effect on the decision maker’s payoff. These are

replaced by chance nodes with uniform conditional
probability distributions and any edges incoming to
them are removed. The second phase (lines 18-20) is
an edge pruning phase, which uses the algorithm of
[Koller and Milch 2008].

Algorithm 1 The simplification algorithm
Input: MAID G
1: D ← decision nodes in G
2: for d in D do
3: effective(d)← true
4: repeat
5: retracted← false; simplified← false
6: {identification phase}
7: repeat
8: changed← false
9: for d in D do

10: if not (df(d) or man(d) or sig(d) or
rev(d)) then

11: effective(d)← false
12: simplified← true
13: changed← true
14: remove edges incoming to d
15: make d a chance node w/uniform distr.
16: discard memoization database
17: until changed = false
18: {pruning phase}
19: if retract edges(G) then
20: retracted← true
21: until retracted = simplified = false

The above algorithm uses procedures df , man,
sig, rev and retract edges, which are defined be-
low. The first four of these correspond to detect-
ing the existence of the respective four reasoning pat-
terns, whereas the fifth implements the algorithm
in [Koller and Milch 2008]. The algorithm termi-
nates when a full iteration (identification and pruning
phases) causes the graph to remain unchanged.

All these procedures are built upon simple
graph reachability or d-separation operations,
all of which can be efficiently computed in
polynomial time. For example, the procedure
directedDecisionFreePath(x, y) is simply imple-
mented by a breadth- or depth-first search. Certain
more “sophisticated” procedures are used to search
for a path that satisfies particular properties. For
example, effectivePath(x, y,W ) is used to search
for a path from x to y on which all decision nodes d
have effective(x) = true and, moreover, the path is
not blocked by the set of nodes W . Here blocking is
interpreted as in any Bayesian network.

df(d)
1: U ← utility nodes belonging to the owner of d
2: for u in U do



3: if directedDecisionFreePath(u,D) then
4: return true
5: return false

man(d)
1: U ← utility nodes belonging to the owner of d
2: N ← decision nodes reachable by d through a di-

rected decision-free path
3: for u in U and n in N do
4: U ′ ← utilities belonging to the owner of n
5: for u′ in U ′ do
6: if directedEffectivePath(n, u) and

directedEffectivePathNotThrough(d, u′, n)
then

7: return true
8: return false

sig(d)
1: U ← utility nodes belonging to the owner of d
2: N ← decision nodes reachable by d through a di-

rected decision-free path
3: for u in U and n in N do
4: U ′ ← utilities belonging to the owner of n
5: w′ ← all parents of n that are not descendants

of d
6: for u′ in U ′ do
7: if directedEffectivePath(n, u) then
8: A← ancestors of d
9: for a in A do

10: if backDoorPath(a, u′, w′) then
11: w ← all parents of d that are not de-

scendants of a
12: if effectivePath(a, u, w) then
13: return true
14: return false

rev(d)
1: U ← utility nodes belonging to the owner d
2: N ← decision nodes reachable by d through a di-

rected decision-free path
3: for u in U and n in N do
4: U ′ ← utilities belonging to the owner of n
5: w ← all parents of n that are not descendants

of d
6: for u′ in U ′ do
7: if directedEffectivePath(n, u) and

frontDoorIndirectPath(d, u′, w) then
8: return true
9: return false

retract edges(d)
1: InfEdges← all edges incoming to decision nodes

in G
2: removed← false
3: for (x, y) in InfEdges do
4: disabled((x, y))← true
5: D ← all decision nodes in G

6: repeat
7: change← false
8: for d in D do
9: Parents(d)← parents of d

10: Utilities(d)← utilities of d
11: for p in Parents(d) and u in Utilities(d) do
12: w(p, d)← all parents of d except for p
13: if not dSeparUseEnabled(p, u, w(p, d))

then
14: disabled((p, d))← false
15: change← true; removed← true
16: until change = false
17: remove all disabled edges from G
18: return removed

directedDecisionFreePath(x1, x2)
return true if there is a directed, decision-free path
from x1 to x2

directedEffectivePath(x1, x2)
return true if there is a directed path from x1 to x2

in which all decision nodes, except perhaps the first
node of the path, are effective

effectivePath(x1, x2)
return true if there is an undirected path from x1 to
x2 in which all decision nodes, except perhaps the
first node of the path, are effective

directedEffectivePathNotThrough(x1, x2, Y )
return true if there is a directed effective path from
x1 to x2 that does not go through any of the nodes
in Y

backDoorPath(x1, x2,W )
return true if there is a back-door path from x1 to
x2 that is not blocked by W

frontDoorIndirectPath(x1, x2,W )
return true if there is a non-directed front-door path
with converging arrows at some node from x1 to x2

that is not blocked by W

dSepartUseEnabled(x1, x2,W )
return true if x1 is d-separated from x2 given W , by
using only edges e having disabled(e) = false

A back door path in the above methods is defined as
an undirected effective path where the first edge comes
into the first node. A front door indirect path is an
undirected effective path where the first edge comes
out of the first node and, moreover, the path has con-
verging arrows at some node.

3.1 Proof of correctness

We wish to show that our algorithm performs a legit-
imate simplification M ′ of the input MAID M , given



our assumptions of how agents reason about available
information. We also care about the effect of the or-
der under which nodes are being eliminated, in order
to guarantee that the maximum possible number of
non-effective nodes are detected and removed.

Definition 3. A simplification M ′ of a MAID M is
legitimate if all the Nash equilibria of M ′ are also Nash
equilibria of M , in the sense that all nodes in M that
have not been eliminated do not have an incentive to
deviate from their equilibrium strategy in M ′ and all
nodes that are not effective play in M according to a
fully-mixed, uniform strategy.

We begin by first proving that, if the algorithm marks
effective and non-effective nodes correctly, all Nash
equilibria of the simplified MAID M ′ are also Nash
equilibria of the original MAID. More precisely, since
the original game also contains the decision nodes
that were eliminated (and replaced by chance nodes)
we need to show that extending the equilibria of M ′

by adding fully mixed uniform strategies for all non-
motivated decisions yields a Nash equilibrium of M .

Theorem 2. Let D be the decision nodes of the orig-
inal MAID M and D′ be the corresponding decision
nodes in the simplified MAID M ′. If σ′ is a Nash equi-
librium of M ′ then construct σ by adding fully mixed
uniform strategies for all decision nodes in D − D′.
Then σ is a Nash equilibrium of M .

Proof. We prove this by contradiction. Let there be
an agent with a decision node a who wishes to devi-
ate from σa; there are two cases: either a ∈ D′ or a ∈
D−D′. In the first case, if the agent owning a wants to
deviate to a strategy σ1

a inM then she would deviate to
σ1
a in M ′ as well, contradicting our assumption that σ′

is a Nash equilibrium in M ′. In the second case, a was
marked as non-effective, therefore a is not motivated,
by Theorem 1. By the definition of a non-motivated
node, EU<σ−a,d1>(a,q) = EU<σ−a,d2>(a,q) for ev-
ery pair of actions d1, d2 of a and every configuration
q of its informational parents. Therefore a provides
with a fully mixed uniform strategy the same payoff
as from any possible deviation from it. Therefore σ is
a Nash equilibrium of M . The above reasoning holds
even in cases where the agent of a owns other decision
nodes besides a, from which he might try to simulta-
neously deviate. The reason is that a is non-motivated
due to strictly graphical properties of the MAID, not
due to any particular parameters employed in other
chance or decision nodes; thus strategies followed by
any other agent—including the owner of a—elsewhere
cannot cause it to become motivated.

We then prove that our algorithm eliminates nodes
correctly and maximally, irrespective of order. We do
this first by looking at the four procedures that detect
reasoning patterns. These work by explicitly following

the definitions of the four reasoning patterns, so they
are correct (we omit the details). We then look at
the first phase of the algorithm (lines 6-18). First,
however, we need the following lemma.

Lemma 1. If REn is the set of reasoning patterns that
hold for a decision node n when the set of edges in the
MAID is E, then RE

′

n ⊆ REn for all E′ ⊆ E.

Proof. Consider a MAID with edges E and a set REn of
reasoning patterns holding for decision node n. Now
remove an edge e ∈ E, such that the MAID now has
edges E′ = E − {e}. Suppose now, for the sake of
contradiction, that RE

′

n * REn . This means that a
reasoning pattern r did not exist under E but exists
under E′. Take the paths Pr of this reasoning pat-
tern and let E(Pr) be the set of their edges. Clearly,
E(Pr) ⊆ E′ ⊂ E so all the paths the reasoning pattern
r depends on existed in the original MAID with edges
E. Thus the only reason why r did not hold under E
was that one or more of its paths were blocked at some
node. Let p ∈ Pr be one such path with blocking set
Wp (Wp = ∅ if the definition of the reasoning pattern
required no d-separation properties to hold for that
path) and let b be the node where p was blocked by
Wp. If p has non-converging arrows in b then b ∈ Wp,
so p should be blocked again under E′, since no nodes
were removed, only an edge. If p has converging ar-
rows in b then it means that neither b nor any of its
descendants were in Wp. But removing e can neither
add b to Wp, nor cause the set of its descendants to
grow. Therefore, under E′, too, Wp will block p at b
and therefore our argument is contradictory.

Lemma 2. If a node is identified in some identifica-
tion phase under some order, it will be so identified
under any order.

Proof. Let n1, ..., nk be an order of identifying non-
effective nodes and n′1, ..., n

′
k be a different order. Also

define as En the set of edges in the MAID after node n
has been eliminated and as E the edges in the MAID
in the beginning, before any elimination takes place.
Suppose that under the new order node n1 is placed
at position h. Then, by Lemma 1, in the identification
phase and under the new order n1 will be eliminated
irrespective of h, since E′h ⊆ E and node n1 was elim-
inated under E. We then reason by induction. Now
assume that n1, ..., ni have been eliminated. Then ni+1

will be eliminated at the latest in the next phase after
all of n1, ..., ni have been eliminated, because the set
of edges present will be a subset of Ei.

For the second phase of the algorithm (pruning), this
is exactly implemented as in [Koller and Milch 2008],
which contains the proof of its correctness.

Theorem 3. The algorithm produces a correct and
maximal simplification of a MAID.



Proof. We know that the operation of each phase is
correct. Moreover, we know the pruning phase only
removes edges. Thus, by Lemma 1, it does not mat-
ter in the context of the identification phase on which
iteration of the algorithm the pruning phase removes
an edge e, as long as it eventually removes it (on some
iteration). Thus the only thing we need to establish
is that no operation in the identification phase might
ever prevent an edge from being removed in the prun-
ing phase.

The pruning phase works by testing for certain d-
separation properties, while the identification phase
only removes edges (never adds). Thus, in spirit
similar to the proof of Lemma 1, if the MAID has
edges E in the beginning of the pruning phase and
an edge e = (x, y) is removed during its execution,
then if the MAID had edges E′ ⊂ E then e would
still be removed. If e was removed with edges E
then x was d-separated from the utility nodes of y
given {y} ∪ {d : (d, y) ∈ E, d 6= x}, by definition of
[Koller and Milch 2008]’s algorithm. Now under the
smaller set of edges E′ it is the case that x must,
again, be d-separated from y’s utility nodes, since the
removal of any edge in E−E′ cannot have made these
two less separated. Therefore, no matter in which or-
der we execute the two phases and no matter what
their intermediate results are, the end product is the
same.

Furthermore, the iteration of identification and prun-
ing phases will terminate. Neither adds an edge and
there are at most E edges to remove, so the process
will eventually terminate.

We have shown that our algorithm’s operations are
consistent with our assumptions and that it will always
return a maximally simplified MAID. In the following
section we analyze its complexity.

3.2 Algorithm Complexity

The complexity of the algorithm is easy to estimate.
We first begin with the bottom-level procedures which
are path operations. Those that do not involve a non-
empty blocking set are instances of graph reachability,
which can be performed in O(E+N) = O(E) time, as-
suming E > N . If the blocking set is non-empty, how-
ever, every time a path is expanded one needs to check
that it is not blocked at that node. This can be done
using an algorithm such as BayesBall [Shachter 1998],
which is O(E).

We also use memoization to improve the computation
of blocking properties along the paths. In particular,
whenever we query whether a path with converging
arrows at at a node b is blocked by a set W , we store
the result blocked(b,W ) in a hash table. Subsequent

queries for the same node and blocking set first check
the hash table for an already computed result and only
execute the full operation (costing O(E)) if needed.
After each iteration, since the structure of the graph
has changed, we drop all memoized entries (line 16).

Theorem 4. The algorithm simplifies the MAID in
time O(D2N2E), where D is the number of decision
nodes in the graph.

Proof. We have established that all path operations
take polynomial time. In particular, suppose C and U
are the number of chance and utility nodes. Then pro-
cedure df performs O(U) simple path operations, so it
costs O(UE) in the worst case. Manipulation (man)
performs O(DU2) simple operations, for a total cost
of O(DEU2). Signaling (sig) requires certain paths to
satisfy blocking properties and performs O(CDU2) of
those, for a total worst-case cost of O(CDU2E2). Here
the E2 results from the following: For every combina-
tion of nodes related to the signaling patterns we need
to find certain paths with graph reachability (O(E));
for each such path, at every step we need to check for
blocking properties, which adds another O(E), for at
total of O(E2). Finally, revealing-denying (rev) per-
forms O(DU2) blocking-sensitive path operations and
thus has worst case cost of O(DU2E2).

We see that signaling is the most expensive of these
operations. However, with memoization, its worst-
case complexity can be reduced. We reason as follows.
There can be a total of O(DN) blocking sets required
for the purposes of identifying reasoning patterns in
the graph (for every decision node there can be one
blocking set including all of its parents but one, and
there are O(N) parents per decision). Thus, even if
we were to calculate blocking properties for all nodes
and possible sets, the time per iteration would be
bounded by O(DN2E). In a similar fashion, the time
complexity for revealing-denying identification can be
bounded.

The algorithm as a whole also performs at most O(D)
iterations in the outer loop. This is because if two con-
secutive iterations eliminate no nodes the algorithm by
definition terminates, since the pruning phase of the
second iteration will remove no edges. Therefore the
total cost of the algorithm is polynomial and on the
order of O(D2N2E).

Of course it has to be noted that the expected perfor-
mance of our algorithm is likely to be much better than
its worst-case bound calculated above. In particular,
the evaluation of the if structure in line 10 is short-
circuited, meaning the expensive sig operation is only
evaluated if df and man are false, since it is sufficient
to show that a node participates in one reasoning pat-
tern to be effective. Moreover, real games very likely
have much fewer reasoning patterns mainly consisting
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Figure 2: MAID for our simple example

of direct effects and manipulations, especially after the
pruning phases of the first iterations have reduced the
number of edges in the graph that are important to
signaling and revealing-denying patterns.

4 AN EXAMPLE

Consider the following game. Player A is handed a
card, which can be either High (H ), Medium (M ) or
Low (L). Another player (B) must guess what type
of card A was given; upon a correct guess she wins
$10, otherwise she gets nothing. A can tell her what
the value of the card is, not necessarily truthfully. A’s
payoff is $10, $5 or $2 if B guesses H, M or L, re-
spectively, no matter what the true value of the card
is. Finally, another player C has access to the value of
the card and must guess what B will guess. If his guess
matches B ’s, he wins $10, otherwise he gets nothing.
Furthermore, B can see C’s choice before making her
decision. The MAID for this game can be seen in Fig-
ure 2.

This game can be solved using a MAID solution algo-
rithm. The algorithm of [Koller and Milch 2001] uses
a relevance graph. Each strongly connected component
of the relevance graph is converted into an extensive
form game tree. Unfortunately, in our game the rel-
evance graph contains a single connected component,
so the entire game must be converted into a tree. This
tree must split at A’s, B’s and C’s choices, resulting
in 33 = 27 leaf nodes.

Can we do better? In our card game one might reason
as follows: Agent A’s utility is not affected by the value
of the card J , thus—according to WD strategies—A
will not condition his decision on the value of J that
he observes. In other words, A is unmotivated and has
no reason to tell B the truth about J . Knowing that,
B will not believe A. Similarly B will ignore what C
tells him, because—again—C’s utility is unaffected by
the value of J and thus he will ignore it in his decision.
The new, simplified MAID can be seen in Figure 3.

Our algorithm in this instance would proceed as fol-

 

A 

B 

C 

J 

UA 

UB 

UC 

B 

C 

J 

UA 

UB 

UC 

A 

Figure 3: Simplified example MAID

lows: During the first iteration, in the identification
phase A would be replaced by a chance node (none
of the reasoning patterns hold for it) and the edge
(J,A) would be removed. In the pruning phase the
edge (J,C) is removed, because it is d-separated from
UC given C. Furthermore, since A is d-separated from
UB given {B,C} the edge (A,B) would be removed
as well. For the same reason (C,B) would be pruned.
During the second iteration no change is performed
and the algorithm terminates. We now have to solve
just two game trees, one for B and one for C, with 9
leaf nodes each.

Now extend this simple game by adding more C-type
players. Each of these would have access to J , win
upon matching B’s choice and have his decision known
to B. With n such C-type players, the original game
has a tree representation of 3(2+n) leaves, whereas run-
ning the algorithm for one iteration would simplify this
to n + 1 trees of 32 leaves each; savings in computing
the equilibrium of the game are thus exponential.

5 ENUMERATING REASONING
PATTERNS

We can easily tweak the algorithm to have it enumer-
ate reasoning patterns as well. This can be done by
not short-circuiting the if of line 10 of the algorithm
and changing the functions df ,man, sig and rev so as
not to return when a reasoning pattern is found, but
to add it to a list and iterate until no more reasoning
patterns of that type are found.

As an example, consider the following two-stage
principal-agent game with reputation. In each stage
of the game the principal P wants the agent D to
execute a task. The agent may be of type good or
bad, but this type is not visible to the principal. The
agent’s decision is to exert high or low effort. Bad-type
agents enjoy a greater utility from exerting low effort
and vice versa for good-type agents. Moreover, the
price offered by the principal also affects the agent’s
decision. Upon the completion (adequate or poor) of
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Figure 4: A two-stage principal-agent game

the task in the first stage, the principal moves on to
offer another price to the agent for the second task.
However, the agent’s choice (visible performance) in
the first stage is used to update a reputation value (r0
to r1), which the principal takes into consideration in
his second offer. The reputation at each stage can be
high, medium or low and is more likely to change be-
tween rounds when it is medium. The MAID for the
game can be seen in Figure 4 (perfect recall edges are
omitted for clarity). Running our algorithm reveals a
set of interesting reasoning patterns (the “story” be-
hind each reasoning pattern is provided by us and is
not automatically generated by the workings of the
algorithm):

• Direct effect: All nodes P1, P2, D1, D2 have di-
rect effect. This corresponds to the fact that the
players’ actions have an immediate effect on their
payoff.

• Manipulation (principal → agent): At each stage
the principal manipulates the agent through the
price offered. A higher price makes effort = high
more preferable for the agent and thus indirectly
increases the principal’s utility.

• Manipulation (agent → principal): D1 manipu-
lates P2. This reflects the agent’s thinking at
stage 1: pretending to be good when in fact he is
not can cause P2 to offer him a high price for the
second-round task (because the principal trusts
him). In other words, this pattern corresponds to
deceiving the principal and “milking” your repu-
tation in the second round.

• Signaling (agent→ principal): D1 signals his type
to P2 by choosing an appropriate effort level. The
variable type is not observed by the principal;
however, the principal does care about it, since
it provides him with insight to the agent’s rea-
soning. The agent, on the other hand, wants his
action to reveal something about this hidden piece
of information. For example, if the agent is good,
he wants the principal to know this so that he is
offered a high price in the following round.

• Signaling (r0 to D1): P1 signals the current repu-
tation value to D1. This is subtle but interesting:
Suppose the agent believes that the principal has
a current reputation value for him (the agent) that
is low. In that case the agent might consider it a
“lost cause” to exert high effort, since the princi-
pal on the next round is still going to believe he
is bad and offer him a low price. Conversely, if
the agent thinks his current r0 is high, he has less
reason to actually try and retain this reputation
by exerting high effort. Thus, if r0 is medium, the
principal wants the agent to know it.
• Revealing-denying (type to P2): P1, by making a

suitable offer to D1 in the first round, can elicit
information about his type that will be useful to
P2. For example, if the offer in the first round is
too high, then it might be optimal for the agent to
always exert high effort, which reveals little about
his type. Experimenting with moderate offers al-
lows the principal to risk guaranteed good perfor-
mance in the first round, so that he may discover
more about the agent’s true type and exploit that
in the second round.

We see in this example how the reasoning patterns can
be used to discover the possible motivations or pat-
terns of thought agents may have when considering
their decisions. Among them, there are some motiva-
tional patterns that are not obvious or easy to detect
by means of any reasoning tool available today.

6 DISCUSSION

The algorithm presented in this paper uses the as-
sumption of well-distinguishing (WD) strategies to
simplify a game for the purpose of calculating a Nash
equilibrium. Despite this being a reasonable assump-
tion for computational agents, it is not clear whether
people in general condition their actions only on obser-
vations that have an effect on their utilities, or whether
they heed otherwise irrelevant signals. We plan to in-
vestigate this experimentally.

Another limitation of our algorithm is that it uses
strictly graphical properties to discover and remove
non-motivated nodes. Although this greatly simpli-
fies the process and keeps it computationally efficient,
a more rigorous examination of the parameters inside
chance and utility nodes could lead to further simpli-
fications. For example, it might be the case that a
signaling reasoning pattern does hold graphically, but
the parameters of the MAID are such that the first
agent (Alice) always optimally decides on one par-
ticular action for all possible values of the signal, in
which case the second agent (Bob) has no reason to
infer anything about it by observing her action and he
should rationally ignore it. Another example is zero-



sum games, where selfish rational agents will optimally
have no reason to signal any variable of interest to an-
other agent, or believe any such signal.

Moreover, it has to be noted that our algorithm does
not quantify the reasoning patterns it discovers. We
cannot say, “According to this reasoning pattern, tak-
ing action X will increase your utility by such and such
an amount.” It is up to the decision maker to deter-
mine the semantic interpretation and relative impor-
tance of the reasoning patterns.

Finally, although in the worst case exponential sav-
ings are possible, it is not yet clear how the algorithm
performs in a typical case. We chose to avoid directly
answering this question, mainly because of the chal-
lenge in defining “typical cases.” Moreover, one should
keep in mind that the algorithm’s usefulness increases
with the size of the game, since in large MAIDs de-
ciding which observation is truly relevant to a deci-
sion is not obvious. In such cases, because the algo-
rithm is polynomial—whereas Nash equilibrium com-
putation is not, assuming PPAD 6= P—, it can be run
at negligible cost, even if the savings obtained are not
significant.

7 CONCLUSION & FUTURE
WORK

We have presented an algorithm for identifying reason-
ing patterns in games. This algorithm can be used in
two ways: First, it can identify unmotivated decisions
in a MAID graph; these can be effectively ignored for
the purposes of calculating a Nash equilibrium, which
can sometimes lead to considerable computational sav-
ings. Second, it is capable of discovering non-obvious
patterns of thought agents might use when making
their decisions. These patterns can be presented to a
human decision maker to help him or her make good
decisions. They may also used as inputs to other algo-
rithms for decomposing, analyzing, explaining or even
predicting agent or human behavior.

We believe that in complex systems, and especially
those in which human and computer agents interact
heavily, it is important for successful agents to model
the “context” of their interaction. Certain features of
games are likely to bring about different motivations
in human behavior, such as reciprocity or cooperation.
Reasoning patterns are promising as modeling aids for
three reasons: First, they are adequately rich to ana-
lyze arbitrarily complex games, yet they are concise in
their number. Second, they have a behavioral flavor,
in that they talk about reasoning and not just utility
maximization, yet they also have a rigorous mathe-
matical and normative foundation. And third, they
are discoverable in efficient (polynomial) ways. We

plan to extend this line of research with the ultimate
goal of constructing computerized agents who have a
better understanding of human motivations and are
better aligned with their goals. This will entail cal-
culating semantic characterizations of the various rea-
soning patterns, looking at their graphical properties
as well as the parameters within the nodes, and ex-
plicitly calculating the implications of each pattern to
the agents’ optimal or equilibrium strategies.
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