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Capturing Humans in MotionCapturing Humans in Motion

E T I E N N E - J U L E S M A R E Y, 1882.
Marker-based tracking

EADWEARD MUYBRIDGE, 1884-5. 
Multiple cameras.

Loss of depth and motion in 
projection to 2D images.
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“Mocap” Today“Mocap” Today
Cameras

CMU Mocap lab. 2003
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Markerless Markerless Motion CaptureMotion Capture

Kinematic tree:
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Marr&Nishihara ‘78

Represent a “pose” at time t by a vector of  these parameters: φt

Also 
model 
angular 
velocities 
~ 50D 
space
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Markerless Markerless Motion CaptureMotion Capture
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Markerless Markerless Motion CaptureMotion Capture

tφFind the pose

such that the projection “matches” 
the image data.

* No special clothing
* Unknown, cluttered, environment
* Incremental estimation
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Markerless Markerless Motion CaptureMotion Capture

tφFind the pose

such that the projection “matches” 
the image data.
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MotivationMotivation
* Markerless Mocap

• animation, film, games, archival footage
• sports and rehabilitation medicine

* Tracking
• gait recognition (biometric person identification)
• surveillance 

* Understanding
• HCI/gesture recognition (cars, elder care, games, …)
• video search/annotation
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Why is it Difficult?Why is it Difficult?

The appearance of people
can vary dramatically.

Bones and joints
are unobservable
(muscle, skin, 
clothing hide the
underlying structure).
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Why is it Difficult?Why is it Difficult?

Low contrast

Self occlusion

Loss of 3D in 2D 
projection

Unusual poses
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Clothing and LightingClothing and Lighting
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Large MotionsLarge Motions

Long-range motions. Motion blur.

(makes search and matching hard) (nothing to match)
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AmbiguitiesAmbiguities

Ambiguous matches Self occlusion
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RequirementsRequirements

1. Represent uncertainty and multiple hypotheses.
2. Model complex kinematics of the body.

Correlations between joints and over time.
3. Exploit multiple image cues in a robust fashion.
4. Integrate information over time.

The recovery of human motion is 
fundamentally a problem of inference from 
ambiguous and uncertain measurements.
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ApproachApproach
Bayesian formulation

p(model | cues) = p(cues | model) p(model) 

4. Search: discretize intelligently using factored 
sampling and search using a particle filter.

p(cues)

2.  Likelihood: exploit learned likelihood of filter 
responses conditioned on the projected model.

3. Prior: statistical model, learned from 
examples.

1. Model: Kinematic tree. Cues: filter responses.
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Towards a Rigorous LikelihoodTowards a Rigorous Likelihood

1. Project 3D model into image to predict the 
location of limb regions in the scene.

2. Compute rich set of spatial and temporal filter 
responses conditioned on the predicted 
orientation of the limb.

3. Compute likelihood of filter responses using a
statistical model learned from examples.
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Natural Image StatisticsNatural Image Statistics

Ruderman.  Lee, Mumford, Huang. 
Portilla and Simoncelli. Olshausen 
& Field.  Xu, Wu, & Mumford. …

* Marginal statistics of image   
derivatives are non-Gaussian.

* Consistent across scale.

filter response
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HumanHuman--Specific StatisticsSpecific Statistics

)|( tion fp φ

Learn marginal statistics.

fi filter response
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Generic Background StatisticsGeneric Background Statistics

)( ioff fp
fi filter response
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LikelihoodLikelihood
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PriorPrior
Bayesian formulation

p(model | cues) = p(cues | model) p(model) 
p(cues)

2.  Likelihood: exploit learned likelihood of filter 
responses conditioned on the projected model.

3. Prior: statistical model, learned from 
examples.

1. Model: Kinematic tree. Cues: filter responses.
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Learning Human MotionLearning Human Motion
* constrain the posterior to likely & valid    

poses/motions
* What we want:

time

joint angles

3D motion-capture data.
* Database with    

multiple actors and a 
variety of motions.

(from M. Gleicher)

)|( 1−ttp φφ
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Alternative:

* the data represents all we know

* replace representation and learning with search. 
(challenge: search has to be fast)

EfrosEfros & Freeman’01& Freeman’01

Implicit Probabilistic PriorImplicit Probabilistic Prior
Problem:

* insufficient data to learn an explicit prior 
probabilistic model of human motion.
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Texture SynthesisTexture Synthesis

Efros & Freeman’01

“Database”
Synthetic Texture

* e.g. De Bonnet&Viola, Efros&Leung, Efros&Freeman,
Paztor&Freeman, Hertzmann et al.

* Image(s) as an implicit probabilistic model.
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““Mocap Soup” [Cohen]Mocap Soup” [Cohen]

– Arikan & Forsyth. Interactive motion generation from examples
– Li et al. Motion textures: A two-level statistical model for character 

motion synthesis
– Lee et al. Interactive control of avatars animated with human motion data
– Kovar et al. Motion graphs
– Pullen & Bregler. Motion capture assisted animation: Texturing and 

synthesis

Here we formulate a probabilistic model suitable for 
stochastic search and Bayesian tracking.

SIGGRAPH’2002:
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Motion TextureMotion Texture
1−Φt

1−Ψi

s
tφ

ψi

1−Φt
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Probabilistic FormulationProbabilistic Formulation

)|( 1−Φ t
s
tp φ

Want samples from the temporal prior

pose at time t history of poses up to t-1

Database index i-1

)|( 11 −− ΦΨ tip
Instead, sample from

and take φt
s = ψi

Problem:
Compute                for all motions i in the database?)|( tip ΦΨ
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Approximate Probabilistic ModelApproximate Probabilistic Model

Approach:

Only need samples.
Trade accuracy for speed of sampling.
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Probabilistic Database SearchProbabilistic Database Search

Each level in the tree 
corresponds to one 
PCA coefficient l.

Sort each motion example 
i into a tree: Left subtree 
for negative value of cl,i, 
right for positive value.
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Probabilistic Database SearchProbabilistic Database Search
)|()|( titi pp cc≈ΦΨ

Approximated by sampling 
from tree iteratively:
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Walking

Motion Motion ““Texture” SynthesisTexture” Synthesis

Changing color indicates new example sequence.

Start with a small motion “chunk,” sample to generate 
a new sequence of poses.
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Bayesian FormulationBayesian Formulation
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Posterior over model parameters given 
an image sequence.

Likelihood of
observing the image features
(filters responses) given the 
model parameters

Temporal model (prior)

Posterior from
previous time instant

Monte Carlo integration
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Inference/SearchInference/Search
Bayesian formulation

p(model | cues) = p(cues | model) p(model) 
p(cues)

2.  Likelihood: exploit learned likelihood of filter 
responses conditioned on the projected model.

3. Prior: statistical model, learned from 
examples.

1. Model: Kinematic tree. Cues: filter responses.

4. Search: discretize intelligently using factored 
sampling and search using a particle filter.
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Key Idea: Represent AmbiguityKey Idea: Represent Ambiguity

Samples from a distribution
over 3D poses.

* Represent a multi-modal 
posterior probability 
distribution over model 
parameters

- sampled representation
- each sample is a pose
and its probability
(likelihood weighting)

- predict over time 
using a particle 
filter.



Michael J. BlackAugust 2003

Particle FilterParticle Filter

Isard & Blake ‘96

Posterior )I|( 11 −− ttp
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Particle FilterParticle Filter

Isard & Blake ‘96

Posterior )I|( 11 −− ttp
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Particle FilterParticle Filter

Isard & Blake ‘96

Temporal dynamics

samplesample
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Particle FilterParticle Filter

Isard & Blake ‘96

Temporal dynamics

samplesample

Likelihood
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Particle FilterParticle Filter

Isard & Blake ‘96

Temporal dynamics

samplesample

Posterior

Likelihood

normalizenormalize
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Stochastic 3D TrackingStochastic 3D Tracking

* 2500 samples.
* circa 2000.

monocular 
sequence
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How Strong is the Prior?How Strong is the Prior?

* Learned walking prior.
* No likelihood = hallucination.
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Related WorkRelated Work

* Single camera, multiple hypotheses.
* 2D templates (no change in viewpoint)
* Manual initialization.

Cham & Rehg ‘99
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Related WorkRelated Work

Deutscher, North, Bascle, & Blake ‘99

* multiple cameras

* simplified clothing 
and light

* manual initialization

* weak prior

* “annealed” particle 
filter
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Related WorkRelated Work

Sminchisescu &Triggs ‘01

* manual initialization

* monocular

* complex background

* multiple cues (motion, 
edges, motion discontinuities)

* weak prior

* careful attention paid to the 
optimization problem.
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Are we done?Are we done?

Current systems:

* require manual initialization

* are brittle (can’t re-initialize)

* can’t easily exploit robust, bottom-up, detectors

The search space is huge.

Particle filtering on the whole space requires strong 
priors or huge numbers of samples.
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Kinematic Kinematic TreeTree

Traditional kinematic tree

(dogma)

* brittle if it does not fit 
perfectly.

* starts with torso which is 
hardest to find.

* faces, hands, and feet may 
be easier to find.

* these are defined wrt the 
other limbs – results in a full 
high-dimensional search to 
fit bottom up measurements.
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Attractive PeopleAttractive People

Traditional kinematic tree

(dogma)

“Push puppet” toy

(dog)



Michael J. BlackAugust 2003

Attractive PeopleAttractive People

“Push puppet” toyLoose-limbed body 
(graphical model)
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LooselyLoosely--Jointed BodiesJointed Bodies

Soft constraints (messages) 
between limbs.

Pose estimation becomes inference 
in a graphical model (Belief 
Propagation).

Allows bottom up initialization.

Deals well with unobserved limbs.

(with Michael Isard and Leon Sigal)

Pictorial structures – Fischler and Elschlager ’73
More recently (2D, discretized):

* Felzenszwalb & Huttenlocher ’00, Forsyth et al ’00-03.
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LooselyLoosely--Jointed BodiesJointed Bodies
(with Michael Isard and Leon Sigal)

* 6D (position & orientation)
discretization not practical
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BeliefBelief

neighbors of 
node i

incoming messages

local evidence

observations (image 
and filter responses)

random variable (position 
and orientation of node i)

∏
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neighbors of 
i, not 
including j

incoming 
messages at i

this is the hard part if 
things aren’t Gaussian

MessagesMessages

message from node i to node j

potential from i to j (prob of 
Xj conditioned on Xi)

(“spatial” or temporal prior)

local evidence
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MessagesMessages

∫ ∏
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message “foundation”

Monte Carlo integration.

* draw samples from normalized foundation

* propagate through potential function
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Potential FunctionsPotential Functions
“forward” “backward”

* represented by a mixture of Gaussians (fit to mocap data).
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Temporal PotentialsTemporal Potentials

6
6 6

Time

6
1, +ttψ

* we also define potentials backwards/forwards in time. 

Introduces loops
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ApproachApproach
Problems:

* state space is continuous and relatively high 
dimensional
* likelihoods are non-Gaussian and multi-modal
* relationships between limbs are complex (not 
Gaussian)

Approach:
* exploit particle set idea to represent messages
* Algorithm: Non-parametric Belief Propagation
(Isard’03, Sudderth et al ‘03)
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Algorithm SketchAlgorithm Sketch
1. represent 

messages and 
beliefs by a discrete 
set of weighted 
samples (ie. 
mixture of narrow
Gaussians).
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Algorithm SketchAlgorithm Sketch
2. compute product 
of incoming 
messages (also a 
mixture of
Gaussians).

Product of d
mixtures of n
Gaussians: nd
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Algorithm SketchAlgorithm Sketch
2. compute product 
of incoming 
messages (also a 
mixture of
Gaussians).

Product of d
mixtures of n
Gaussians: nd

Gibbs sampler (Sudderth et al):

take the product with n
Gaussians.

fix d-1 samples
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Algorithm SketchAlgorithm Sketch
2. compute product 
of incoming 
messages (also a 
mixture of
Gaussians).

Product of d
mixtures of n
Gaussians: nd

weight the 
samples

Gibbs sampler (Sudderth et al):
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Algorithm SketchAlgorithm Sketch
2. compute product 
of incoming 
messages (also a 
mixture of
Gaussians).

Sample to 
select a new 
Gaussian.

Gibbs sampler (Sudderth et al):

* Repeat with each message.
* Repeat the process k times.
* Take the product of the selected 
Gaussians and draw a sample.

Repeat until 
you’ve drawn n
samples.

Cost: O(dkn2)
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Algorithm SketchAlgorithm Sketch
3. to construct a 
message, we draw 
samples from a 
proposal distribution
(including incoming 
message product, 
belief, and bottom up 
processes); importance 
re-weight. Noisy bottom up process 

(limb detector)
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Algorithm SketchAlgorithm Sketch
4. propagate 
samples through 
the potential to get 
new message. 

Repeat.
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Iteration 0
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Iteration 1
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Iteration 2
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Iteration 3
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Iteration 7
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Iteration 10
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SummarySummary
We have tackled four important parts of the problem:

1. Probabilistically modeling human 
appearance in a generic, yet constraining, way.

2. Representing the range of possible motions 
using techniques from texture modeling.

3. Dealing with ambiguities and non-linearities 
using particle filtering for Bayesian inference.

4. Automatic initialization using Belief 
Propagation.

like
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What Next?What Next?

* part detectors (faces, limbs, hands, feet, etc)

* interactions between non-adjacent limbs

• introduces new nodes and loops to the graphical 
model 

* new techniques for learning probabilistic models in 
high dimensional spaces with limited training data.
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OutlookOutlook
5-10 years:

- Relatively reliable people tracking in
monocular video

- Accurate with multiple cameras
- Path is pretty clear.

… solve the vision problem.

Next step: Beyond person-centric
- people interacting with object/world

Beyond that: Recognizing action
- goals, intentions, ...

… solve the AI problem.


