

Inferring 3D People from 2D Images

Michael J. Black

Department of Computer Science Brown University

Collaborators

Hedvig Sidenbladh, Swedish Defense Research Inst.
Leon Sigal, Brown University
Michael Isard, Microsoft Research
Ben Sigelman, Brown University
David Fleet, PARC Inc. (soon: U. Toronto)

Funding: DARPA HumanID project.

Capturing Humans in Motion

Loss of depth and motion in projection to 2D images.

EADWEARD MUYBRIDGE, 1884-5. Multiple cameras.

ETIENNE-JULES MAREY, 1882. Marker-based tracking

August 2003

Michael J. Black

Represent a "pose" at time t by a vector of these parameters: f_t

such that the projection "matches" the image data.

such that the projection "matches" the image data.

Michael J. Black

Motivation

- * Markerless Mocap
 - animation, film, games, archival footage
 - sports and rehabilitation medicine
- * Tracking
 - gait recognition (biometric person identification)
 - surveillance
- * Understanding
 - HCI/gesture recognition (cars, elder care, games, ...)
 - video search/annotation

Why is it Difficult?

The appearance of people can vary dramatically.

Bones and joints are *unobservable* (muscle, skin, clothing hide the underlying structure).

Why is it Difficult?

Loss of 3D in 2D projection

Unusual poses

Self occlusion

• Low contrast

<u>Clothing and Lighting</u>

Large Motions

Long-range motions.

(makes search and matching hard)

Motion blur. (nothing to match)

Ambiguities

Ambiguous matches

Self occlusion

August 2003

Michael J. Black

Requirements

 Represent uncertainty and multiple hypotheses.
 Model complex kinematics of the body. Correlations between joints and over time.
 Exploit multiple image cues in a *robust* fashion.
 Integrate information over time.

The recovery of human motion is fundamentally a problem of inference from ambiguous and uncertain measurements.

Approach

Bayesian formulation

$$p(\text{model} | \text{cues}) = \frac{p(\text{cues} | \text{model}) p(\text{model})}{p(\text{cues})}$$

- 1. Model: Kinematic tree. Cues: filter responses.
- **2. Likelihood**: exploit *learned* likelihood of filter responses conditioned on the projected model.
- **3. Prior**: statistical model, *learned* from examples.
- **4. Search**: discretize intelligently using factored sampling and search using a particle filter.

Towards a Rigorous Likelihood

- 1. Project 3D model into image to predict the location of limb regions in the scene.
- 2. Compute rich set of spatial and temporal filter responses conditioned on the predicted orientation of the limb.
- **3**. Compute likelihood of filter responses using a statistical model *learned from examples*.

Natural Image Statistics

Ruderman. Lee, Mumford, Huang. Portilla and Simoncelli. Olshausen & Field. Xu, Wu, & Mumford. ...

* Marginal statistics of image derivatives are non-Gaussian.
* Consistent across scale.

Human-Specific Statistics

Generic Background Statistics

Likelihood

Prior

Bayesian formulation

$$p(\text{model} | \text{cues}) = \frac{p(\text{cues} | \text{model})p(\text{model})}{p(\text{cues})}$$

1. Model: Kinematic tree. Cues: filter responses.

- **2. Likelihood**: exploit *learned* likelihood of filter responses conditioned on the projected model.
- **3. Prior**: statistical model, *learned* from examples.

Learning Human Motion

* constrain the posterior to likely & valid poses/motions
* What we want: p(f_t | f_{t-1})

3D motion-capture data.* Database with multiple actors and a variety of motions.

Implicit Probabilistic Prior

Problem:

* insufficient data to *learn* an explicit prior probabilistic model of human motion.

Alternative:

* the *data* represents all we know

* replace *representation* and *learning* with *search*. (challenge: search has to be fast)

Texture Synthesis

- * e.g. De Bonnet&Viola, Efros&Leung, Efros&Freeman, Paztor&Freeman, Hertzmann et al.
- * Image(s) as an *implicit probabilistic model*.

"Mocap Soup" [Cohen]

SIGGRAPH'2002:

- Arikan & Forsyth. *Interactive motion generation from examples*
- Li et al. *Motion textures: A two-level statistical model for character motion synthesis*
- Lee et al. Interactive control of avatars animated with human motion data
- Kovar et al. Motion graphs
- Pullen & Bregler. *Motion capture assisted animation: Texturing and synthesis*

Here we formulate a probabilistic model suitable for stochastic search and Bayesian tracking.

Probabilistic Formulation

Want samples from the temporal prior $p(f_t^s | \Phi_{t-1})$ pose at time $t - f_t - history of poses up to <math>t-1$ Instead, sample from $p(\Psi_{i-1} | \Phi_{t-1})$ Database index $i-1 - f_t - f_t = Y_i$

Problem:

Compute $p(\Psi_i | \Phi_i)$ for all motions *i* in the database?

Trade accuracy for speed of sampling.

Probabilistic Database Search

Each level in the tree corresponds to one PCA coefficient *l*.

Sort each motion example *i* into a tree: Left subtree for negative value of $c_{l,i}$, right for positive value.

Probabilistic Database Search

 $p(\Psi_i \,|\, \Phi_t) \approx p(\mathbf{c}_i \,|\, \mathbf{c}_t)$

Approximated by sampling from tree iteratively:

$$p_{l,right} = p(c_{l,i} \ge 0 | c_{l,t})$$

= $\frac{1}{\sqrt{2pbs_l}} \int_{z=-\infty}^{c_{l,t}} \exp(-\frac{z^2}{2bs_l^2}) dz$
 $p_{l,left} = p(c_{l,i} < 0 | c_{l,t})$

Motion "Texture" Synthesis

Start with a small motion "chunk," sample to generate a new sequence of poses.

Changing color indicates new example sequence.

Bayesian Formulation

Posterior over model parameters given an image sequence.

Inference/Search

Bayesian formulation

$$p(\text{model} | \text{cues}) = \frac{p(\text{cues} | \text{model}) p(\text{model})}{p(\text{cues})}$$

- 1. Model: Kinematic tree. Cues: filter responses.
- **2. Likelihood**: exploit *learned* likelihood of filter responses conditioned on the projected model.
- **3. Prior**: statistical model, *learned* from examples.
- **4. Search**: discretize intelligently using factored sampling and search using a particle filter.

Key Idea: Represent Ambiguity

- * Represent a multi-modal posterior probability distribution over model parameters
 - sampled representation
 - each sample is a pose and its probability (likelihood weighting)
 - predict over time using a *particle filter*.

Samples from a distribution over 3D poses.

Particle Filter

Posterior
$$p(\boldsymbol{f}_{t-1} | \vec{\mathbf{I}}_{t-1})$$

Isard & Blake '96

August 2003

Michael J. Black

Posterior
$$p(\mathbf{f}_{t-1} | \vec{\mathbf{I}}_{t-1})$$

sample

Isard & Blake '96

August 2003

Posterior
$$p(\mathbf{f}_{t-1} | \mathbf{\vec{I}}_{t-1})$$

sample Temporal dynamics $p(f_t | f_{t-1})$ sample

Isard & Blake '96

August 2003

Posterior
$$p(f_{t-1} | \vec{I}_{t-1})$$

sample
Temporal dynamics
 $p(f_t | f_{t-1})$
sample
Likelihood $p(I_t | f_t)$

Isard & Blake '96

Posterior
$$p(f_{t-1} | \vec{I}_{t-1})$$

sample
Temporal dynamics
 $p(f_t | f_{t-1})$
sample
Likelihood $p(I_t | f_t)$
Posterior $p(f_t | \vec{I}_t)$

Isard & Blake '96

Stochastic 3D Tracking

monocular sequence

* 2500 samples.* circa 2000.

How Strong is the Prior?

* Learned walking prior.* No likelihood = hallucination.

Related Work

Cham & Rehg '99

- * Single camera, multiple hypotheses.
- * 2D templates (no change in viewpoint)
- * Manual initialization.

Related Work

Deutscher, North, Bascle, & Blake '99

- * multiple cameras
- * simplified clothing and light
- * manual initialization
- * weak prior
- * "annealed" particle filter

Related Work

- * manual initialization
- * monocular
- * complex background
- * multiple cues (motion, edges, motion discontinuities)
- * weak prior
- * careful attention paid to the optimization problem.

Sminchisescu & Triggs '01

Are we done?

Current systems:

* require manual initialization

* are brittle (can't re-initialize)

* can't easily exploit robust, bottom-up, detectors

The search space is huge.

Particle filtering on the whole space requires strong priors or huge numbers of samples.

Kinematic Tree

Traditional kinematic tree

(dogma)

* brittle if it does not fit perfectly.

* starts with torso which is hardest to find.

* faces, hands, and feet may be easier to find.

* these are defined wrt the other limbs – results in a full high-dimensional search to fit bottom up measurements.

Attractive People

Traditional kinematic tree

(dogma)

"Push puppet" toy (dog)

August 2003

Attractive People

"Push puppet" toy

Loosely-Jointed Bodies

(with Michael Isard and Leon Sigal) Soft constraints (messages) between limbs.

Pose estimation becomes inference in a graphical model (Belief Propagation).

Allows bottom up initialization.

Deals well with unobserved limbs.

Pictorial structures – Fischler and Elschlager '73 More recently (2D, discretized):

* Felzenszwalb & Huttenlocher '00, Forsyth et al '00-03.

Loosely-Jointed Bodies (with Michael Isard and Leon Sigal) $T(x_{(i,t)}) \ge Q(\Theta_{(i,t)})$ 0 m34 **m**₁₂ m21 m43

* 6D (position & orientation) discretization not practical

Monte Carlo integration.

* draw samples from normalized foundation

* propagate through potential function

* represented by a mixture of Gaussians (fit to mocap data).

* we also define potentials backwards/forwards in *time*.

August 2003

Approach

Problems:

- * state space is continuous and relatively high dimensional
- * likelihoods are non-Gaussian and multi-modal
- * relationships between limbs are complex (not Gaussian)

Approach:

- * exploit particle set idea to represent messages
- * Algorithm: *Non-parametric Belief Propagation* (Isard'03, Sudderth et al '03)

<u>Algorithm Sketch</u>

1. represent messages and beliefs by a discrete set of weighted samples (ie. mixture of narrow Gaussians).

2. compute product of incoming messages (also a mixture of Gaussians).

Product of dmixtures of nGaussians: n^d

2. compute product of incoming messages (also a mixture of Gaussians).

Product of dmixtures of nGaussians: n^d

take the product with n Gaussians.

2. compute product of incoming messages (also a mixture of Gaussians).

Product of dmixtures of nGaussians: n^d Gibbs sampler (Sudderth et al):

weight the samples

2. compute product of incoming messages (also a mixture of Gaussians).

Repeat until you've drawn *n* samples.

Cost: O(dkn²)

Gibbs sampler (Sudderth et al):

Sample to select a new Gaussian.

* Repeat with each message.
* Repeat the process k times.
* Take the product of the selected Gaussians and draw a sample.

3. to construct a message, we draw samples from a *proposal distribution* (including incoming message product, belief, and bottom up processes); importance re-weight.

Noisy bottom up process (limb detector)

4. propagate samples through the potential to get new message.

Repeat.

August 2003

August 2003

August 2003

August 2003

Summary

We have tackled four important parts of the problem:

- [•] 1. Probabilistically modeling human appearance in a generic, yet constraining, way.
 - 2. Representing the range of possible motions using techniques from texture modeling.
- search

prior

- **3**. Dealing with ambiguities and non-linearities using particle filtering for Bayesian inference.
- 4. Automatic initialization using Belief Propagation.

What Next?

- * part detectors (faces, limbs, hands, feet, etc)
- * interactions between non-adjacent limbs
 - introduces new nodes and *loops* to the graphical model

* new techniques for learning probabilistic models in high dimensional spaces with limited training data.

Outlook

5-10 years:

- Relatively reliable people tracking in monocular video
- Accurate with multiple cameras
- Path is pretty clear.

Next step: Beyond person-centric

- people interacting with object/world

... solve the vision problem.

Beyond that: Recognizing action

- goals, intentions, ...

... solve the AI problem.