A Proof of Theorem. 2.1

Proof To prove Theorem. 2.1, we provide an example where the sequence of predictors $\left\{f_{t}\right\}$ is no-regret on $\operatorname{loss}\left\{l_{t}\left(f_{t}\right)\right\}$ but Eq. 3 does not hold.
Let us assume there exist a $f^{*} \in \mathcal{F}$ such that $f^{*}\left(x_{t}\right)=v_{t}=\sum_{s=t}^{T} \gamma^{s-t} r_{t}$. Namely we assume that the best predictor in \mathcal{F} can predict long-term reward exactly. Note that this f^{*} minimizes the PE and BE simultaneously as $f^{*}=\arg \min _{f \in \mathcal{F}} \sum\left(f\left(\mathbf{x}_{t}\right)-v_{t}\right)^{2}$ and $f^{*}=\arg \min _{f \in \mathcal{F}} \sum l_{t}(f)$.
Let us assume that $f_{t}\left(\mathbf{x}_{t}\right)=v_{t}+a$ and $f_{t}\left(\mathbf{x}_{t+1}\right)=v_{t+1}+\frac{1}{\gamma} a, \forall t$, for $a \in \mathbb{R}^{+}$. Then we have:

$$
\begin{equation*}
b_{t}=f_{t}\left(\mathbf{x}_{t}\right)-r_{t}-\gamma f_{t}\left(\mathbf{x}_{\mathbf{t}+\mathbf{1}}\right)=v_{t}+a-r_{t}-\gamma v_{t+1}-\gamma \frac{1}{\gamma} a=0 \tag{27}
\end{equation*}
$$

Hence, for regret, we have:

$$
\begin{equation*}
\text { Regret }=\sum l_{t}\left(f_{t}\right)-\min _{f \in \mathcal{F}} \sum l_{t}(f)=\sum l_{t}\left(f_{t}\right)-l_{t}\left(f^{*}\right)=\sum b_{t}^{2}-b_{t}^{* 2}=0 \tag{28}
\end{equation*}
$$

which means that this sequence of predictor $\left\{f_{t}\right\}$ is no-regret with respect to the loss functions $\left\{l_{t}(f)\right\}$.
However, on the other hand, when we check the predictor error e_{t}, we have $e_{t}=f_{t}\left(\mathbf{x}_{t}\right)-v_{t}=a$, which makes the sum of prediction error $\sum e_{t}^{2}$ increase linearly: $\sum e_{t}^{2}=(T) a^{2}$ and $(1 / T) \sum e_{t}^{2}=a$. Since we have $e_{t}^{*}=0$ for all t and thus $\sum e_{t}^{* 2}=0$, there is no such constant $C \in \mathbb{R}^{+}$that could make the Eq. 3 hold.

This example presents a sequence of predictors that does not satisfy the online stability condition. In fact, it is this example that motivates us to study stability condition of online algorihtms.

B Proof of Lemma. 3.2

Proof Note that $b_{t}^{*}=f^{*}\left(\mathbf{x}_{t}\right)-v_{t}+v_{t}-r_{t}-\gamma f^{*}\left(\mathbf{x}_{t+1}\right)=e_{t}^{*}-\gamma e_{t+1}^{*}$. Squaring both sides and summing over from $t=0$ to $T-1$, we have:

$$
\begin{aligned}
& \sum b_{t}^{* 2}=\sum\left(e_{t}^{*}-\gamma e_{t+1}^{*}\right)^{2} \\
& =\sum e_{t}^{* 2}+\sum \gamma^{2} e_{t+1}^{* 2}-2 \gamma \sum e_{t}^{*} e_{t+1}^{*} \\
& \leq \sum e_{t}^{* 2}+\sum \gamma^{2} e_{t+1}^{* 2}+\sum \gamma e_{t}^{* 2}+\sum \gamma e_{t+1}^{* 2} \\
& =(1+\gamma)^{2} \sum e_{t}^{* 2}+\left(\gamma^{2}+\gamma\right)\left(e_{T}^{* 2}-e_{0}^{* 2}\right) .
\end{aligned}
$$

Again, the first inequality is obtained by applying Young's inequality to $-2 e_{t}^{*} e_{t+1}^{*}$ to get $-2 e_{t}^{*} e_{t+1}^{*} \leq e_{t}^{* 2}+e_{t+1}^{* 2}$.

C Proof of Lemma. 4.1

Proof To show $l_{t}(f)$ is convex with respect to f, we only need the assumption that \mathcal{F} belongs to a vector space. Since the function space \mathcal{F} belongs to a vector space, for any two function $f \in \mathcal{F}$ and $g \in \mathcal{F}$, and a scalar $a \in R$ and \mathbf{x}, we have:

$$
\begin{align*}
& (f+g)(\mathbf{x})=f(\mathbf{x})+g(\mathbf{x}) \tag{29}\\
& (a f)(\mathbf{x})=a f(\mathbf{x}) \tag{30}
\end{align*}
$$

To prove the convexity of the loss functional $l_{t}(f)$, we show that for any $\alpha \in[0,1]$, we have $l_{t}(\alpha f+(1-\alpha) g) \leq$ $\alpha l_{t}(f)+(1-\alpha) l_{t}(g)$. For $l_{t}(\alpha f+(1-\alpha) g)$, we have:

$$
\begin{align*}
& l_{t}(\alpha f+(1-\alpha) g)=\left((\alpha f+(1-\alpha) g)\left(\mathbf{x}_{t}\right)-r_{t}-\gamma(\alpha f+(1-\alpha) g)\left(\mathbf{x}_{t+1}\right)\right)^{2} \tag{31}\\
& =\left(\alpha\left(f\left(\mathbf{x}_{t}\right)-\gamma f\left(\mathbf{x}_{t+1}\right)-r_{t}\right)+(1-\alpha)\left(g\left(\mathbf{x}_{t}\right)-\gamma g\left(\mathbf{x}_{t+1}\right)-r_{t}\right)\right)^{2} \tag{32}\\
& =\alpha^{2}\left(f\left(\mathbf{x}_{t}-\gamma f\left(\mathbf{x}_{t+1}\right)-r_{t}\right)\right)^{2}+(1-\alpha)^{2}\left(g\left(\mathbf{x}_{t}\right)-\gamma g\left(\mathbf{x}_{t+1}\right)-r_{t}\right)^{2} \tag{33}\\
& +2 \alpha(1-\alpha)\left(f\left(\mathbf{x}_{t}\right)-\gamma f\left(\mathbf{x}_{t+1}\right)-r_{t}\right)\left(g\left(\mathbf{x}_{t}\right)-\gamma g\left(\mathbf{x}_{t+1}\right)-r_{t}\right) \tag{34}
\end{align*}
$$

For $\alpha l_{t}(f)+(1-\alpha) l_{t}(g)$, we have:

$$
\begin{equation*}
\alpha l_{t}(f)+(1-\alpha) l_{t}(g)=\alpha\left(f\left(\mathbf{x}_{t}\right)-\gamma f\left(\mathbf{x}_{t+1}\right)-r_{t}\right)^{2}+(1-\alpha)\left(g\left(\mathbf{x}_{t}\right)-\gamma g\left(\mathbf{x}_{t+1}\right)-r_{t}\right)^{2} . \tag{35}
\end{equation*}
$$

Define $b(f)=\left(f\left(\mathbf{x}_{t}\right)-\gamma f\left(\mathbf{x}_{t+1}\right)-r_{t}\right)$ and $b(g)=\left(g\left(\mathbf{x}_{t}\right)-\gamma g\left(\mathbf{x}_{t+1}\right)-r_{t}\right)$. Subtract Eq. 35 from Eq. 34, we have:

$$
\begin{align*}
& l_{t}(\alpha f+(1-\alpha) g)-\left(\alpha l_{t}(f)+(1-\alpha) l_{t}(g)\right) \tag{36}\\
& =\left(\alpha^{2}-\alpha\right) b(f)^{2}+\left((1-\alpha)^{2}-(1-\alpha)\right) b(g)^{2}+2(\alpha(1-\alpha)) b(f) g(f) \tag{37}\\
& =\left(\alpha^{2}-\alpha\right)\left(b(f)^{2}+b(g)^{2}-2 b(f) g(f)\right)=\left(\alpha^{2}-\alpha\right)(b(f)-g(f))^{2} \leq 0 . \tag{38}
\end{align*}
$$

Now we prove $l_{t}(f)$ is Lipschitz continuous. First, consider the case when \mathcal{F} is in RKHS. $l_{t}(f)$ is differentiable and its gradient is:

$$
\begin{equation*}
\nabla l_{t}(f)=\left(f\left(\mathbf{x}_{t}\right)-r_{t}-\gamma f\left(\mathbf{x}_{t+1}\right)\right)\left(K\left(\mathbf{x}_{t}, \cdot\right)-\gamma K\left(\mathbf{x}_{t+1}, \cdot\right)\right) \tag{39}
\end{equation*}
$$

Note that the norm of $\nabla l_{t}(f)$ is:

$$
\begin{equation*}
\left\|\nabla l_{t}(f)\right\|=\left(f\left(\mathbf{x}_{t}\right)-r_{t}-\gamma f\left(\mathbf{x}_{t+1}\right)\right)^{2}\left(1+\gamma^{2}-2 \gamma K\left(\mathbf{x}_{t}, \mathbf{x}_{t+1}\right)\right) \tag{40}
\end{equation*}
$$

Under the assumption that $|f(\mathbf{x})| \leq P,|r| \leq R,\left|K\left(\mathbf{x}_{t}, \mathbf{x}_{t+1}\right)\right| \leq K$, it is easy to see that $\left\|\nabla l_{t}(f)\right\|$ is upper bounded by some postive constant. The fact that a function is differentialbe and has bounded gradient implies the function is Lipschitz continuous.
For the case when $f(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}$, we have $l_{t}(\mathbf{w})$ is differentiable and the gradient is:

$$
\begin{equation*}
\nabla l_{t}(\mathbf{w})=\left(\mathbf{w}^{T} \mathbf{x}_{t}-r_{t}-\gamma \mathbf{w}^{T} \mathbf{x}_{t}\right)\left(\mathbf{x}_{t}-\gamma \mathbf{x}_{t+1}\right) \tag{41}
\end{equation*}
$$

Under the assumptions that $\|\mathbf{w}\|_{2} \leq W,\|\mathbf{x}\|_{2} \leq X,|r| \leq R$, it is easy to see that $\left\|\nabla l_{t}(\mathbf{w})\right\|_{2}$ is bounded. Hence, $l_{t}(\mathbf{w})$ is Lipschitz continuous with respect to L_{2} norm.
To see that $l_{t}(\mathbf{w})$ is also Lipschitz continuous with respect to L_{1} norm, note that $\left\|\nabla l_{t}(\mathbf{w})\right\|_{\infty}$ must be upper bounded, since $|f(\mathbf{x})| \leq P,|r| \leq R$, and $\left|\mathbf{x}^{i}\right| \leq X$, where \mathbf{x}^{i} stands for the i 'th entry of the vector \mathbf{x}.

D Proof of Lemma. 4.2

Proof Without loss of generality, we assume the regularization $R(f)$ is 1 -strongly convex with respect to norm $\|\cdot\|$. Due to strong convexity, we have:

$$
\begin{align*}
\sum_{i=0}^{t} l_{i}\left(f_{t}\right)+\frac{1}{\mu} R\left(f_{t}\right) \geq & \sum_{i=0}^{t} l_{t}\left(f_{t+1}\right)+\frac{1}{\mu} R\left(f_{t+1}\right) \\
& +\frac{1}{2 \mu}\left\|f_{t}-f_{t+1}\right\| . \tag{42}
\end{align*}
$$

The inequality follows from the fact that $\sum l_{t}+\frac{1}{\mu} R$ is a strongly convex function and f_{t+1} is a minimizer of $\sum_{i=0}^{t} l_{t}+\frac{1}{\mu} R$. Similarly, We also have:

$$
\begin{align*}
\sum_{i=0}^{t-1} l_{i}\left(f_{t+1}\right)+ & \frac{1}{\mu} R\left(f_{t+1}\right) \geq \sum_{i=0}^{t-1} l_{i}\left(f_{t}\right)+\frac{1}{\mu} R\left(f_{t}\right) \\
& +\frac{1}{2 \mu}\left\|f_{t}-f_{t+1}\right\| \tag{43}
\end{align*}
$$

because f_{t} is a minimizer of $\sum_{i=0}^{t-1} l_{i}+\frac{1}{\mu_{t-1}} R$. Adding (42) and (43) together side by side and cancelling out repeated terms from both sides, we get:

$$
\begin{align*}
& (1 / \mu)\left\|f_{t}-f_{t+1}\right\|^{2} \leq l_{t}\left(f_{t}\right)-l_{t}\left(f_{t+1}\right) \\
& \leq\left|l_{t}\left(f_{t}\right)-l_{t}\left(f_{t+1}\right)\right| \leq L\left\|f_{t}-f_{t+1}\right\| \tag{44}
\end{align*}
$$

Setting $z=\left\|f_{t}-f_{t+1}\right\|$, and solve the above quadratic inequality with respect to z, we get $\left\|f_{t}-f_{t+1}\right\| \leq L \mu$. Sum from $t=0$ to T, set $\mu=1 / \sqrt{T}$ and take the limit $T \rightarrow \infty$, we get to Eq. 17

E Proof of Lemma. 4.3

Proof $l_{t}(\mathbf{w})$ is a quadratic function with respect \mathbf{w}. Hence, taking the Tayplor expension of $l_{t}(\mathbf{w})$ at \mathbf{w}^{\prime}, we have:

$$
\begin{equation*}
l_{t}(\mathbf{w})=l_{t}\left(\mathbf{w}^{\prime}\right)+\nabla l_{t}\left(\mathbf{w}^{\prime}\right)^{T}\left(\mathbf{w}-\mathbf{w}^{\prime}\right)+\frac{1}{2}\left(\mathbf{w}-\mathbf{w}^{\prime}\right)^{T} \nabla \nabla l_{t}\left(\mathbf{w}^{\prime}\right)\left(\mathbf{w}-\mathbf{w}^{\prime}\right) . \tag{45}
\end{equation*}
$$

Note that the Hessian $\nabla \nabla l_{t}\left(\mathbf{w}^{\prime}\right)=2\left(\mathbf{x}_{t}-\gamma \mathbf{x}_{t+1}\right)\left(\mathbf{x}_{t}-\gamma \mathbf{x}_{t+1}\right)^{T}$, which can be writted as:

$$
\begin{align*}
& \nabla \nabla l_{t}\left(\mathbf{w}^{\prime}\right)=2\left(\mathbf{w}^{\prime T} \mathbf{x}_{t}-r_{t}-\gamma \mathbf{w}^{\prime T} \mathbf{x}_{t+1}\right)^{2} \frac{\left(\mathbf{x}_{t}-\gamma \mathbf{x}_{t+1}\right)\left(\mathbf{x}_{t}-\gamma \mathbf{x}_{t+1}\right)^{T}}{\left(\mathbf{w}^{\prime} \mathbf{x}_{t}-r_{t}-\gamma \mathbf{w}^{\prime T} \mathbf{x}_{t+1}\right)^{2}} \\
& =\frac{1}{2\left(\mathbf{w}^{\prime T} \mathbf{x}_{t}-r_{t}-\gamma \mathbf{w}^{\prime T} \mathbf{x}_{t+1}\right)^{2}} \nabla l_{t}\left(\mathbf{w}^{\prime}\right) \nabla l_{t}\left(\mathbf{w}^{\prime}\right)^{T} \geq \frac{1}{2 M} \nabla l_{t}\left(\mathbf{w}^{\prime}\right) \nabla l_{t}\left(\mathbf{w}^{\prime}\right)^{T}, \tag{46}
\end{align*}
$$

where $M=\sup _{\mathbf{w}, \mathbf{x}_{t}, \mathbf{x}_{t+1}, r_{t}}\left(\mathbf{w}^{T} \mathbf{x}_{t}-r_{t}-\gamma \mathbf{w}^{T} \mathbf{x}_{t+1}\right)^{2}$. The derivation in Eq. 46 implicitly assumes that $\left(\mathbf{w}^{T} \mathbf{x}_{t}-r_{t}-\right.$ $\left.\gamma \mathbf{w}^{\prime T} \mathbf{x}_{t+1}\right) \neq 0$. But when $\left(\mathbf{w}^{\prime T} \mathbf{x}_{t}-r_{t}-\gamma \mathbf{w}^{\prime T} \mathbf{x}_{t+1}\right)=0$, the final result from Eq. 46 still holds $\left(\nabla l_{t}\left(\mathbf{w}^{\prime}\right) \nabla l_{t}\left(\mathbf{w}^{\prime}\right)^{T}=0\right)$.
Note that M is a positive constant since we assume that $\|\mathbf{w}\|,\|\mathbf{x}\|$ and $\left|r_{t}\right|$ are all bounded. Hence, we have:

$$
\begin{equation*}
l_{t}(\mathbf{w}) \geq l_{t}\left(\mathbf{w}^{\prime}\right)+\nabla l_{t}\left(\mathbf{w}^{\prime}\right)^{T}\left(\mathbf{w}-\mathbf{w}^{\prime}\right)+\frac{1}{4 M}\left(\mathbf{w}-\mathbf{w}^{\prime}\right)^{T} \nabla l_{t}\left(\mathbf{w}^{\prime}\right) \nabla l_{t}\left(\mathbf{w}^{\prime}\right)^{T}\left(\mathbf{w}-\mathbf{w}^{\prime}\right) . \tag{47}
\end{equation*}
$$

Setting $\lambda \leq 1 / 2 M$ we prove the lemma.

F Proof of Lemma. 4.4

Proof We next show that online newton method satisfies the online stability condition. For convenience, define $\mathbf{y}_{t+1}=$ $\mathbf{w}_{t}-\frac{1}{\lambda} A_{t}^{-1} \nabla l_{t}\left(\mathbf{w}_{t}\right)$, we have:

$$
\begin{aligned}
& \sum\left\|\mathbf{w}_{t}-\mathbf{w}_{t+1}\right\|_{A_{t}}^{2} \leq \sum\left\|\mathbf{w}_{t}-\mathbf{y}_{t+1}\right\|_{A_{t}}^{2}=\sum\left\|\frac{1}{\lambda} A_{t}^{-1} \nabla l_{t}\left(\mathbf{w}_{t}\right)\right\|_{A_{t}}^{2} \\
& =\sum \frac{1}{\lambda^{2}} \nabla l_{t}\left(\mathbf{w}_{t}\right)^{T} A_{t}^{-1} A_{t} A_{t}^{-1} \nabla l_{t}\left(\mathbf{w}_{t}\right)=\frac{1}{\lambda^{2}} \sum \nabla l_{t}\left(\mathbf{w}_{t}\right)^{T} A_{t}^{-1} \nabla l_{t}\left(\mathbf{w}_{t}\right) .
\end{aligned}
$$

Following the proof in Hazan et al. (2006), it can be shown that:

$$
\sum \nabla l_{t}\left(\mathbf{w}_{t}\right)^{T} A_{t}^{-1} \nabla l_{t}\left(\mathbf{w}_{t}\right) \leq n \log \left(\frac{T G^{2}}{\epsilon}+1\right),
$$

where $G \in \mathbb{R}^{+}$and $G \geq\left\|\nabla l_{t}\right\|_{2}$. We simply set $\epsilon=G^{2}$. Hence, the online stability condition is satisfied as:

$$
\begin{aligned}
& \frac{1}{T} \sum\left(\mathbf{w}_{t}^{T} \mathbf{x}_{t+1}-\mathbf{w}_{t+1}^{T} \mathbf{x}_{t+1}\right)^{2} \leq \frac{X^{2}}{T} \sum\left\|\mathbf{w}_{t}-\mathbf{w}_{t+1}\right\|_{2}^{2} \\
& \leq \frac{1}{T} \frac{X^{2}}{\epsilon} \sum\left\|\mathbf{w}_{t}-\mathbf{w}_{t+1}\right\|_{A_{t}}^{2} \leq \frac{1}{T} \frac{X^{2}}{G^{2} \lambda^{2}} n \log (T+1)=0, T \rightarrow \infty .
\end{aligned}
$$

The first inequality comes from Cauchy-Schwarz inequality and the assumption that $\|\mathbf{x}\|_{2} \leq X$. The second inequality follows from the fact that the smallest eigenvalues of A_{t} 's are bigger than or equal to ϵ.

G Disccusion and Results for Online Algorithms on TD-loss Functions $\left\{\tilde{l}_{t}(f)\right\}$

First of all, we show similar to our analysis for Bellman Residual minimization, simply being no-regret on the TD-loss functions $\left\{\tilde{l}_{t}(f)\right\}$ under general function approximation (not necessarily linear) is not sufficient to small predictive errors (Eq. 3 doesn't hold):

Theorem G. 1 There exists a sequence of $\left\{f_{t}\right\}$ that is no-regret with respect to the TD-loss functions $\left\{\tilde{l}_{t}(f)\right\}$, but no $C \in \mathbb{R}^{+}$exists that makes Eq. 3 hold.

Figure 4: Convergence of prediction error. We applied a set of online algorithms (OGD, implicit OGD, ONS, OFW) on BE loss functions $\left\{l_{t}(\mathbf{w})\right\}$ (dot line) and TD-loss functions $\left\{\tilde{l}_{t}(\mathbf{w})\right\}$ (solid line) for Random walk (left) and Puddle World (right).

Proof Again, we assume that $f_{t}\left(\mathbf{x}_{t}\right)=v_{t}+a$ and $f_{t}\left(\mathbf{x}_{t+1}\right)=v_{t+1}+\frac{1}{\gamma} a$, where $a \in \mathbb{R}^{+}$and $v_{t}=\sum_{s=t}^{T} \gamma^{s-t} r_{t}$ is the long-term reward. Under this setting, the TD-loss $\tilde{l}_{t}\left(f_{t}\right)$ becomes:

$$
\begin{equation*}
\tilde{l}_{t}\left(f_{t}\right)=\left(f_{t}\left(\mathbf{x}_{t}\right)-r_{t}-\gamma f_{t}\left(\mathbf{x}_{t+1}\right)\right)^{2}=0 \tag{48}
\end{equation*}
$$

Hence, this sequence of predictors $\left\{f_{t}\right\}$ is no-regret:

$$
\begin{equation*}
\sum \tilde{l}_{t}\left(f_{t}\right)-\sum \tilde{l}_{t}\left(f^{*}\right) \leq \sum \tilde{l}_{t}\left(f_{t}\right)=0, \quad \forall f^{*} \in \mathcal{F} \tag{49}
\end{equation*}
$$

However this sequence of predictors performly badly in terms of prediction error $e_{t}^{2}=\left(f_{t}\left(\mathbf{x}_{t}\right)-v_{t}\right)^{2}=a^{2}$. Under the assumption that the function space \mathcal{F} (hypothesis class) is broad enough to have f^{*} that perfectly predicts long-term reward $\left(f^{*}\left(\mathbf{x}_{t}\right)=v_{t}, \forall t\right)$, we always have $\frac{1}{T} \sum e_{t}^{2}=a^{2}>\frac{1}{T} e_{t}^{* 2}=0$. Hence, it is impossible to find a postive constant C such that Eq. 3 will hold.

Note that in the above proof, the constructed predictors are not stable in a sense that $f_{t}\left(\mathbf{x}_{t+1}\right)$ and $f_{t+1}\left(\mathbf{x}_{t+1}\right)$ varies a lot and hence it does not satisfies the online stability condition.

We conjecture that together with a similar stability analysis as we did for Bellman Residual minimization, we could achieve similar predictive guarantees as in Theorem. 3.3. We leave it as a open question here and we currently are working on it.

G. 1 Empirical Results

We applied several stable no-regret online learning algorithms including ONS, OFW, implicit OGD to TD-loss functions $\tilde{l}_{t}(f)$ with linear function approximation $\left(f(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}\right)$. Fig. 4 shows the results of applying the set of algorithms (OGD, implicit OGD, ONS, and OFW) to BE and TD-loss for Random Walk and Puddle World. We compare their performance to $T D(0)$ and $R G(0)$. Although we currently do not have sound predictive guarantees, these empirical results suggest that applying stable no-regret online algorithms to TD-loss functions $\left\{\tilde{l}_{t}(\mathbf{w})\right\}$ in practice may give competitive performance compared to Bellman Residual minimization algorithms and the $T D(0)$.

