
A Proof of Theorem. 2.1

Proof To prove Theorem. 2.1, we provide an example where the sequence of predictors {ft} is no-regret on loss {lt(ft)}
but Eq. 3 does not hold.

Let us assume there exist a f⇤ 2 F such that f⇤
(xt) = vt =

PT
s=t �

s�trt. Namely we assume that the best
predictor in F can predict long-term reward exactly. Note that this f⇤ minimizes the PE and BE simultaneously as
f⇤

= argminf2F
P

(f(xt)� vt)
2 and f⇤

= argminf2F
P

lt(f).

Let us assume that ft(xt) = vt + a and ft(xt+1) = vt+1 +
1
� a, 8t, for a 2 R+. Then we have:

bt = ft(xt)� rt � �ft(xt+1

) = vt + a� rt � �vt+1 � �
1

�
a = 0. (27)

Hence, for regret, we have:

Regret =

X
lt(ft)�min

f2F

X
lt(f) =

X
lt(ft)� lt(f

⇤
) =

X
b2t � b⇤2t = 0, (28)

which means that this sequence of predictor {ft} is no-regret with respect to the loss functions {lt(f)}.

However, on the other hand, when we check the predictor error et, we have et = ft(xt) � vt = a, which makes the sum
of prediction error

P
e2t increase linearly:

P
e2t = (T )a2 and (1/T )

P
e2t = a. Since we have e⇤t = 0 for all t and thusP

e⇤2t = 0, there is no such constant C 2 R+ that could make the Eq. 3 hold.

This example presents a sequence of predictors that does not satisfy the online stability condition. In fact, it is this example
that motivates us to study stability condition of online algorihtms.

B Proof of Lemma. 3.2

Proof Note that b⇤t = f⇤
(xt) � vt + vt � rt � �f⇤

(xt+1) = e⇤t � �e⇤t+1. Squaring both sides and summing over from
t = 0 to T � 1, we have:

X
b⇤2t =

X
(e⇤t � �e⇤t+1)

2

=

X
e⇤2t +

X
�2e⇤2t+1 � 2�

X
e⇤t e

⇤
t+1


X

e⇤2t +

X
�2e⇤2t+1 +

X
�e⇤2t +

X
�e⇤2t+1

= (1 + �)2
X

e⇤2t + (�2
+ �)(e⇤2T � e⇤20 ).

Again, the first inequality is obtained by applying Young’s inequality to �2e⇤t e
⇤
t+1 to get �2e⇤t e

⇤
t+1  e⇤2t + e⇤2t+1.

C Proof of Lemma. 4.1

Proof To show lt(f) is convex with respect to f , we only need the assumption that F belongs to a vector space. Since the
function space F belongs to a vector space, for any two function f 2 F and g 2 F , and a scalar a 2 R and x, we have:

(f + g)(x) = f(x) + g(x), (29)
(af)(x) = af(x). (30)

To prove the convexity of the loss functional lt(f), we show that for any ↵ 2 [0, 1], we have lt(↵f + (1 � ↵)g) 
↵lt(f) + (1� ↵)lt(g). For lt(↵f + (1� ↵)g), we have:

lt(↵f + (1� ↵)g) = ((↵f + (1� ↵)g)(xt)� rt � �(↵f + (1� ↵)g)(xt+1))
2 (31)

= (↵(f(xt)� �f(xt+1)� rt) + (1� ↵)(g(xt)� �g(xt+1)� rt))
2 (32)

= ↵2
(f(xt � �f(xt+1)� rt))

2
+ (1� ↵)2(g(xt)� �g(xt+1)� rt)

2 (33)
+ 2↵(1� ↵)(f(xt)� �f(xt+1)� rt)(g(xt)� �g(xt+1)� rt). (34)



For ↵lt(f) + (1� ↵)lt(g), we have:

↵lt(f) + (1� ↵)lt(g) = ↵(f(xt)� �f(xt+1)� rt)
2
+ (1� ↵)(g(xt)� �g(xt+1)� rt)

2. (35)

Define b(f) = (f(xt)� �f(xt+1)� rt) and b(g) = (g(xt)� �g(xt+1)� rt). Subtract Eq. 35 from Eq. 34, we have:

lt(↵f + (1� ↵)g)� (↵lt(f) + (1� ↵)lt(g)) (36)

= (↵2 � ↵)b(f)2 + ((1� ↵)2 � (1� ↵))b(g)2 + 2(↵(1� ↵))b(f)g(f) (37)

= (↵2 � ↵)(b(f)2 + b(g)2 � 2b(f)g(f)) = (↵2 � ↵)(b(f)� g(f))2  0. (38)

Now we prove lt(f) is Lipschitz continuous. First, consider the case when F is in RKHS. lt(f) is differentiable and its
gradient is:

rlt(f) = (f(xt)� rt � �f(xt+1))(K(xt, ·)� �K(xt+1, ·)). (39)

Note that the norm of rlt(f) is:

krlt(f)k = (f(xt)� rt � �f(xt+1))
2
(1 + �2 � 2�K(xt,xt+1)). (40)

Under the assumption that |f(x)|  P , |r|  R, |K(xt,xt+1)|  K, it is easy to see that krlt(f)k is upper bounded by
some postive constant. The fact that a function is differentialbe and has bounded gradient implies the function is Lipschitz
continuous.

For the case when f(x) = w

T
x, we have lt(w) is differentiable and the gradient is:

rlt(w) = (w

T
xt � rt � �wT

xt)(xt � �xt+1). (41)

Under the assumptions that kwk2  W , kxk2  X , |r|  R, it is easy to see that krlt(w)k2 is bounded. Hence, lt(w) is
Lipschitz continuous with respect to L2 norm.

To see that lt(w) is also Lipschitz continuous with respect to L1 norm, note that krlt(w)k1 must be upper bounded, since
|f(x)|  P , |r|  R, and |xi|  X , where x

i stands for the i’th entry of the vector x.

D Proof of Lemma. 4.2

Proof Without loss of generality, we assume the regularization R(f) is 1-strongly convex with respect to norm k · k. Due
to strong convexity, we have:

tX

i=0

li(ft) +
1

µ
R(ft) �

tX

i=0

lt(ft+1) +
1

µ
R(ft+1)

+

1

2µ
kft � ft+1k. (42)

The inequality follows from the fact that
P

lt+
1
µR is a strongly convex function and ft+1 is a minimizer of

Pt
i=0 lt+

1
µR.

Similarly, We also have:

t�1X

i=0

li(ft+1)+
1

µ
R(ft+1) �

t�1X

i=0

li(ft) +
1

µ
R(ft)

+

1

2µ
kft � ft+1k, (43)

because ft is a minimizer of
Pt�1

i=0 li +
1

µt�1
R. Adding (42) and (43) together side by side and cancelling out repeated

terms from both sides, we get:

(1/µ)kft � ft+1k2  lt(ft)� lt(ft+1)

 |lt(ft)� lt(ft+1)|  Lkft � ft+1k (44)

Setting z = kft � ft+1k, and solve the above quadratic inequality with respect to z, we get kft � ft+1k  Lµ. Sum from
t = 0 to T , set µ = 1/

p
T and take the limit T ! 1, we get to Eq. 17



E Proof of Lemma. 4.3

Proof lt(w) is a quadratic function with respect w. Hence, taking the Tayplor expension of lt(w) at w0, we have:

lt(w) = lt(w
0
) +rlt(w

0
)

T
(w �w

0
) +

1

2

(w �w

0
)

Trrlt(w
0
)(w �w

0
). (45)

Note that the Hessian rrlt(w
0
) = 2(xt � �xt+1)(xt � �xt+1)

T , which can be writted as:

rrlt(w
0
) = 2(w

0T
xt � rt � �w0T

xt+1)
2 (xt � �xt+1)(xt � �xt+1)

T

(w

0T
xt � rt � �w0T

xt+1)
2

=

1

2(w

0T
xt � rt � �w0T

xt+1)
2
rlt(w

0
)rlt(w

0
)

T � 1

2M
rlt(w

0
)rlt(w

0
)

T , (46)

where M = sup

w,xt,xt+1,rt(w
T
xt � rt � �wT

xt+1)
2. The derivation in Eq. 46 implicitly assumes that (w0T

xt � rt �
�w0T

xt+1) 6= 0. But when (w

0T
xt�rt��w0T

xt+1) = 0, the final result from Eq. 46 still holds (rlt(w
0
)rlt(w

0
)

T
= 0).

Note that M is a positive constant since we assume that kwk, kxk and |rt| are all bounded. Hence, we have:

lt(w) �lt(w
0
) +rlt(w

0
)

T
(w �w

0
) +

1

4M
(w �w

0
)

Trlt(w
0
)rlt(w

0
)

T
(w �w

0
). (47)

Setting �  1/2M we prove the lemma.

F Proof of Lemma. 4.4

Proof We next show that online newton method satisfies the online stability condition. For convenience, define yt+1 =

wt � 1
�A

�1
t rlt(wt), we have:

X
kwt �wt+1k2At


X

kwt � yt+1k2At
=

X
k 1
�
A�1

t rlt(wt)k2At

=

X
1

�2
rlt(wt)

TA�1
t AtA

�1
t rlt(wt) =

1

�2

X
rlt(wt)

TA�1
t rlt(wt).

Following the proof in Hazan et al. (2006), it can be shown that:

X
rlt(wt)

TA�1
t rlt(wt)  n log(

TG2

✏
+ 1),

where G 2 R+ and G � krltk2. We simply set ✏ = G2. Hence, the online stability condition is satisfied as:

1

T

X
(w

T
t xt+1 �w

T
t+1xt+1)

2  X2

T

X
kwt �wt+1k22

 1

T

X2

✏

X
kwt �wt+1k2At

 1

T

X2

G2�2
n log(T + 1) = 0, T ! 1.

The first inequality comes from Cauchy-Schwarz inequality and the assumption that kxk2  X . The second inequality
follows from the fact that the smallest eigenvalues of At’s are bigger than or equal to ✏.

G Disccusion and Results for Online Algorithms on TD-loss Functions {l̃t(f)}
First of all, we show similar to our analysis for Bellman Residual minimization, simply being no-regret on the TD-loss
functions {˜lt(f)} under general function approximation (not necessarily linear) is not sufficient to small predictive errors
(Eq. 3 doesn’t hold):

Theorem G.1 There exists a sequence of {ft} that is no-regret with respect to the TD-loss functions {˜lt(f)}, but no
C 2 R+ exists that makes Eq. 3 hold.
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Figure 4: Convergence of prediction error. We applied a set of online algorithms (OGD, implicit OGD, ONS, OFW) on
BE loss functions {lt(w)} (dot line) and TD-loss functions {˜lt(w)} (solid line) for Random walk (left) and Puddle World
(right).

Proof Again, we assume that ft(xt) = vt + a and ft(xt+1) = vt+1 +
1
� a, where a 2 R+ and vt =

PT
s=t �

s�trt is the
long-term reward. Under this setting, the TD-loss ˜lt(ft) becomes:

˜lt(ft) = (ft(xt)� rt � �ft(xt+1))
2
= 0. (48)

Hence, this sequence of predictors {ft} is no-regret:
X

˜lt(ft)�
X

˜lt(f
⇤
) 

X
˜lt(ft) = 0, 8f⇤ 2 F . (49)

However this sequence of predictors performly badly in terms of prediction error e2t = (ft(xt) � vt)
2
= a2. Under the

assumption that the function space F (hypothesis class) is broad enough to have f⇤ that perfectly predicts long-term reward
(f⇤

(xt) = vt, 8t), we always have 1
T

P
e2t = a2 > 1

T e
⇤2
t = 0. Hence, it is impossible to find a postive constant C such

that Eq. 3 will hold.

Note that in the above proof, the constructed predictors are not stable in a sense that ft(xt+1) and ft+1(xt+1) varies a lot
and hence it does not satisfies the online stability condition.

We conjecture that together with a similar stability analysis as we did for Bellman Residual minimization, we could achieve
similar predictive guarantees as in Theorem. 3.3. We leave it as a open question here and we currently are working on it.

G.1 Empirical Results

We applied several stable no-regret online learning algorithms including ONS, OFW, implicit OGD to TD-loss functions
˜lt(f) with linear function approximation (f(x) = w

T
x). Fig. 4 shows the results of applying the set of algorithms (OGD,

implicit OGD, ONS, and OFW) to BE and TD-loss for Random Walk and Puddle World. We compare their performance
to TD(0) and RG(0). Although we currently do not have sound predictive guarantees, these empirical results suggest that
applying stable no-regret online algorithms to TD-loss functions {˜lt(w)} in practice may give competitive performance
compared to Bellman Residual minimization algorithms and the TD(0).


