A Some Useful Lemmas

Lemma 8. Let V € St (m) be positive definite, (My)1=12.... C ST(m) be positive semidefinite matrices and define
Vi=V+ Zz;ll M, t=1,2,.... Iftrace(M;) < L? for all t, then

T
Zmin(l, ||Vt_1/2||§\/[t) < 2{logdet(Vry1) — logdet V'}

t=1
TL?
<2 {mlog (W) - logdetV} .

Proof. On the one hand, we have

1 1
det(Vr) = det(Vp_1 + Mrp_1) = det(Vp_1({ + Vp 2 Mp_1Vy %))
= det(Vp_q) det(1 + VT‘EMT,lvT‘i)

T-1 L .
= det(V) ] det(Z +V; 2 MV, 7).

t=1
One the other hand, thanks to = < 2log(1 + z), which holds for all = € [0, 1],

) . _1 _1 I _1 _1
> min(L [V, 2 MV, 2 ]l2) <23 log(1+ [V 2 MV, %)
t=1 t=1
T 1
<2 log(det(I +V, *M;V; 2))
t=1

= 2(log(det Vp41) —log(det V),

Nl

_1 _1 _1 —
where the second inequality follows since V, * M.V, ? is positive semidefinite, hence all eigenvalues of 1 4V, * M,V,
_1 _1 _1 _1
are above one and the largest eigenvalue of I +V, 2M;V, 2 is 1+ ||V, 2 M.V, 2|2, proving the first inequality. For the
second inequality, note that for any positive definite matrix S € ST (m), logdet S < mlog(trace(S)/m). Applying this

to Vr and using the condition that trace(M;) < L?, we get logdet V3 < mlog((trace(V) + TL?)/m). Plugging this
into the previous upper bound, we get the second part of the statement. O

Lemma 9 (Lemma 11 of Abbasi-Yadkori and Szepesvari (2011)). Let A € R™*™ and B € R™*™ be positive semi-
definite matrices such that A = B. Then, we have

wu IXTAX ], det(4)
%20 [XTBX]l, = det(B) -

B Proofs
Proof of Proposition 1. Note that if ACOE (1) holds for h, then for any constant C, it also holds that
J(6)+ (1(2.0) + €)= min {ttz.) + [(1(3.6) + Coplay| 5.0.0)

As by our assumption, the value function is bounded from below, we can choose C' such that the A/(-,©) = h(-,0) + C'is
nonnegative valued. In fact, if A assumes a minimizer x, by this reasoning, without loss of generality, we can assume that

h(zp) =0andso forany z € X, 0 < h(z) = h(x) — h(zo) < Bl|z — zo|| < BX. The argument trivially extends to the
general case when / may fail to have a minimizer over X'. O



Proof of Theorem 2. The proof follows that of the main result of Abbasi-Yadkori and Szepesvari (2011). First, we de-
compose the regret into a number of terms, which are then bound one by one. Define z{ |, = f(z¢,a, 0Oy, z41), where

f is the map of Assumption Al and let hy(z) = h(z,©,) be the solution of the ACOE underlying p(-|z,a,©;). By
Assumption A3 (i), hy exists and hy(x) € [0, H] for any x € X. By Assumption Al, for any g € L'(p(-|x¢,a, Oy)),
J 9(dy)p(dylar, a,8,) = E [g(F2,1)|Fi, B, Hence, from (1) and (2),

J(61) + hy(ws) = min { (wr,a) + E [he(311) | 71, 6] |
> t(ar,a) +E [hi(@10) | Fi 61) = o

={l(zs,a¢) +E [ht(xt-i-l +€) | Fr, ét} —0t,

where ¢; = E?jrl —2y41. As J(+) is a deterministic function and conditioned on F,, @)t and O, have the same distribution,

T T
R(T) = E[l(zi,ar) = J(©.)] = Y _E[E[l(ze,ar) = J(O.) | Fr,]]

t; i t= ., i

-YE [E [Z(xt, a) — J(6,) |an - E [e(xt, a) — J(6,)
t=1 t=1

S Z]E |:ht(l‘t) —E |:ht(xt+1 + €t) |ft,ét:|:| + ZE [O’t]
t=1 t=1

= ZE [ht(l‘t) — ht(l‘t+1 + Et)] + ZE [O’t] .
t=1 t=1

Let Xpr = Zthl E [0+ be the total error due to the approximate optimal control oracle. Thus, we can bound the regret
using

T
R(T) < S +Eh(21) = hrar(wr)] + Y E (e (@e1) = he(@r + )]

t=1

T
<Yr+H+ ZE (Pey1(Teg1) — he(Tepr + )]
t=1

where the second inequality follows because hq(z1) < H and —hpi1(zr+1) < 0. Let A; denote the event that the
algorithm has changed its policy at time t. We can write

R(T) = (Sr + H) <Y Elhei(wei1) — hi(wesn + )]
t=1

T
E b1 (zr41) = he(en)] + Y B [hu(@ig1) — hi(zp1 + )]

1 t=1

<2HY E[1{A}]+B> Elel] ,

I
B

H
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where we used again that 0 < hy(z) < H, and also Assumption A3 (ii). Define

T T

Ri=HY E[1{A}], R:=BY E[fel].

t=1 t=1

It remains to bound Ry and to show that the number of switches is small.



Bounding R» Let 7, < t be the last round before time step ¢ when the policy is changed. So 0, = én. Letting
M; = M(x4, at), by Assumption Al,
. } |
M,

L lBal, <o

Efll) <E [ -

Further,
e

My
For © € {O,,,0,} we have that
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oo,
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where the last inequality follows because ||-||, is an induced norm and induced norms are sub-multiplicative. Hence, we
have that

.
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Vi ;

= H(Q_é”)—rvt 2 ‘ M,

v =|le-86.)Tv
t 9 Tt t

T T
_ 06 < AT 1/2’ —1/2‘
B |lo-8u],, | <B|X @8 v,
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T N 2 | T 2
<e |y Xfe-eumiy X v
t=1 2 t=1
& 1/2 1/2|2
< 2|3 [0-8.m [l

where the first inequality uses Holder’s inequality, and the last two inequalities use Cauchy-Schwarz. By Lemma 8 in
Appendix A, using Assumption A4, we have that

T
- t V) + T2
Zmin (1, |V, 1/2”?%) < 2mlog (W) :

t=1

2
Denoting by Apmin(V) the minimum eigenvalue of V, a simple argument shows HVt_l/QHM < Ml /Amin (V) <

®2 /Amin(V), where in the second inequality we used Assumption A4 again. Hence,

T T
_1/2H2 < (@2 (v _1/2H
;HVt M, *me [Aumin(V), M,

Z:: (1,82 / Amin(V ))Inin< , Vt*””;) ,
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By Lemma 9 of Appendix A and the choice of 7, we have that

Thus,

E [H@—@ﬁ

t=1

H(eféf)Tth/zH < det Vt
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Thus,

T 9 T 2
E|Y|j©-8) v | <2k Y |©- @)JV;/QHQ] (by (5)
t=1 t=1
=2FE ET:E {H(@ - @Tt)TVTlthz ’ an (by the tower rule)
< QCTt.:1 (by Assumption A2)

2
V)

Let G = 2m max (1, . ) log (trace(‘;zJ“Tq)Q ) Collecting the inequalities, we get

R=BY® |6 —e.)7e
t=1

} < VE[G7VCT

2 2
< 4B\/mmax <1a )\(I)V)> log (trace(VHT(I’>\/Ci .

( m

Bounding R, If the algorithm has changed the policy K times up to time 7', then we should have that det (V) > 2%,
On the other hand, from Assumption A4 we have Aoy (V) < trace(V) + (T — 1)®2. Thus, it holds that 2% <
(trace(V) 4+ ®2T)™. Solving for K, we get K < mlog,(trace(V) + ®2T). Thus,

Ry = HZT:E [1{A;}] < Hmlog,(trace(V) + ®T) .

t=1

Putting together the bounds obtained for R; and Ry, we get the desired result. O

Proof of Theorem 3. First notice that Theorem 2 continues to hold if Assumption A4 is replaced by the following weaker
assumption:

Assumption A6 (Boundedness Along Trajectories) There exist ® > 0 such that forall t > 1, E [trace(M (x4, a;))] < 2.

The reason this is true is because A4 is used only in a context where E [log(trace(v + Zle Mt))} needs to be bounded.

Using that log is concave, we get

E [log(trace(V + Zil Mt))] <log (E [trace(V + Zil Mt)D < log(trace(V) + T®?).

With this observation, the result follows from Theorem 2 applied to Lazy PSRL and {p’(+|x, a, ©)} as running Stabilized
Lazy PSRL for ¢ time steps in p(:|z, a, O, ) results in the same total expected cost as running Lazy PSRL for ¢ time steps
in p/(+|x, a, ©,) thanks to the definition of Stabilized Lazy PSRL and p'.

Hence, all what remains is to show that the conditions of Theorem 2 are satisfied when it is used with {p’(-|x,a,©)}. In
fact, A3 and A2 hold true by our assumptions. Let us check Assumption A3 next. Defining f/(z,a,0,2) = f(z,a,0, 2)
ifr € Rand f'(z,a,0,2) = f(x,Tstab(x), O, 2) otherwise, we see that x111 = f'(x4, at, O, z:41). Further, defining
M'(z,a) = M(z,a) ifx € R and M'(z,a) = M (z, mstan(z)) otherwise, we see that, thanks to the second part that of

Al applied to p(-[z, 0, 0), for y = f'(z,0,0,2), ¢/ = ['(2,0,0,2). E[ly — '] E[|6 = ©'llyy(,, | if v € R and
Eflly —y'|] <E [||@ — Ol Mab(w))} otherwise. Hence, E [y — /||| < EE|© — ©'[ 171, . thus showing that Al
holds for p’(|z, a, ©®) when M is replaced by M’. Now, Assumption A6 follows from Assumption A5.

O



C Choice of the matrices in the web-server application

Hellerstein et al. (2004) fitted the linear model detailed earlier to an Apache HTTP server and obtained the parameters
([ 054 —-0.11 (-85 44 4
A= (—0.026 0.63 ) » B= (—2.5 2.8) x 1077,
while the noise standard deviation was measured to be 0.1. Hellerstein et al. found that these parameters provided a

reasonable fit to their data. For control purposes, the cost matrices @ = diag(5,1), R = diag(1/5062,0.1°), taken from
Example 6.9 of Astrom and Murray (2008), were chosen.



