
A Some Useful Lemmas
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Lemma 9 (Lemma 11 of Abbasi-Yadkori and Szepesvári (2011)). Let A 2 Rm⇥m and B 2 Rm⇥m be positive semi-
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B Proofs

Proof of Proposition 1. Note that if ACOE (1) holds for h, then for any constant C, it also holds that
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Proof of Theorem 2. The proof follows that of the main result of Abbasi-Yadkori and Szepesvári (2011). First, we de-
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It remains to bound R
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and to show that the number of switches is small.



Bounding R
2
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where the last inequality follows because k·k
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is an induced norm and induced norms are sub-multiplicative. Hence, we
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where the first inequality uses Hölder’s inequality, and the last two inequalities use Cauchy-Schwarz. By Lemma 8 in
Appendix A, using Assumption A4, we have that

T

X

t=1

min

⇣

1, kV �1/2

t

k2
Mt

⌘

 2m log

✓

trace(V ) + T�2

m

◆

.

Denoting by �
min

(V ) the minimum eigenvalue of V , a simple argument shows
�

�

�

V �1/2

t

�

�

�

2

Mt

 kM
t

k
2

/�
min

(V ) 
�

2/�
min

(V ), where in the second inequality we used Assumption A4 again. Hence,

T

X

t=1

�

�

�

V �1/2

t

�

�

�

2

Mt


T

X

t=1

min

✓

�

2/�
min

(V ),
�

�

�

V �1/2

t

�

�

�

2

Mt

◆


T

X

t=1

max

�

1,�2/�
min

(V )

�

min

✓

1,
�

�

�

V �1/2

t

�

�

�

2

Mt

◆

.

Thus,

T

X

t=1

E


�

�

�

⇥� b

⇥

⌧t

�

�

�

2

Mt

�



s

E


2mmax

✓

1,
�

2

�
min

(V )

◆

log

✓

trace(V ) + T�2

m

◆�

⇥

v

u

u

tE
"

T

X

t=1

�

�

�

(⇥� b

⇥

⌧t)
>V 1/2

t

�

�

�

2

2

#

.

By Lemma 9 of Appendix A and the choice of ⌧
t

, we have that

�

�

�

(⇥� b

⇥

⌧t)
>V 1/2

t

�

�

�

2



s

det(V
t

)

det(V
⌧t)

�

�

�

(⇥� b

⇥

⌧t)
>V 1/2

⌧t

�

�

�

2


p
2

�

�

�

(⇥� b

⇥

⌧t)
>V 1/2

⌧t

�

�

�

2

. (5)



Thus,

E
"

T

X

t=1

�

�

�

(⇥� b

⇥

⌧t)
>V 1/2

t

�

�

�

2

2

#

 2E
"

T

X

t=1

�

�

�

(⇥� b

⇥

⌧t)
>V 1/2

⌧t

�

�

�

2

2

#

(by (5))

= 2E
"

T

X

t=1

E


�

�

�

(⇥� b

⇥

⌧t)
>V 1/2

⌧t

�

�

�

2

2

�

�

�

�

F
⌧t

�

#

(by the tower rule)

 2CT . (by Assumption A2)

Let G
T

= 2mmax

⇣

1, �

2

�min(V )

⌘

log

⇣

trace(V )+T�

2

m

⌘

. Collecting the inequalities, we get

R
2

= B
T

X

t=1

E
h

�

�

�

(

e

⇥

⌧t �⇥⇤)
>'

t

�

�

�

i


p

E [G
T

]

p
CT

 4B

s

mmax

✓

1,
�

2

�
min

(V )

◆

log

✓

trace(V ) + T�2

m

◆p
CT .

Bounding R
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If the algorithm has changed the policy K times up to time T , then we should have that det(V
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Putting together the bounds obtained for R
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, we get the desired result.

Proof of Theorem 3. First notice that Theorem 2 continues to hold if Assumption A4 is replaced by the following weaker
assumption:
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With this observation, the result follows from Theorem 2 applied to Lazy PSRL and {p0(·|x, a,⇥)} as running Stabilized
Lazy PSRL for t time steps in p(·|x, a,⇥⇤) results in the same total expected cost as running Lazy PSRL for t time steps
in p0(·|x, a,⇥⇤) thanks to the definition of Stabilized Lazy PSRL and p0.

Hence, all what remains is to show that the conditions of Theorem 2 are satisfied when it is used with {p0(·|x, a,⇥)}. In
fact, A3 and A2 hold true by our assumptions. Let us check Assumption A3 next. Defining f 0
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holds for p0(·|x, a,⇥) when M is replaced by M 0. Now, Assumption A6 follows from Assumption A5.



C Choice of the matrices in the web-server application

Hellerstein et al. (2004) fitted the linear model detailed earlier to an Apache HTTP server and obtained the parameters

A =

✓

0.54 �0.11
�0.026 0.63

◆

, B =
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�85 4.4
�2.5 2.8

◆

⇥ 10

�4 ,

while the noise standard deviation was measured to be 0.1. Hellerstein et al. found that these parameters provided a
reasonable fit to their data. For control purposes, the cost matrices Q = diag(5, 1), R = diag(1/5062, 0.16), taken from
Example 6.9 of Aström and Murray (2008), were chosen.


