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Bayesian network inference is hard

I Are there (sub-)cases which are tractable?

I Are these cases (if any exists) interesting?

I If inference is hard, then approximation is an option. Can we
approximate well?

I Where do lie the real-world problems?
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Where do lie the real-world problems
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Bayesian network moralization

Marry any nodes with common children, then drop arc directions

Adapted from wikipedia
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Bayesian network triangularization/chordalization

I Bayesian network already moralized.

I Include edges in order to eliminate any cycle of length 4 (or
more) without a chord (that is, a shortcut between nodes in
the cycle).

I There are multiple ways to do that!
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Bayesian network triangularization (I)

Let us work with this example:

Adapted from wikipedia (while this is a valid graph, it cannot be obtained from a BN moralization – why?)
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Bayesian network triangularization (II)

We could have obtained it from this moralization:

and then removed the black nodes as for the triangularization, as
they are simplicial.
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Bayesian network triangularization (III)

We may try to include some edges, but still not enough (check e.g.
(A,C,D,E))...
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Bayesian network triangularization (IV)

So we can keep trying to break those cycles (still not there, see
(A,C,D,B))...
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Bayesian network triangularization (V)

And eventually we did it! The width of a triangularization is the
size of its largest clique minus one.

Perhaps not optimally: (A,B,E,H) is a 4-clique, could we have
done with at most 3-cliques?
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Bayesian network triangularization (VI)

Yes, we can!

Theewidth of a BN is the minimum width over all possible
triangularizations of its moral graph.
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Bayesian network tree-decomposition (aka junction tree)

Source: wikipedia
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“Easy” problems

Exact Inference and Threshold Inference are in P for
bounded treewidth Bayesian networks.

In fact, assuming that any exact algorithm for SAT takes time
Ω(cn) for some constant c > 0, then any exact algorithm for
Threshold Inference (and hence for Exact Inference)
takes time at least exponential in the treewidth (except for a log
factor).
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Complexity of problems under some restrictions

Threshold Inference is:

I Bayesian network has bounded treewidth: EASY (in P)

I Bayesian network is a polytree/tree: EASY (in P)

I There is no evidence (no observed nodes): PP-complete

I Variables have bounded cardinality: PP-complete

I Nodes are binary and evidence is restricted to be positive
(true): PP-complete

I Nodes are binary and parameters satisfy the following
condition:

I Root nodes are associated to marginal distributions;
I Non-root nodes are associated to Boolean operators (∧, ∨, ¬):

PP-complete (even if only ∧ or only ∨ are allowed)
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Threshold Inference is PP-hard in very restricted
nets

Threshold Inference in bipartite two-layer binary Bayesian
networks with no evidence and nodes defined either as marginal
uniform distributions or as the disjunction ∨ operator is PP-hard
(using only the conjunction ∧ also gets there).

We reduce MAJ-2MONSAT, which is PP-complete [Roth 1996],
to Threshold Inference:

Input: A 2-CNF formula φ(X1, . . . ,Xn) with m clauses
where all literals are positive.
Question: Does the majority of the assignments to
X1, . . . ,Xn satisfy φ?
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The transformation is as follows. For each Boolean variable Xi ,
build a root node such that Pr(Xi = true) = 1/2. For each
clause Cj with literals xa and xb (note that literals are always
positive), build a disjunction node Yab with parents Xa and Xb,
that is, Yab ⇔ Xa ∨ Xb. Now set all non-root nodes to be queried
at their true state, that is, h = {Yab = true}∀ab.

xa

xb

xc

xd

Xd Xa Xb Xc

Yac

Yad Yab Ybc

Figure: A Bayesian network (on the right) and the clauses as edges (on
the left): (xa ∨ xb), (xa ∨ xc), (xa ∨ xd), (xb ∨ xc).
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xa

xb

xc

xd

Xd Xa Xb Xc

Yac

Yad Yab Ybc

So with this specification for h fixed to true, at least one of the
parents of each of them must be set to true too. These are
exactly the satisfying assignments of the propositional formula, so
Pr(H = h | E = e) for empty E is exactly the percentage of
satisfying assignments, with H = Y and h = true.

Pr(H = h) =
∑

x Pr(Y = true | x)Pr(x) = 1
2n

∑
x Pr(Y =

true | x) > 1/2 if and only if the majority of the assignments
satisfy the formula.
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MPE and MAP

I Threshold MAP: Given observation A = a, threshold q
and explanation set {D,E} Decide whether exists d , e such
that Pr(D = d ,E = e | A = a) > q.

I Threshold MPE: Each variable B and C must appear
either as query or as observation (no intermediate nodes).

Johan Kwisthout and Cassio P. de Campos Radboud University Nijmegen / Queen’s University Belfast

Computational Complexity of Bayesian Networks Slide #17



MPE and MAP

Threshold MAP (DMAP)
Instance: A Bayesian network B = (GB,Pr), where V is
partitioned into a set of evidence nodes E with a joint value
assignment e, a set of intermediate nodes I, and an explanation set
H. Let 0 ≤ q < 1.
Question: Is there h such that Pr(H = h,E = e) > q?

Threshold MPE (DMPE)
Instance: A Bayesian network B = (GB,Pr), where V is
partitioned into a set of evidence nodes E with a joint value
assignment e and an explanation set H. Let 0 ≤ q < 1.
Question: Is there h such that Pr(H = h,E = e) > q?
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DMAP is NPPP-hard [Park 2002]

X1 X2 X3

∨

¬
¬

Vφ∨

φ = ¬(x1 ∨ x2) ∨ ¬x3

Reduction comes from an NPPP-hard problem: given
φ(X1, . . . ,Xn), integer k and rational q, is there an assignment to
X1, . . . ,Xk such that the majority of the assignments to
Xk+1, . . . ,Xn satisfy φ?
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DMAP is NPPP-hard
I Similar construction as done to prove hardness of

Inference, but variables X are partitioned into explanation
(X1, . . . ,Xk) and intermediate ones (Xk+1, . . . ,Xn).

I Marginal probabilities Pr(Xi = true) = 1/2 are defined as
before, but X1, . . . ,Xk are to be explained during DMAP.

I As before, for an arbitrary truth assignment x to the set of all
propositional variables X in the formula φ we have that
Pr(Vφ = true | X = x) equals 1 if x satisfies φ, and 0 if x
does not satisfy φ.

Pr(X1:k = x1:k ,Vφ = true) =

Pr(Vφ = true | X1:k = x1:k)Pr(X1:k = x1:k) =

1

2k
Pr(Vφ = true | X1:k = x1:k) >

1

2k+1

if and only if there is X1:k = x1:k such that the majority of truth
assignments of X(k+1):n satisfy φ.
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DMPE is NP-complete

Pertinence in NP is immediate, as given h (the so-called
certificate), we can check whether Pr(H = h,E = e) > q in
polynomial time.

(Question to think about: if DMPE were defined with conditional
probability Pr(H = h|E = e) > q, then would it still be in NP?)

Hardness: Reduction comes from an NP-hard problem: given
3-CNF propositional φ(X1, . . . ,Xn), is there an assignment to X
that satisfies φ?
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DMPE is NP-complete
The transformation is as follows. For each Boolean variable Xi ,
build a root node such that Pr(Xi = true) = 1/2. For each
clause Cj with literals xa, xb, xc (note that literals might be positive
or negative), build a disjunction node Yabc with parents Xa, Xb

and Xc , that is, the probability function is defined such that
Yabc ⇔ Xa ∨ Xb ∨ Xc . Now set all non-root nodes to be observed
at their true state, that is, e = {Yabc = true}∀abc .

Xa Xb Xc

Yabc

Figure: Building block representing a 3-CNF clause (xa ∨ xb ∨ xc).

Define all root nodes as H and ask whether there is h such that
Pr(H = h,E = e) > 0, which is true if and only if there is a
satisfying assignment for the propositional formula.
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Source: xkcd
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MPE and MAP

What about MPE and MAP under these restrictions?

I Bayesian network has bounded treewidth.

I Bayesian network is a polytree/tree.

I There is no evidence (no observed nodes).

I Variables have bounded cardinality.

I Nodes are binary and evidence is restricted to be positive
(true).

I Nodes are binary and parameters satisfy the following
condition:

I Root nodes are associated to marginal distributions;
I Non-root nodes are associated to Boolean operators (∧, ∨, ¬).
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Complexity of problems under some restrictions
Notation: DMPE?-c-tw(L) and DMAP?-c-tw(L), where:

I ? is either 0 (meaning no evidence) or + (positive evidence
only). If omitted, then both positive and negative are allowed.

I tw is the bound on the treewidth.

I c is the maximum cardinality of any variable.

I L defines the propositional logic operators that are allowed for
the non-root nodes.

We could also talk about Threshold Inference, but the only
restriction that is known to make a great difference is treewidth.
We also refrain from discussing DMPE of bounded treewidth, as
this is known to be in P (by using junction tree or variable
elimination algorithms – result is not practical unless a good tree
decomposition is given).
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Problems under some restrictions: In general, bad news

I DMPE-2-∞(Prop(∧)) is NP-complete.

I DMPE+-2-∞(Prop(∨)) is NP-complete.

I DMAP+-2-∞(Prop(∨)) is NPPP-complete.

I DMAP-2-∞(Prop(∧)) is NPPP-complete.

I DMAP-2-2 and DMAP-3-1 are NP-complete.

I DMAP-∞-1 with naive-like structure and DMAP-5-1 with
HMM structure (and single observation) are NP-complete.
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DMPE+-2-∞(Prop(∨)) is NP-hard

To prove hardness, we use a reduction from VERTEX COVER:

Input: A graph G = (V ,A) and an integer k.
Question: Is there a set C ⊆ V of cardinality at most k
such that each edge in A is incident to at least one node
in C?
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DMPE+-2-∞(Prop(∨)) is NP-hard

a

b

c

d

Xd Xa Xb Xc

Eac

Ead Eab Ebc

Figure: A Bayesian network (on the right) that solves VERTEX COVER
with the graph on the left.

I Construct a Bayesian network containing nodes Xv , v ∈ V ,
associated with the probabilistic assessment
Pr(Xv = true) = 1/4 and nodes Euv , (u, v) ∈ A, associated
with the logical equivalence Euv ⇔ Xu ∨ Xv . By forcing
observations Euv = true for every edge (u, v), we guarantee
that such edge will be covered (at least one of the parents
must be true).
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DMPE+-2-∞(Prop(∨)) is NP-hard

a

b

c

d

Xd Xa Xb Xc

Eac

Ead Eab Ebc

I Let C (v) = {v : Xv = true}. Then Pr(X = v,E = true) =

=
∏

v∈C(v)

Pr(Xv = true)
∏

v 6∈C(v)

(1−Pr(Xv = true)) =
3n−|C |

4n

which is greater than or equal to 3n−k/4n if and only if C (v)
is a vertex cover of cardinality at most k.
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Some easy cases

Theorem
DMPE+-2-∞(Prop(⊕)) is in P.

Proof.
The operation XOR ⊕ is supermodular, hence the logarithm of the
joint probability is also supermodular and the MPE problem can be
solved efficiently [Nemhauser et al. 1978].
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Some easy cases

Theorem
DMPE+-2-∞(Prop(∧)) and DMPE0-2-∞(Prop(∨)) are in P.

Proof.
For solving DMPE+-2-∞(Prop(∧)), propagate the evidence up the
network by making all ancestors of evidence nodes take on value
true, which is the only configuration assigning positive probability.
Now, for both MPE+

d -2-∞(Prop(∧)) and MPE0
d -2-∞(Prop(∨)),

the procedure is as follows. Assign values of the remaining root
nodes as to maximize their marginal probability independently (i.e.,
for every non-determined root node X select X = true if and only
if Pr(X = true) ≥ 1/2). Assign the remaining internal nodes the
single value which makes their probability non-zero. This can be
done in polynomial time and achieves the maximum
probability.

Johan Kwisthout and Cassio P. de Campos Radboud University Nijmegen / Queen’s University Belfast

Computational Complexity of Bayesian Networks Slide #31



Some DMAP0-2-∞ might be easier than NPPP

Theorem
DMAP0-2-∞(Prop(∧)) and DMAP0-2-∞(Prop(∨)) are
PP-hard.

We reduce MAJ-2MONSAT, which is PP-hard [Roth 1996], to
DMAP0

d -2-∞(Prop(∨)):

Input: A 2-CNF formula φ(X1, . . . ,Xn) with m clauses
where all literals are positive.
Question: Does the majority of the assignments to
X1, . . . ,Xn satisfy φ?
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The transformation is as follows. For each Boolean variable Xi ,
build a root node such that Pr(Xi = 1) = 1/2. For each clause Cj

with literals xa and xb (note that literals are always positive), build
a disjunction node Yab with parents Xa and Xb, that is,
Yab ⇔ Xa ∨ Xb. Now set all non-root nodes to be MAP nodes,
that is, M = {Yab}∀ab.

xa

xb

xc

xd

Xd Xa Xb Xc

Yac

Yad Yab Ybc

Figure: A Bayesian network (on the right) and the clauses as edges (on
the left).
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xa

xb

xc

xd

Xd Xa Xb Xc

Yac

Yad Yab Ybc

Suppose that variables in M are chosen to be m where at least one
of them is set to state false. This implies that both parents of
this conjunction node must be set to state false too, and thus
the joint probability Pr(m) ≤ 1

2 · 12 = 1
4 <

1
2 (and the answer will

be NO). So with MAP variables fixed to true, at least one of the
parents of them must be set to true too. These are exactly the
satisfying assignments, so the problem becomes that of counting
the number of satisfying assignments, which will answer YES if
and only if the majority of assignments satisfy the formula.
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DMAP-2-2 is NP-complete

Pertinence is immediate, as a certificate (assignment to the
explanation variables) can be verified in polynomial time (network
has treewidth bounded).

Hardness is shown using a reduction from Partition, which is
NP-hard and can be stated as follows: given a set of m positive
integers s1, . . . , sm, is there a set I ⊂ A = {1, . . . ,m} such that∑

i∈I si =
∑

i∈A\I si? All the input is encoded using b > 0 bits.

Denote S = 1
2

∑
i∈A si and call even partition a subset I ⊂ A that

achieves
∑

i∈I si = S . To solve Partition, one may consider the
rescaled problem (dividing every element by S), so as vi = si

S ≤ 2
are the elements and the goal is a partition I with sum equals to 1.
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DMAP-2-2 is NP-complete

m

YY0

X

E

1

1

1

Yi

Xi

iE

Ym

Em

X

I Xi ∈ X has uniform distribution.

I Pr(Ei = true | Xi = false) = 1 and
Pr(Ei = true | Xi = true) = 2−vi for every Ei .

I Y0 has Pr(Y0 = true) = 1. For Yi ∈ Y:
Pr(Yi = true | Yi−1 = true,Xi = true) = 2−vi ,
Pr(Yi = true | Yi−1 = true,Xi = false) = 1,
Pr(Yi = true | Yi−1 = false,Xi ) = 0.
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DMAP-2-2 is NP-complete

I Xi ∈ X has uniform distribution.

I Pr(Ei = true | Xi = false) = 1 and
Pr(Ei = true | Xi = true) = 2−vi for every Ei .

I Y0 has Pr(Y0 = true) = 1. For Yi ∈ Y:
Pr(Yi = true | Yi−1 = true,Xi = true) = 2−vi ,
Pr(Yi = true | Yi−1 = true,Xi = false) = 1,
Pr(Yi = true | Yi−1 = false,Xi ) = 0.

I By construction, for any given x:

Pr(Ym = true | x) = Pr(E = e | x) =
∏
i∈I

2−vi ,

where e are all true, and I ⊆ A is the set of indices of the
elements such that Xi is at the state true.
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DMAP-2-2 is NP-complete

I Denote t =
∏

i∈I 2−vi . Then

Pr(x, e,Ym = false) = Pr(Ym = false | x)Pr(x, e)

= Pr(x)Pr(e | x) (1− Pr(Ym = false | x))

=
1

2m
t(1− t)

I Pr(x, e,Ym = false) = 1
2m t(1− t) is a concave quadratic

function on 0 ≤ t ≤ 1 (while t is a function of x) with
maximum at 2−1 such that t(1− t) monotonically increases
when t approaches one half (from both sides).

1

2m
t(1− t) =

1

2m
2−

∑
i∈I vi (1− 2−

∑
i∈I vi ),

which achieves the maximum of 1
2m 2−1(1− 2−1) = 1

2m+2 if
and only if

∑
i∈I vi = 1, that is, if there is an even partition.
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DMAP-2-2 is NP-complete
So the reduction is:

I Build a Bayesian network with that graph and the following
parameters:

I Xi ∈ X has uniform distribution.
I Pr(Ei = true | Xi = false) = 1 and

Pr(Ei = true | Xi = true) = 2−si/S for every Ei .
I Y0 has Pr(Y0 = true) = 1. For Yi ∈ Y:

Pr(Yi = true | Yi−1 = true,Xi = true) = 2−si/S ,
Pr(Yi = true | Yi−1 = true,Xi = false) = 1,
Pr(Yi = true | Yi−1 = false,Xi ) = 0.

I Then DMAP-2-2 is

Pr(x, e,Ym = false) ≥ 1

2m+2

if and only if
∑

i∈I
si
S = 1 =

∑
i /∈I

si
S , that is, if there is an

even partition.

I What is wrong with this proof? (It can be fixed, we won’t)
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DMAP-∞-1 is NP-complete

1Y0

C

mYYi... ...Y

Johan Kwisthout and Cassio P. de Campos Radboud University Nijmegen / Queen’s University Belfast

Computational Complexity of Bayesian Networks Slide #40



DMAP-3-1 (and multiple observations) is NP-complete

Y0 Y1 Y2 Y3 . . . Yn O

X1 X2 X3 . . . Xn

E1 E2 E3 . . . En
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DMAP-5-1 (and single observation) is NP-complete

D

Y

X X2

Y2

1

1

1DD0 Xi

Yi

i
... Xm

Ym

mD...
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Markov Random Fields

Results in general can be translated to MRFs:

I Hardness of problems in MRFs: take the moralized
Bayesian network as starting point of the proofs and the
conditional probability functions as MRF’s potentials.

I Easiness of problems in MRFs: build a Bayesian network
creating an additional binary node for each potential (this
node is the child of all nodes involved in the potential) and set
the probability function for the true state of the new node as
the potential of the MRF. Set evidence in these nodes to true,
accordingly.
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Open questions

There are many, some related to these slides:

I DMAP0-2-∞(Prop(∧)) and DMAP0-2-∞(Prop(∨)) (known
to be PP-hard)

I DMAP-2-1 (known to be in NP; interestingly,
D(Min)AP-2-1 can be shown to be NP-complete)

I DMAP0-c-1 for some c < n (known to be in NP)
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Some known results for the optimization version

I MAP-∞-tw is also shown not to be in Poly-APX [Park &
Darwiche 2004]. (Unless P=NP) It is shown that there is no
polynomial time approximation that can achieve a 2b

ε
-factor

approximation, for 0 < ε < 1, b is the length of the input.

I It is NP-hard to approximate MAP-∞-1 to any factor 2b
ε
.

I There is a Fully Polynomial Time Approximation Scheme
(FPTAS) for MAP-c-tw (both tw and c do not depend on
the input).

I MPE also cannot be approximable to any factor (that is, it is
not even in Exp-APX), unless one assumes that
Pr(E = e) > 0.
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Thanks

Thank you for your attention. Further questions:
j.kwisthout@donders.ru.nl, c.decampos@qub.ac.uk
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