Non-parametric causal models

Robin J. Evans Thomas S. Richardson

Oxford and Univ. of Washington

UAI Tutorial 12th July 2015

Structure

- Part One: Causal DAGs with latent variables
- Part Two: Statistical Models arising from DAGs with latents

Outline for Part One

- Intervention distributions
- The general identification problem
- Tian's ID Algorithm
- Fixing: generalizing marginalizing and conditioning
- Non-parametric constraints aka Verma constraints

Intervention distributions (I)

Given a causal DAG ${\mathcal G}$ with distribution:

$$p(V) = \prod_{v \in V} p(v \mid pa(v))$$

we wish to compute an intervention distribution via truncated factorization:

$$p(V \setminus X \mid do(X = \mathbf{x})) = \prod_{v \in V \setminus X} p(v \mid pa(v)).$$

Example

$$p(X, L, M, Y) = p(L) p(X \mid L) p(M \mid X)p(Y \mid L, M)$$

Example

 $p(X, L, M, Y) = p(L) p(X \mid L) p(M \mid X)p(Y \mid L, M)$ $p(L, M, Y \mid do(X = \tilde{x})) = p(L) \times p(M \mid \tilde{x})p(Y \mid L, M)$

Intervention distributions (II)

Given a causal DAG ${\mathcal G}$ with distribution:

$$p(V) = \prod_{v \in V} p(v \mid \mathsf{pa}(v))$$

we wish to compute an intervention distribution via truncated factorization:

$$p(V \setminus X \mid do(X = \mathbf{x})) = \prod_{v \in V \setminus X} p(v \mid pa(v)).$$

Hence if we are interested in $Y \subset V \setminus X$ then we simply marginalize:

$$p(Y \mid do(X = \mathbf{x})) = \sum_{w \in V \setminus (X \cup Y)} \prod_{v \in V \setminus X} p(v \mid pa(v)).$$

This is the 'g-computation' formula of Robins (1986).

Intervention distributions (II)

Given a causal DAG ${\mathcal G}$ with distribution:

$$p(V) = \prod_{v \in V} p(v \mid \mathsf{pa}(v))$$

we wish to compute an intervention distribution via truncated factorization:

$$p(V \setminus X \mid do(X = \mathbf{x})) = \prod_{v \in V \setminus X} p(v \mid pa(v)).$$

Hence if we are interested in $Y \subset V \setminus X$ then we simply marginalize:

$$p(Y \mid do(X = \mathbf{x})) = \sum_{w \in V \setminus (X \cup Y)} \prod_{v \in V \setminus X} p(v \mid pa(v)).$$

This is the 'g-computation' formula of Robins (1986).

Note: $p(Y \mid do(X = \mathbf{x}))$ is a sum over a product of terms $p(v \mid pa(v))$.

Example

 $p(X, L, M, Y) = p(L)p(X \mid L)p(M \mid X)p(Y \mid L, M)$ $p(L, M, Y \mid do(X = \tilde{x})) = p(L)p(M \mid \tilde{x})p(Y \mid L, M)$

$$p(Y \mid do(X = \tilde{x})) = \sum_{l,m} p(L = l) p(M = m \mid \tilde{x}) p(Y \mid L = l, M = m)$$

Example

 $p(X, L, M, Y) = p(L)p(X \mid L)p(M \mid X)p(Y \mid L, M)$ $p(L, M, Y \mid do(X = \tilde{x})) = p(L)p(M \mid \tilde{x})p(Y \mid L, M)$

$$p(Y \mid do(X = \tilde{x})) = \sum_{l,m} p(L = l) p(M = m \mid \tilde{x}) p(Y \mid L = l, M = m)$$

Note that $p(Y \mid do(X = \tilde{x})) \neq p(Y \mid X = \tilde{x}).$

 $p(X, L, M, Y) = p(L)p(X \mid L)p(M \mid X)p(Y \mid L, M)$

 $p(X, L, M, Y) = p(L)p(X \mid L)p(M \mid X)p(Y \mid L)$

 $p(X, L, M, Y) = p(L)p(X \mid L)p(M \mid X)p(Y \mid L)$ $p(L, M, Y \mid do(X = \tilde{x})) = p(L)p(M \mid \tilde{x})p(Y \mid L)$

 $p(X, L, M, Y) = p(L)p(X \mid L)p(M \mid X)p(Y \mid L)$ $p(L, M, Y \mid do(X = \tilde{x})) = p(L)p(M \mid \tilde{x})p(Y \mid L)$ $p(Y \mid do(X = \tilde{x})) = \sum_{l,m} p(L = l)p(M = m \mid \tilde{x})p(Y \mid L = l)$

 $p(X, L, M, Y) = p(L)p(X \mid L)p(M \mid X)p(Y \mid L)$ $p(L, M, Y \mid do(X = \tilde{x})) = p(L)p(M \mid \tilde{x})p(Y \mid L)$ $p(Y \mid do(X = \tilde{x})) = \sum_{l,m} p(L = l)p(M = m \mid \tilde{x})p(Y \mid L = l)$ $= \sum_{l} p(L = l)p(Y \mid L = l)$

 $p(X, L, M, Y) = p(L)p(X \mid L)p(M \mid X)p(Y \mid L)$ $p(L, M, Y \mid do(X = \tilde{x})) = p(L)p(M \mid \tilde{x})p(Y \mid L)$ $p(Y \mid do(X = \tilde{x})) = \sum_{l,m} p(L = l)p(M = m \mid \tilde{x})p(Y \mid L = l)$ $= \sum_{l} p(L = l)p(Y \mid L = l)$ $= p(Y) \neq P(Y \mid \tilde{x})$

since $X \not\perp Y$. 'Correlation is not Causation'.

$$p(Y \mid do(X = \tilde{x})) = \sum_{l,m} p(L = l)p(M = m \mid \tilde{x})p(Y \mid L = l, M = m)$$

$$p(Y \mid do(X = \tilde{x})) = \sum_{l,m} p(L = l)p(M = m \mid \tilde{x})p(Y \mid L = l, M = m)$$

=
$$\sum_{l,m} p(L = l)p(M = m \mid \tilde{x}, L = l)p(Y \mid L = l, M = m, X = \tilde{x})$$

Here we have used that $M \perp L \mid X$ and $Y \perp X \mid L, M$.

$$p(Y \mid do(X = \tilde{x})) = \sum_{l,m} p(L = l)p(M = m \mid \tilde{x})p(Y \mid L = l, M = m)$$

=
$$\sum_{l,m} p(L = l)p(M = m \mid \tilde{x}, L = l)p(Y \mid L = l, M = m, X = \tilde{x})$$

=
$$\sum_{l,m} p(L = l)p(Y, M = m \mid L = l, X = \tilde{x})$$

$$p(Y \mid do(X = \tilde{x})) = \sum_{l,m} p(L = l)p(M = m \mid \tilde{x})p(Y \mid L = l, M = m)$$

= $\sum_{l,m} p(L = l)p(M = m \mid \tilde{x}, L = l)p(Y \mid L = l, M = m, X = \tilde{x})$
= $\sum_{l,m} p(L = l)p(Y, M = m \mid L = l, X = \tilde{x})$
= $\sum_{l} p(L = l)p(Y \mid L = l, X = \tilde{x}).$

 \Rightarrow can find $p(Y \mid do(X = \tilde{x}))$ even if M not observed. This is an example of the 'back door formula'.

 $p(Y \mid do(X = \tilde{x}))$

$$p(Y \mid do(X = \tilde{x}))$$

= $\sum_{m} p(M = m \mid do(X = \tilde{x}))p(Y \mid do(M = m))$

$$p(Y \mid do(X = \tilde{x}))$$

$$= \sum_{m} p(M = m \mid do(X = \tilde{x}))p(Y \mid do(M = m))$$

$$= \sum_{m} p(M = m \mid X = \tilde{x})p(Y \mid do(M = m))$$

$$p(Y \mid do(X = \tilde{x}))$$

$$= \sum_{m} p(M = m \mid do(X = \tilde{x}))p(Y \mid do(M = m))$$

$$= \sum_{m} p(M = m \mid X = \tilde{x})p(Y \mid do(M = m))$$

$$= \sum_{m} p(M = m \mid X = \tilde{x}) \left(\sum_{x^{*}} p(X = x^{*})p(Y \mid M = m, X = x^{*}) \right)$$

$$p(Y \mid do(X = \tilde{x}))$$

$$= \sum_{m} p(M = m \mid do(X = \tilde{x}))p(Y \mid do(M = m))$$

$$= \sum_{m} p(M = m \mid X = \tilde{x})p(Y \mid do(M = m))$$

$$= \sum_{m} p(M = m \mid X = \tilde{x}) \left(\sum_{x^{*}} p(X = x^{*})p(Y \mid M = m, X = x^{*}) \right)$$

 $\Rightarrow \operatorname{can} \operatorname{find} p(Y \mid \operatorname{do}(X = \tilde{x})) \text{ even if } L \text{ not observed.}$

This is an example of the 'front door formula'.

But with both L and M unobserved....

...we are out of luck!

But with both L and M unobserved....

...we are out of luck!

Given P(X, Y), absent further assumptions we cannot distinguish:

General Identification Question

Given: a latent DAG $\mathcal{G}(O \cup H)$, where O are observed, H are hidden, and disjoint subsets $X, Y \subseteq O$.

Q: Is p(Y | do(X)) identified given p(O)?

General Identification Question

Given: a latent DAG $\mathcal{G}(O \cup H)$, where O are observed, H are hidden, and disjoint subsets $X, Y \subseteq O$.

Q: Is p(Y | do(X)) identified given p(O)?

A: Provide either an identifying formula that is a function of p(O)or report that p(Y | do(X)) is not identified.

Can preserve conditional independences and causal coherence with latents using paths. DAG \mathcal{G} on vertices $V = O \dot{\cup} H$, define **latent projection** as follows: (Verma and Pearl, 1992)

Can preserve conditional independences and causal coherence with latents using paths. DAG \mathcal{G} on vertices $V = O \dot{\cup} H$, define **latent projection** as follows: (Verma and Pearl, 1992)

Whenever there is a path of the form

add

Can preserve conditional independences and causal coherence with latents using paths. DAG G on vertices $V = O \dot{\cup} H$, define **latent projection** as follows: (Verma and Pearl, 1992)

Whenever there is a path of the form

add

Whenever there is a path of the form

add

Can preserve conditional independences and causal coherence with latents using paths. DAG G on vertices $V = O \dot{\cup} H$, define **latent projection** as follows: (Verma and Pearl, 1992)

Whenever there is a path of the form

add

Whenever there is a path of the form

add

Then remove all latent variables H from the graph.

ADMGs

ADMGs

Latent projection leads to an acyclic directed mixed graph (ADMG)

ADMGs

Latent projection leads to an **acyclic directed mixed graph** (ADMG) Can read off independences with d/m-separation.

The projection preserves the causal structure; Verma and Pearl (1992).
'Conditional' Acyclic Directed Mixed Graphs

An 'conditional' acyclic directed mixed graph (CADMG) is a bi-partite graph $\mathcal{G}(V, W)$, used to represent structure of a distribution over V, indexed by W, for example $P(V \mid do(W))$.

We require:

- (i) The induced subgraph of \mathcal{G} on V is an ADMG;
- (ii) The induced subgraph of \mathcal{G} on W contains no edges;
- (iii) Edges between vertices in W and V take the form $w \rightarrow v$.

We represent V with circles, W with squares:

Here $V = \{L_1, Y\}$ and $W = \{A_0, A_1\}$.

Ancestors and Descendants

In a CADMG $\mathcal{G}(V, W)$ for $v \in V$, let the set of *ancestors*, *descendants* of v be:

$$\operatorname{an}_{\mathcal{G}}(v) = \{ a \mid a \to \dots \to v \text{ or } a = v \text{ in } \mathcal{G}, a \in V \cup W \},$$
$$\operatorname{de}_{\mathcal{G}}(v) = \{ d \mid d \leftarrow \dots \leftarrow v \text{ or } d = v \text{ in } \mathcal{G}, d \in V \cup W \},$$

Ancestors and Descendants

In a CADMG $\mathcal{G}(V, W)$ for $v \in V$, let the set of *ancestors*, *descendants* of v be:

$$\operatorname{an}_{\mathcal{G}}(v) = \{a \mid a \to \dots \to v \text{ or } a = v \text{ in } \mathcal{G}, a \in V \cup W\},\$$
$$\operatorname{de}_{\mathcal{G}}(v) = \{d \mid d \leftarrow \dots \leftarrow v \text{ or } d = v \text{ in } \mathcal{G}, d \in V \cup W\},\$$

In the example above:

$$an(y) = \{a_0, l_1, a_1, y\}.$$

Define a **district** in a C/ADMG to be maximal sets connected by bi-directed edges:

 $\sum_{u,v} p(u) p(x_1 | u) p(x_2 | u) p(v) p(x_3 | x_1, v) p(x_4 | x_2, v) p(x_5 | x_3)$

$$\sum_{u,v} p(u) p(x_1 | u) p(x_2 | u) p(v) p(x_3 | x_1, v) p(x_4 | x_2, v) p(x_5 | x_3)$$

$$\sum_{u,v} p(u) p(x_1 | u) p(x_2 | u) \quad p(v) p(x_3 | x_1, v) p(x_4 | x_2, v) \quad p(x_5 | x_3)$$
$$= \sum_{u} p(u) p(x_1 | u) p(x_2 | u) \sum_{v} p(v) p(x_3 | x_1, v) p(x_4 | x_2, v) \quad p(x_5 | x_3)$$

$$\sum_{u,v} p(u) p(x_1 | u) p(x_2 | u) p(v) p(x_3 | x_1, v) p(x_4 | x_2, v) p(x_5 | x_3)$$

=
$$\sum_{u} p(u) p(x_1 | u) p(x_2 | u) \sum_{v} p(v) p(x_3 | x_1, v) p(x_4 | x_2, v) p(x_5 | x_3)$$

$$= q(x_1, x_2) \cdot q(x_3, x_4 | x_1, x_2) \cdot q(x_5 | x_3).$$

$$\sum_{u,v} p(u) p(x_1 | u) p(x_2 | u) p(v) p(x_3 | x_1, v) p(x_4 | x_2, v) p(x_5 | x_3)$$

= $\sum p(u) p(x_1 | u) p(x_2 | u) \sum p(v) p(x_3 | x_1, v) p(x_4 | x_2, v) p(x_5 | x_3)$

$$= \sum_{u} p(u) p(x_{1} | u) p(x_{2} | u) \sum_{v} p(v) p(x_{3} | x_{1}, v) p(x_{4} | x_{2}, v) p(x_{5} | x_{3})$$

$$= q(x_{1}, x_{2}) \cdot q(x_{3}, x_{4} | x_{1}, x_{2}) \cdot q(x_{5} | x_{3}).$$

$$= \prod_{i} q_{D_{i}}(x_{D_{i}} | x_{pa(D_{i})\setminus D_{i}})$$

Define a **district** in a C/ADMG to be maximal sets connected by bi-directed edges:

$$\sum_{u,v} p(u) p(x_1 | u) p(x_2 | u) \quad p(v) p(x_3 | x_1, v) p(x_4 | x_2, v) \quad p(x_5 | x_3)$$

$$= \sum_{u} p(u) p(x_1 | u) p(x_2 | u) \sum_{v} p(v) p(x_3 | x_1, v) p(x_4 | x_2, v) \quad p(x_5 | x_3)$$

$$= q(x_1, x_2) \cdot q(x_3, x_4 | x_1, x_2) \cdot q(x_5 | x_3).$$

$$= \prod_{i} q_{D_i}(x_{D_i} | x_{pa(D_i) \setminus D_i})$$

Districts are called 'c-components' by Tian.

Edges between districts

There is no ordering on vertices such that parents of a district precede every vertex in the district.

(Cannot form a 'chain graph' ordering.)

Notation for Districts

In a CADMG $\mathcal{G}(V, W)$ for $v \in V$, the district of v is:

$$\mathsf{dis}_{\mathcal{G}}(v) = \{ d \mid d \leftrightarrow \cdots \leftrightarrow v \text{ or } d = v \text{ in } \mathcal{G}, d \in V \}.$$

Only variables in V are in districts.

Notation for Districts

In a CADMG $\mathcal{G}(V, W)$ for $v \in V$, the district of v is:

$$\mathsf{dis}_{\mathcal{G}}(v) = \{d \mid d \leftrightarrow \cdots \leftrightarrow v \text{ or } d = v \text{ in } \mathcal{G}, d \in V\}.$$

Only variables in V are in districts.

In example above:

$$dis(y) = \{l_0, l_1, y\}, dis(a_1) = \{a_1\}.$$

Notation for Districts

In a CADMG $\mathcal{G}(V, W)$ for $v \in V$, the district of v is:

$$\mathsf{dis}_{\mathcal{G}}(v) = \{d \mid d \leftrightarrow \cdots \leftrightarrow v \text{ or } d = v \text{ in } \mathcal{G}, d \in V\}.$$

Only variables in V are in districts.

In example above:

$$dis(y) = \{l_0, l_1, y\}, dis(a_1) = \{a_1\}.$$

We use $\mathcal{D}(\mathcal{G})$ to denote the set of districts in \mathcal{G} .

In example $\mathcal{D}(\mathcal{G}) = \{ \{l_0, l_1, y\}, \{a_1\} \}$.

Tian's ID algorithm for identifying $P(Y | \mathbf{do}(X))$

(A) Re-express the query as a sum over a product of intervention distributions on districts:

$$p(Y \mid do(X)) = \sum \prod_{i} p(D_i \mid do(pa(D_i) \setminus D_i)).$$

Tian's ID algorithm for identifying $P(Y | \mathbf{do}(X))$

(A) Re-express the query as a sum over a product of intervention distributions on districts:

$$p(Y \mid do(X)) = \sum \prod_{i} p(D_i \mid do(pa(D_i) \setminus D_i)).$$

(B) Check whether each term: $p(D_i | do(pa(D_i) \setminus D_i))$ is identified.

Tian's ID algorithm for identifying $P(Y | \mathbf{do}(X))$

(A) Re-express the query as a sum over a product of intervention distributions on districts:

$$p(Y \mid do(X)) = \sum \prod_{i} p(D_i \mid do(pa(D_i) \setminus D_i)).$$

(B) Check whether each term: $p(D_i | do(pa(D_i) \setminus D_i))$ is identified. This is clearly sufficient for identifiability.

Necessity follows from results of Shpitser (2006).

• Remove edges into X:

Let $\mathcal{G}[V \setminus X]$ denote the graph formed by removing edges with an arrowhead into X.

```
• Remove edges into X:
```

Let $\mathcal{G}[V \setminus X]$ denote the graph formed by removing edges with an arrowhead into X.

2 Restrict to variables that are (still) ancestors of Y:

Let $T = \operatorname{an}_{\mathcal{G}[V \setminus X]}(Y)$

be vertices that lie on directed paths between X and Y (after intervening on X).

```
• Remove edges into X:
```

Let $\mathcal{G}[V \setminus X]$ denote the graph formed by removing edges with an arrowhead into X.

2 Restrict to variables that are (still) ancestors of Y:

Let $T = \operatorname{an}_{\mathcal{G}[V \setminus X]}(Y)$

be vertices that lie on directed paths between X and Y (after intervening on X).

Let \mathcal{G}^* be formed from $\mathcal{G}[V\setminus X]$ by removing vertices not in \mathcal{T} .

```
• Remove edges into X:
```

Let $\mathcal{G}[V \setminus X]$ denote the graph formed by removing edges with an arrowhead into X.

2 Restrict to variables that are (still) ancestors of Y:

Let $T = \operatorname{an}_{\mathcal{G}[V \setminus X]}(Y)$

be vertices that lie on directed paths between X and Y (after intervening on X).

Let \mathcal{G}^* be formed from $\mathcal{G}[V\setminus X]$ by removing vertices not in \mathcal{T} .

• Find the districts:

Let D_1, \ldots, D_s be the districts in \mathcal{G}^* .

• Remove edges into X:

Let $\mathcal{G}[V \setminus X]$ denote the graph formed by removing edges with an arrowhead into X.

2 Restrict to variables that are (still) ancestors of Y:

Let $T = \operatorname{an}_{\mathcal{G}[V \setminus X]}(Y)$

be vertices that lie on directed paths between X and Y (after intervening on X).

Let \mathcal{G}^* be formed from $\mathcal{G}[V\setminus X]$ by removing vertices not in \mathcal{T} .

• Find the districts:

Let D_1, \ldots, D_s be the districts in \mathcal{G}^* .

Then:

$$P(Y | \operatorname{do}(X)) = \sum_{T \setminus (X \cup Y)} \prod_{D_i} p(D_i | \operatorname{do}(\operatorname{pa}(D_i) \setminus D_i)).$$

Example: front door graph

 \mathcal{G}

Example: front door graph

$$\mathcal{G}$$
 $\mathcal{G}_{[V \setminus \{X\}]} = \mathcal{G}^*$

Example: front door graph

$$\mathcal{G}$$
 $\mathcal{G}_{[V \setminus \{X\}]} = \mathcal{G}^*$

Districts in $T \setminus \{A_0, A_1\}$ are $D_1 = \{M\}$, $D_2 = \{Y\}$.

$$p(Y | \operatorname{do}(X)) = \sum_{M} p(M | \operatorname{do}(X)) p(Y | \operatorname{do}(M))$$

(Here the decomposition is trivial since there is only one district and no summation.)

(B) Finding if $P(D \mid do(pa(D) \setminus D))$ is identified

Idea: Find an ordering r_1, \ldots, r_p of $O \setminus D$ such that:

If $P(O \setminus \{r_1, \ldots, r_{t-1}\} | \operatorname{do}(r_1, \ldots, r_{t-1}))$ is identified

Then $P(O \setminus \{r_1, \ldots, r_t\} | do(r_1, \ldots, r_t))$ is also identified.

(B) Finding if $P(D | do(pa(D) \setminus D))$ is identified

Idea: Find an ordering r_1, \ldots, r_p of $O \setminus D$ such that:

If
$$P(O \setminus \{r_1, \dots, r_{t-1}\} | do(r_1, \dots, r_{t-1}))$$
 is identified
Then $P(O \setminus \{r_1, \dots, r_t\} | do(r_1, \dots, r_t))$ is also identified.

Sufficient for identifiability of $P(D \mid do(pa(D) \setminus D))$, since:

P(O) is identified

$$D = O \setminus \{r_1, \dots, r_p\}$$
, so
 $P(O \setminus \{r_1, \dots, r_p\} | \operatorname{do}(r_1, \dots, r_p)) = P(D | \operatorname{do}(\operatorname{pa}(D) \setminus D)).$

(B) Finding if $P(D | do(pa(D) \setminus D))$ is identified

Idea: Find an ordering r_1, \ldots, r_p of $O \setminus D$ such that:

If
$$P(O \setminus \{r_1, \dots, r_{t-1}\} | do(r_1, \dots, r_{t-1}))$$
 is identified
Then $P(O \setminus \{r_1, \dots, r_t\} | do(r_1, \dots, r_t))$ is also identified.

Sufficient for identifiability of $P(D | do(pa(D) \setminus D))$, since:

P(O) is identified

$$D = O \setminus \{r_1, \dots, r_p\}, \text{ so}$$

$$P(O \setminus \{r_1, \dots, r_p\} | \operatorname{do}(r_1, \dots, r_p)) = P(D | \operatorname{do}(\operatorname{pa}(D) \setminus D)).$$

Such a vertex r_t will said to be 'fixable', given that we have already 'fixed' r_1, \ldots, r_{t-1} :

'fixing' differs from 'do'/intervening since the latter does not preserve identifiability.

(B) Finding if $P(D | do(pa(D) \setminus D))$ is identified

Idea: Find an ordering r_1, \ldots, r_p of $O \setminus D$ such that:

If
$$P(O \setminus \{r_1, \ldots, r_{t-1}\} | do(r_1, \ldots, r_{t-1}))$$
 is identified
Then $P(O \setminus \{r_1, \ldots, r_t\} | do(r_1, \ldots, r_t))$ is also identified.

Sufficient for identifiability of $P(D | do(pa(D) \setminus D))$, since:

P(O) is identified

$$D = O \setminus \{r_1, \dots, r_p\}, \text{ so}$$

$$P(O \setminus \{r_1, \dots, r_p\} | \operatorname{do}(r_1, \dots, r_p)) = P(D | \operatorname{do}(\operatorname{pa}(D) \setminus D)).$$

Such a vertex r_t will said to be 'fixable', given that we have already 'fixed' r_1, \ldots, r_{t-1} :

'fixing' differs from 'do'/intervening since the latter does not preserve identifiability.

To do:

- Give a graphical characterization of 'fixability';
- Construct the identifying formula.

The set of fixable vertices

Given a CADMG $\mathcal{G}(V, W)$ we define the set of fixable vertices,

$$F(\mathcal{G}) \equiv \{ v \mid v \in V, \operatorname{dis}_{\mathcal{G}}(v) \cap \operatorname{de}_{\mathcal{G}}(v) = \{ v \} \}.$$

In words, a vertex $v \in V$ is fixable in \mathcal{G} if there is no (proper) descendant of v that is in the same district as v in \mathcal{G} .

The set of fixable vertices

Given a CADMG $\mathcal{G}(V, W)$ we define the set of fixable vertices,

$$F(\mathcal{G}) \equiv \{ v \mid v \in V, \mathsf{dis}_{\mathcal{G}}(v) \cap \mathsf{de}_{\mathcal{G}}(v) = \{ v \} \}.$$

In words, a vertex $v \in V$ is fixable in \mathcal{G} if there is no (proper) descendant of v that is in the same district as v in \mathcal{G} .

Thus v is fixable if there is no vertex $y \neq v$ such that

$$v \leftrightarrow \cdots \leftrightarrow y$$
 and $v \rightarrow \cdots \rightarrow y$ in \mathcal{G} .

Note that the set of fixable vertices is a subset of V, and contains at least one vertex from each district in G.
Example: front door graph

 $F(\mathcal{G}) = \{M, Y\}$

X is not fixable since Y is a descendant of X and

Y is in the same district as X

Example: The Verma Graph

Here $F(G) = \{A_0, A_1, Y\}.$

 L_1 is not fixable since Y is a descendant of L_1 and

Y is in the same district as L_1 .

The graphical operation of fixing vertices

Given a CADMG $\mathcal{G}(V, W, E)$, for every $r \in F(\mathcal{G})$ we associate a transformation ϕ_r on the pair $(\mathcal{G}, P(X_V | X_W))$:

$$\phi_r(\mathcal{G}) \equiv \mathcal{G}^{\dagger}(V \setminus \{r\}, W \cup \{r\}),$$

where in \mathcal{G}^{\dagger} we remove from \mathcal{G} any edge that has an arrowhead at r.

The graphical operation of fixing vertices

Given a CADMG $\mathcal{G}(V, W, E)$, for every $r \in F(\mathcal{G})$ we associate a transformation ϕ_r on the pair $(\mathcal{G}, P(X_V | X_W))$:

$$\phi_r(\mathcal{G}) \equiv \mathcal{G}^{\dagger}(V \setminus \{r\}, W \cup \{r\}),$$

where in \mathcal{G}^{\dagger} we remove from \mathcal{G} any edge that has an arrowhead at r.

The operation of 'fixing r' simply transfers r from 'V' to 'W', and removes edges $r \leftrightarrow$ or $r \leftarrow$.

Example: front door graph

 $F(\mathcal{G}) = \{M, Y\}$

 $F(\phi_M(\mathcal{G})) = \{X, Y\}$

Note that X was not fixable in \mathcal{G} , but it is fixable in $\phi_M(\mathcal{G})$ after fixing M.

Example: The Verma Graph

Here
$$F(G) = \{A_0, A_1, Y\}.$$

$$\phi_{A_1}(\mathcal{G}) \xrightarrow{A_0 \to L_1} \xrightarrow{A_1 \to Y}$$

Notice $F(\phi_{A_1}(G)) = \{A_0, L_1, Y\}.$

Thus L_1 was not fixable prior to fixing A_1 , but L_1 is fixable in $\phi_{A_1}(\mathcal{G})$ after fixing A_1 .

The probabilistic operation of fixing vertices

Given a distribution P(V | W) we associate a transformation:

$$\phi_r(P(V \mid W); \mathcal{G}) \equiv P(V \mid W)/P(r \mid \mathsf{mb}_{\mathcal{G}}(r)).$$

Here

 $\mathsf{mb}_{\mathcal{G}}(r) = \{ y \neq r \mid (r \leftarrow y) \text{ or } (r \leftrightarrow \circ \cdots \circ \leftrightarrow y) \text{ or } (r \leftrightarrow \circ \cdots \circ \leftrightarrow \circ \leftarrow y) \}.$

In words: we divide by the conditional distribution of r given the other vertices in the district containing r, and the parents of the vertices in that district.

The probabilistic operation of fixing vertices

Given a distribution P(V | W) we associate a transformation:

$$\phi_r(P(V \mid W); \mathcal{G}) \equiv P(V \mid W)/P(r \mid \mathsf{mb}_{\mathcal{G}}(r)).$$

Here

 $\mathsf{mb}_{\mathcal{G}}(r) = \{ y \neq r \mid (r \leftarrow y) \text{ or } (r \leftrightarrow \circ \cdots \circ \leftrightarrow y) \text{ or } (r \leftrightarrow \circ \cdots \circ \leftrightarrow \circ \leftarrow y) \}.$

In words: we divide by the conditional distribution of r given the other vertices in the district containing r, and the parents of the vertices in that district.

It can be shown that if r is fixable in G then:

$$\phi_r(P(V \mid \mathsf{do}(W)); \mathcal{G}) = P(V \setminus \{r\} \mid \mathsf{do}(W \cup \{r\})).$$

as required.

Note: If r is fixable in \mathcal{G} then $mb_{\mathcal{G}}(r)$ is the 'Markov blanket' of r in $an_{\mathcal{G}}(dis_{\mathcal{G}}(r))$.

Unifying Marginalizing and Conditioning

Some special cases:

• If $mb_{\mathcal{G}}(r) = (V \cup W) \setminus \{r\}$ then fixing corresponds to marginalizing:

$$\phi_r(P(V \mid W); \mathcal{G}) = \frac{P(V \mid W)}{P(r \mid (V \cup W) \setminus \{r\})} = P(V \setminus \{r\} \mid W)$$

• If $mb_{\mathcal{G}}(r) = W$ then fixing corresponds to ordinary conditioning:

$$\phi_r(P(V \mid W); \mathcal{G}) = \frac{P(V \mid W)}{P(r \mid W)} = P(V \setminus \{r\} \mid W \cup \{r\})$$

• In the general case fixing corresponds to re-weighting, so

$$\phi_r(P(V \mid W); \mathcal{G}) = P^*(V \setminus \{r\} \mid W \cup \{r\}) \neq P(V \setminus \{r\} \mid W \cup \{r\})$$

Composition of fixing operations

We use \circ to indicate composition of operations in the natural way, so that:

$$\begin{aligned} \phi_r \circ \phi_s(\mathcal{G}) &\equiv \phi_r(\phi_s(\mathcal{G})) \\ \phi_r \circ \phi_s(P(V \mid W); \mathcal{G}) &\equiv \phi_r(\phi_s(P(V \mid W); \mathcal{G}); \phi_s(\mathcal{G})) \end{aligned}$$

Example: front door graph (D_1)

 $F(\mathcal{G}) = \{M, Y\}$

 $F(\phi_Y(\mathcal{G})) = \{X, M\}$

$$\phi_X \circ \phi_Y(\mathcal{G}) \quad X \longrightarrow M \qquad Y$$

This proves that $p(M \mid do(X))$ is identified.

Example: front door graph (D_2)

 $F(\mathcal{G}) = \{M, Y\}$

 $F(\phi_M(\mathcal{G})) = \{X, Y\}$

$$\phi_X \circ \phi_M(\mathcal{G}) \quad X \qquad M \longrightarrow Y$$

This proves that $p(Y \mid do(M))$ is identified.

Example: The Verma Graph

This establishes that $P(Y | do(A_0, A_1))$ is identified.

Review: Tian's ID algorithm via fixing

(A) Re-express the query as a sum over a product of intervention distributions on districts:

$$p(Y \mid do(X)) = \sum \prod_i p(D_i \mid do(pa(D_i) \setminus D_i)).$$

- Cut edges into X;
- Restrict to vertices that are (still) ancestors of Y;
- Find the set of districts D_1, \ldots, D_p .

Review: Tian's ID algorithm via fixing

(A) Re-express the query as a sum over a product of intervention distributions on districts:

$$p(Y \mid \operatorname{do}(X)) = \sum \prod_i p(D_i \mid \operatorname{do}(\operatorname{pa}(D_i) \setminus D_i)).$$

- Cut edges into X;
- ► Restrict to vertices that are (still) ancestors of Y;
- Find the set of districts D_1, \ldots, D_p .
- **(B)** Check whether each term: $p(D_i | do(pa(D_i) \setminus D_i))$ is identified.
 - ► Iteratively find a vertex that r_t that is fixable in $\phi_{r_{t-1}} \circ \cdots \circ \phi_{r_1}(\mathcal{G})$, with $r_t \notin D_i$;
 - ▶ If no such vertex exists then $P(D_i | do(pa(D_i) \setminus D_i))$ is not identified.

Not identified example

$$F(\mathcal{G}) = \{Y\}$$

We see that p(Y | do(M)) is not identified since the only fixable vertex is Y.

Reachable subgraphs of an ADMG

A CADMG $\mathcal{G}(V, W)$ is *reachable* from ADMG $\mathcal{G}^*(V \cup W)$ if there is an ordering of the vertices in $W = \langle w_1, \ldots, w_k \rangle$, such that for $j = 1, \ldots, k$,

$$w_1 \in F(\mathcal{G}^*) ext{ and for } j = 2, \dots, k, \ w_j \in F(\phi_{w_{j-1}} \circ \dots \circ \phi_{w_1}(\mathcal{G}^*)).$$

Thus a subgraph is reachable if, under some ordering, each of the vertices in W may be fixed, first in \mathcal{G}^* , and then in $\phi_{w_1}(\mathcal{G}^*)$, then in $\phi_{w_2}(\phi_{w_1}(\mathcal{G}^*))$, and so on.

Intrinsic sets

A set D is said to be *intrinsic* if it forms a *district* in a *reachable* subgraph.

If D is intrinsic in \mathcal{G} then $p(D \mid do(pa(D) \setminus D))$ is identified.

The intervention distributions $p(D \mid do(pa(D) \setminus D))$ for intrinsic D play the same role as $P(v \mid do(pa(v))) = p(v \mid pa(v))$ in the simple fully observed case.

Given an ADMG \mathcal{G} we let $\mathcal{I}(\mathcal{G})$ denote the intrinsic sets in \mathcal{G} .

Shpitser (2006) provided a characterization in terms of graphical structures called 'hedges' of those interventional distributions that were *not* identified.

It may be shown that if a \leftrightarrow -connected set is *not* intrinsic then there exists a hedge, hence we have:

 \leftrightarrow -connected set S is intrinsic iff $p(S \mid do(pa(S) \setminus S))$ is identified.

It follows that intrinsic sets may thus also be defined in terms of the *non-existence* of a hedge.

Deriving constraints via fixing

Let p(O) be the observed margin from a DAG with latents $\mathcal{G}(O \cup H)$, **Idea:** If $r \in O$ is fixable then $\phi_r(p(O); \mathcal{G})$ will obey the Markov property for the graph $\phi_r(\mathcal{G})$.

... and this can be iterated.

This gives non-parametric constraints that are not independences, that are implied by the latent DAG.

Example: The Verma Constraint

Here $F(G) = \{A_0, A_1, Y\}.$

Example: The Verma Constraint

Here $F(G) = \{A_0, A_1, Y\}.$

$$\phi_{A_1}(\mathcal{G}) \qquad \qquad \overbrace{A_0 \to L_1} \overbrace{A_1 \to Y}$$

 $\phi_{A_1}(p(A_0, L_1, A_1, Y)) = p(A_0, L_1, A_1, Y)/p(A_1 \mid A_0, L_1)$ $A_0 \perp Y \mid A_1 \qquad [\phi_{A_1}(p(A_0, L_1, A_1, Y); \mathcal{G})]$

References

- Evans, R.J. and Richardson, T.S. (2014). Markovian acyclic directed mixed graphs for discrete data. Annals of Statistics vol. 42, No. 4, 1452-1482.
- Richardson, T.S. (2003). Markov Properties for Acyclic Directed Mixed Graphs. The Scandinavian Journal of Statistics, March 2003, vol. 30, no. 1, pp. 145-157(13).
- Richardson, T.S., Robins, J.M., and Shpitser, I., (2012). Parameter and Structure Learning in Nested Markov Models. To be presented at UAI 2012 Causal Structure Learning Workshop.
- Shpitser, I., Evans, R.J., Richardson, T.S., Robins, J.M. (2014). Introduction to Nested Markov models. Behaviormetrika, vol. 41, No.1, 2014, 3–39.
- Shpitser, I., Richardson, T.S. and Robins, J.M. (2011). An efficient algorithm for computing interventional distributions in latent variable causal models. Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence.
- Shpitser, I. and Pearl, J. (2006). Identification of joint interventional distributions in recursive semi-Markovian causal models. Twenty-First National Conference on Artificial Intelligence.
- Tian, J. and Pearl, J. (2002). A general identification condition for causal effects. Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence.