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Structure

Part One: Causal DAGs with latent variables
Part Two: Statistical Models arising from DAGs with
latents
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Outline for Part One

Intervention distributions

The general identification problem

Tian’s ID Algorithm

Fixing: generalizing marginalizing and conditioning

Non-parametric constraints aka Verma constraints
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Intervention distributions (I)

Given a causal DAG G with distribution:

p(V ) =
∏
v∈V

p(v | pa(v))

we wish to compute an intervention distribution via truncated
factorization:

p(V \ X | do(X = x)) =
∏

v∈V\X

p(v | pa(v)).
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Example

X M Y

L

X M Y

L

p(X , L,M,Y ) = p(L) p(X | L) p(M | X )p(Y | L,M)

p(L,M,Y | do(X = x̃)) = p(L) × p(M | x̃)p(Y | L,M)
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Intervention distributions (II)

Given a causal DAG G with distribution:

p(V ) =
∏
v∈V

p(v | pa(v))

we wish to compute an intervention distribution via truncated
factorization:

p(V \ X | do(X = x)) =
∏

v∈V\X

p(v | pa(v)).

Hence if we are interested in Y ⊂ V \ X then we simply marginalize:

p(Y | do(X = x)) =
∑

w∈V\(X∪Y )

∏
v∈V\X

p(v | pa(v)).

This is the ‘g-computation’ formula of Robins (1986).

Note: p(Y | do(X = x)) is a sum over a product of terms p(v | pa(v)).
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∑
l,m
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Note that p(Y | do(X = x̃)) 6= p(Y | X = x̃).
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Example: no effect of M on Y

X M Y

L

X M Y

L

p(X , L,M,Y ) = p(L)p(X | L)p(M | X )p(Y | L,M)

p(L,M,Y | do(X = x̃)) = p(L)p(M | x̃)p(Y | L)

p(Y | do(X = x̃)) =
∑
l,m

p(L= l)p(M =m | x̃)p(Y | L= l)

=
∑
l

p(L= l)p(Y | L= l)

= p(Y ) 6= P(Y | x̃)

since X 6⊥⊥ Y . ‘Correlation is not Causation’.

8 / 44



Example: no effect of M on Y

X M Y

L

X M Y

L

p(X , L,M,Y ) = p(L)p(X | L)p(M | X )p(Y | L)

p(L,M,Y | do(X = x̃)) = p(L)p(M | x̃)p(Y | L)

p(Y | do(X = x̃)) =
∑
l,m

p(L= l)p(M =m | x̃)p(Y | L= l)

=
∑
l

p(L= l)p(Y | L= l)

= p(Y ) 6= P(Y | x̃)

since X 6⊥⊥ Y . ‘Correlation is not Causation’.

8 / 44



Example: no effect of M on Y

X M Y

L

X M Y

L

p(X , L,M,Y ) = p(L)p(X | L)p(M | X )p(Y | L)

p(L,M,Y | do(X = x̃)) = p(L)p(M | x̃)p(Y | L)

p(Y | do(X = x̃)) =
∑
l,m

p(L= l)p(M =m | x̃)p(Y | L= l)

=
∑
l

p(L= l)p(Y | L= l)

= p(Y ) 6= P(Y | x̃)

since X 6⊥⊥ Y . ‘Correlation is not Causation’.

8 / 44



Example: no effect of M on Y

X M Y

L

X M Y

L

p(X , L,M,Y ) = p(L)p(X | L)p(M | X )p(Y | L)

p(L,M,Y | do(X = x̃)) = p(L)p(M | x̃)p(Y | L)

p(Y | do(X = x̃)) =
∑
l,m

p(L= l)p(M =m | x̃)p(Y | L= l)

=
∑
l

p(L= l)p(Y | L= l)

= p(Y ) 6= P(Y | x̃)

since X 6⊥⊥ Y . ‘Correlation is not Causation’.

8 / 44



Example: no effect of M on Y

X M Y

L

X M Y

L

p(X , L,M,Y ) = p(L)p(X | L)p(M | X )p(Y | L)

p(L,M,Y | do(X = x̃)) = p(L)p(M | x̃)p(Y | L)

p(Y | do(X = x̃)) =
∑
l,m

p(L= l)p(M =m | x̃)p(Y | L= l)

=
∑
l

p(L= l)p(Y | L= l)

= p(Y ) 6= P(Y | x̃)

since X 6⊥⊥ Y . ‘Correlation is not Causation’.

8 / 44



Example: no effect of M on Y

X M Y

L

X M Y

L

p(X , L,M,Y ) = p(L)p(X | L)p(M | X )p(Y | L)

p(L,M,Y | do(X = x̃)) = p(L)p(M | x̃)p(Y | L)

p(Y | do(X = x̃)) =
∑
l,m

p(L= l)p(M =m | x̃)p(Y | L= l)

=
∑
l

p(L= l)p(Y | L= l)

= p(Y ) 6= P(Y | x̃)

since X 6⊥⊥ Y . ‘Correlation is not Causation’.
8 / 44



Example with M unobserved

X M Y

L

X M Y

L

p(Y | do(X = x̃)) =
∑
l,m

p(L= l)p(M =m | x̃)p(Y | L= l ,M =m)

=
∑
l,m

p(L= l)p(M =m | x̃ , L= l)p(Y | L= l ,M =m,X = x̃)

=
∑
l,m

p(L= l)p(Y ,M =m | L= l ,X = x̃)

=
∑
l

p(L= l)p(Y | L= l ,X = x̃).

Here we have used that M ⊥⊥ L | X and Y ⊥⊥ X | L,M.

⇒ can find p(Y | do(X = x̃)) even if M not observed.

This is an example of the ‘back door formula’.
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But with both L and M unobserved....

X M Y

L

...we are out of luck!

Given P(X ,Y ), absent further assumptions we cannot distinguish:

X Y

L

X M Y
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General Identification Question

Given: a latent DAG G(O ∪H), where O are observed, H are hidden, and
disjoint subsets X ,Y ⊆ O.

Q: Is p(Y | do(X )) identified given p(O)?

A: Provide either an identifying formula that is a function of p(O)

or report that p(Y | do(X )) is not identified.
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Latent Projection
Can preserve conditional independences and causal coherence with
latents using paths. DAG G on vertices V = O∪̇H, define latent
projection as follows: (Verma and Pearl, 1992)

Whenever there is a path of the form

x h1 · · · hk y

add

x y

Whenever there is a path of the form

x h1 · · · hk y

add

x y

Then remove all latent variables H from the graph.
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ADMGs

u

x

y

z

w t

−→
project

x

y

z

t

Latent projection leads to an acyclic directed mixed graph (ADMG)

Can read off independences with d/m-separation.

The projection preserves the causal structure; Verma and Pearl (1992).
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‘Conditional’ Acyclic Directed Mixed Graphs

An ‘conditional’ acyclic directed mixed graph (CADMG) is a bi-partite
graph G(V ,W ), used to represent structure of a distribution over V ,
indexed by W , for example P(V | do(W )).

We require:

(i) The induced subgraph of G on V is an ADMG;

(ii) The induced subgraph of G on W contains no edges;

(iii) Edges between vertices in W and V take the form w → v .

We represent V with circles, W with squares:

A0 L1 A1 Y

Here V = {L1,Y } and W = {A0,A1}.
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Ancestors and Descendants

L0 A0 L1 A1 Y

In a CADMG G(V ,W ) for v ∈ V , let the set of ancestors , descendants
of v be:

anG(v) = {a | a→ · · · → v or a = v in G, a ∈ V ∪W },

deG(v) = {d | d ← · · · ← v or d = v in G, d ∈ V ∪W },

In the example above:

an(y) = {a0, l1, a1, y}.
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Districts
Define a district in a C/ADMG to be maximal sets connected by
bi-directed edges:

1

2

3

4

5

1 3 5

u v

2 4

∑
u,v

p(u) p(x1 | u) p(x2 | u) p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

=
∑
u

p(u) p(x1 | u) p(x2 | u)
∑
v

p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

= q(x1, x2) · q(x3, x4 | x1, x2) · q(x5 | x3) .

=
∏
i

qDi (xDi | xpa(Di )\Di
)

Districts are called ‘c-components’ by Tian.
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u,v

p(u) p(x1 | u) p(x2 | u) p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

=
∑
u

p(u) p(x1 | u) p(x2 | u)
∑
v

p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

= q(x1, x2) · q(x3, x4 | x1, x2) · q(x5 | x3) .

=
∏
i

qDi (xDi | xpa(Di )\Di
)

Districts are called ‘c-components’ by Tian.
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Edges between districts

1 2

3 4

There is no ordering on vertices such that parents of a district precede
every vertex in the district.

(Cannot form a ‘chain graph’ ordering.)
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Notation for Districts

L0 A0 L1 A1 Y

In a CADMG G(V ,W ) for v ∈ V , the district of v is:

disG(v) = {d | d ↔ · · · ↔ v or d = v in G, d ∈ V }.

Only variables in V are in districts.

In example above:

dis(y) = {l0, l1, y}, dis(a1) = {a1}.

We use D(G) to denote the set of districts in G.

In example D(G) = { {l0, l1, y}, {a1} }.
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Tian’s ID algorithm for identifying P(Y | do(X ))

(A) Re-express the query as a sum over a product of intervention
distributions on districts:

p(Y | do(X )) =
∑∏

i

p(Di | do(pa(Di ) \ Di )).

(B) Check whether each term: p(Di | do(pa(Di ) \ Di )) is identified.

This is clearly sufficient for identifiability.

Necessity follows from results of Shpitser (2006).
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(A) Decomposing the query

1 Remove edges into X :
Let G[V \ X ] denote the graph formed by removing edges with an
arrowhead into X .

2 Restrict to variables that are (still) ancestors of Y :
Let T = anG[V\X ](Y )
be vertices that lie on directed paths between X and Y (after
intervening on X ).
Let G∗ be formed from G[V \ X ] by removing vertices not in T .

3 Find the districts:
Let D1, . . . ,Ds be the districts in G∗.

Then:

P(Y | do(X )) =
∑

T\(X∪Y )

∏
Di

p(Di | do(pa(Di ) \ Di )).
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Example: front door graph

X M Y

p(Y | do(X ))

G

X M Y

G[V\{X}] = G∗

T = {X ,M,Y }

Districts in T \ {A0,A1} are D1 = {M}, D2 = {Y }.

p(Y | do(X )) =
∑
M

p(M | do(X ))p(Y | do(M))
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Example: The Verma Graph

A0 L1 A1 YG

p(Y | do(A0,A1))

A0 L1 A1 Y

T = {A0,A1,Y }

G[V\{A0,A1}]

A0 A1 Y

D1 = {Y }

G∗

(Here the decomposition is trivial since there is only one district and no
summation.)
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(B) Finding if P(D |do(pa(D) \ D)) is identified
Idea: Find an ordering r1, . . . , rp of O \ D such that:

If P(O \ {r1, . . . , rt−1} | do(r1, . . . , rt−1)) is identified

Then P(O \ {r1, . . . , rt} | do(r1, . . . , rt)) is also identified.

Sufficient for identifiability of P(D | do(pa(D) \ D)), since:

P(O) is identified

D = O \ {r1, . . . , rp}, so
P(O \ {r1, . . . , rp} | do(r1, . . . , rp)) = P(D | do(pa(D) \ D)).

Such a vertex rt will said to be ‘fixable’, given that we have already
‘fixed’ r1, . . . , rt−1:

‘fixing’ differs from ‘do’/intervening since the latter does not preserve
identifiability.

To do:

Give a graphical characterization of ‘fixability’;

Construct the identifying formula.
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The set of fixable vertices

Given a CADMG G(V ,W ) we define the set of fixable vertices,

F (G) ≡ {v | v ∈ V , disG(v) ∩ deG(v) = {v}} .

In words, a vertex v ∈ V is fixable in G if there is no (proper) descendant
of v that is in the same district as v in G.

Thus v is fixable if there is no vertex y 6= v such that

v ↔ · · · ↔ y and v → · · · → y in G.

Note that the set of fixable vertices is a subset of V , and contains at
least one vertex from each district in G.
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Example: front door graph

X M Y

G

F (G) = {M,Y }

X is not fixable since Y is a descendant of X and

Y is in the same district as X
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Example: The Verma Graph

A0 L1 A1 Y

Here F (G) = {A0,A1,Y }.

L1 is not fixable since Y is a descendant of L1 and

Y is in the same district as L1.
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The graphical operation of fixing vertices

Given a CADMG G(V ,W ,E ), for every r ∈ F (G) we associate a
transformation φr on the pair (G,P(XV | XW )):

φr (G) ≡ G†(V \ {r},W ∪ {r}),

where in G† we remove from G any edge that has an arrowhead at r .

The operation of ‘fixing r ’ simply transfers r from ‘V ’ to ‘W ’, and
removes edges r ↔ or r ←.
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Example: front door graph

X M YG

F (G) = {M,Y }

X M YφM(G)

F (φM(G)) = {X ,Y }

Note that X was not fixable in G,

but it is fixable in φM(G) after fixing M.
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Example: The Verma Graph

A0 L1G A1 Y

Here F (G) = {A0,A1,Y }.

A0 L1φA1 (G) A1 Y

Notice F (φA1 (G)) = {A0, L1,Y }.

Thus L1 was not fixable prior to fixing A1,

but L1 is fixable in φA1 (G) after fixing A1.
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The probabilistic operation of fixing vertices

Given a distribution P(V |W ) we associate a transformation:

φr (P(V |W );G) ≡ P(V |W )/P(r | mbG(r)).

Here
mbG(r) = {y 6= r | (r←y) or (r↔◦ · · · ◦ ↔y) or (r↔◦ · · · ◦ ↔ ◦←y)}.

In words: we divide by the conditional distribution of r given the other vertices

in the district containing r , and the parents of the vertices in that district.

It can be shown that if r is fixable in G then:

φr (P(V | do(W ));G) = P(V \ {r} | do(W ∪ {r})).

as required.

Note: If r is fixable in G then mbG(r) is the ‘Markov blanket’ of r in anG(disG(r)).
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Unifying Marginalizing and Conditioning

Some special cases:

If mbG(r) = (V ∪W ) \ {r} then fixing corresponds to marginalizing:

φr (P(V |W );G) =
P(V |W )

P(r | (V ∪W ) \ {r})
= P(V \ {r} |W )

If mbG(r) = W then fixing corresponds to ordinary conditioning:

φr (P(V |W );G) =
P(V |W )

P(r |W )
= P(V \ {r} |W ∪ {r})

In the general case fixing corresponds to re-weighting, so

φr (P(V |W );G) = P∗(V \ {r} |W ∪ {r}) 6= P(V \ {r} |W ∪ {r})
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Composition of fixing operations

We use ◦ to indicate composition of operations in the natural way, so
that:

φr ◦ φs(G) ≡ φr (φs(G))

φr ◦ φs(P(V |W );G) ≡ φr (φs (P(V |W );G) ;φs(G))
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Example: front door graph (D1)

X M YG

F (G) = {M,Y }

X M YφY (G)

F (φY (G)) = {X ,M}

X M YφX ◦ φY (G)

This proves that p(M | do(X )) is identified.
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Example: front door graph (D2)

X M YG

F (G) = {M,Y }

X M YφM(G)

F (φM(G)) = {X ,Y }

X M YφX ◦ φM(G)

This proves that p(Y | do(M)) is identified.
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Example: The Verma Graph

A0 L1G A1 Y

A0 L1φA1 (G) A1 Y

A0 L1φL1 ◦ φA1 (G) A1 Y

A0 L1φA0 ◦ φL1 ◦ φA1 (G) A1 Y

This establishes that P(Y | do(A0,A1)) is identified.
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Review: Tian’s ID algorithm via fixing

(A) Re-express the query as a sum over a product of intervention
distributions on districts:

p(Y | do(X )) =
∑∏

i

p(Di | do(pa(Di ) \ Di )).

I Cut edges into X ;
I Restrict to vertices that are (still) ancestors of Y ;
I Find the set of districts D1, . . . ,Dp.

(B) Check whether each term: p(Di | do(pa(Di ) \ Di )) is identified.
I Iteratively find a vertex that rt that is fixable in φrt−1 ◦ · · · ◦ φr1 (G),

with rt /∈ Di ;
I If no such vertex exists then P(Di | do(pa(Di ) \Di )) is not identified.
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Not identified example

X M YG

F (G) = {Y }

We see that p(Y | do(M)) is not identified

since the only fixable vertex is Y .

38 / 44



Reachable subgraphs of an ADMG

A CADMG G(V ,W ) is reachable from ADMG G∗(V ∪W ) if there is an
ordering of the vertices in W = 〈w1, . . . ,wk〉, such that for j = 1, . . . , k,

w1 ∈ F (G∗) and for j = 2, . . . , k ,

wj ∈ F (φwj−1 ◦ · · · ◦ φw1 (G∗)).

Thus a subgraph is reachable if, under some ordering, each of the vertices
in W may be fixed, first in G∗, and then in φw1 (G∗), then in
φw2 (φw1 (G∗)), and so on.
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Intrinsic sets

A set D is said to be intrinsic if it forms a district in a reachable
subgraph.

If D is intrinsic in G then p(D | do(pa(D) \ D)) is identified.

The intervention distributions p(D | do(pa(D) \ D)) for intrinsic D play
the same role as P(v | do(pa(v))) = p(v | pa(v)) in the simple fully
observed case.

Given an ADMG G we let I(G) denote the intrinsic sets in G.
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Intrinsic sets and ‘hedges’

Shpitser (2006) provided a characterization in terms of graphical
structures called ‘hedges’ of those interventional distributions that were
not identified.

It may be shown that if a ↔-connected set is not intrinsic then there
exists a hedge, hence we have:

↔-connected set S is intrinsic iff p(S | do(pa(S) \ S)) is identified.

It follows that intrinsic sets may thus also be defined in terms of the
non-existence of a hedge.
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Deriving constraints via fixing

Let p(O) be the observed margin from a DAG with latents G(O ∪ H),

Idea: If r ∈ O is fixable then φr (p(O);G) will obey the Markov property
for the graph φr (G).

. . . and this can be iterated.

This gives non-parametric constraints that are not independences, that
are implied by the latent DAG.
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Example: The Verma Constraint

A0 L1G A1 Y

Here F (G) = {A0,A1,Y }.

A0 L1φA1 (G) A1 Y

φA1 (p(A0, L1,A1,Y )) = p(A0, L1,A1,Y )/p(A1 | A0, L1)

A0 ⊥⊥ Y | A1 [φA1 (p(A0, L1,A1,Y );G)]
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