Non-parametric causal models

Robin J. Evans Thomas S. Richardson

Oxford and Univ. of Washington

UAI Tutorial
12th July 2015

Structure

- Part One: Causal DAGs with latent variables
- Part Two: Statistical Models arising from DAGs with latents

Outline for Part One

- Intervention distributions
- The general identification problem
- Tian's ID Algorithm
- Fixing: generalizing marginalizing and conditioning
- Non-parametric constraints aka Verma constraints

Intervention distributions (I)

Given a causal DAG \mathcal{G} with distribution:

$$
p(V)=\prod_{v \in V} p(v \mid \mathrm{pa}(v))
$$

we wish to compute an intervention distribution via truncated factorization:

$$
p(V \backslash X \mid \operatorname{do}(X=\mathbf{x}))=\prod_{v \in V \backslash X} p(v \mid \mathrm{pa}(v)) .
$$

Example

$p(X, L, M, Y)=p(L) p(X \mid L) p(M \mid X) p(Y \mid L, M)$

Example

$$
\begin{array}{r}
p(X, L, M, Y)=p(L) p(X \mid L) p(M \mid X) p(Y \mid L, M) \\
p(L, M, Y \mid \operatorname{do}(X=\tilde{x}))=p(L) \quad \times \quad p(M \mid \tilde{x}) p(Y \mid L, M)
\end{array}
$$

Intervention distributions (II)

Given a causal DAG \mathcal{G} with distribution:

$$
p(V)=\prod_{v \in V} p(v \mid \mathrm{pa}(v))
$$

we wish to compute an intervention distribution via truncated factorization:

$$
p(V \backslash X \mid \operatorname{do}(X=\mathbf{x}))=\prod_{v \in V \backslash X} p(v \mid \mathrm{pa}(v)) .
$$

Hence if we are interested in $Y \subset V \backslash X$ then we simply marginalize:

$$
p(Y \mid \operatorname{do}(X=\mathbf{x}))=\sum_{w \in V \backslash(X \cup Y)} \prod_{v \in V \backslash X} p(v \mid \mathrm{pa}(v)) .
$$

This is the ' g -computation' formula of Robins (1986).

Intervention distributions (II)

Given a causal DAG \mathcal{G} with distribution:

$$
p(V)=\prod_{v \in V} p(v \mid \mathrm{pa}(v))
$$

we wish to compute an intervention distribution via truncated factorization:

$$
p(V \backslash X \mid \operatorname{do}(X=\mathbf{x}))=\prod_{v \in V \backslash X} p(v \mid \mathrm{pa}(v)) .
$$

Hence if we are interested in $Y \subset V \backslash X$ then we simply marginalize:

$$
p(Y \mid \operatorname{do}(X=\mathbf{x}))=\sum_{w \in V \backslash(X \cup Y)} \prod_{v \in V \backslash X} p(v \mid \mathrm{pa}(v)) .
$$

This is the ' g-computation' formula of Robins (1986).
Note: $p(Y \mid \operatorname{do}(X=\mathbf{x}))$ is a sum over a product of terms $p(v \mid \mathrm{pa}(v))$.

Example

$$
\begin{aligned}
p(X, L, M, Y) & =p(L) p(X \mid L) p(M \mid X) p(Y \mid L, M) \\
p(L, M, Y \mid \operatorname{do}(X=\tilde{x})) & =p(L) p(M \mid \tilde{x}) p(Y \mid L, M) \\
p(Y \mid \operatorname{do}(X=\tilde{x})) & =\sum_{I, m} p(L=I) p(M=m \mid \tilde{x}) p(Y \mid L=I, M=m)
\end{aligned}
$$

Example

$$
\begin{aligned}
p(X, L, M, Y) & =p(L) p(X \mid L) p(M \mid X) p(Y \mid L, M) \\
p(L, M, Y \mid \operatorname{do}(X=\tilde{x})) & =p(L) p(M \mid \tilde{x}) p(Y \mid L, M) \\
p(Y \mid \operatorname{do}(X=\tilde{x})) & =\sum_{I, m} p(L=I) p(M=m \mid \tilde{x}) p(Y \mid L=I, M=m)
\end{aligned}
$$

Note that $p(Y \mid \operatorname{do}(X=\tilde{x})) \neq p(Y \mid X=\tilde{x})$.

Example: no effect of M on Y

$$
p(X, L, M, Y)=p(L) p(X \mid L) p(M \mid X) p(Y \mid L, M)
$$

Example: no effect of M on Y

Example: no effect of M on Y

Example: no effect of M on Y

$$
\begin{aligned}
p(X, L, M, Y) & =p(L) p(X \mid L) p(M \mid X) p(Y \mid L) \\
p(L, M, Y \mid \operatorname{do}(X=\tilde{x})) & =p(L) p(M \mid \tilde{x}) p(Y \mid L) \\
p(Y \mid \operatorname{do}(X=\tilde{x})) & =\sum_{l, m} p(L=I) p(M=m \mid \tilde{x}) p(Y \mid L=I)
\end{aligned}
$$

Example: no effect of M on Y

$$
\begin{aligned}
p(X, L, M, Y) & =p(L) p(X \mid L) p(M \mid X) p(Y \mid L) \\
p(L, M, Y \mid \operatorname{do}(X=\tilde{x})) & =p(L) p(M \mid \tilde{x}) p(Y \mid L) \\
p(Y \mid \operatorname{do}(X=\tilde{x})) & =\sum_{l, m} p(L=I) p(M=m \mid \tilde{x}) p(Y \mid L=I) \\
& =\sum_{I} p(L=I) p(Y \mid L=I)
\end{aligned}
$$

Example: no effect of M on Y

$$
p(X, L, M, Y)=p(L) p(X \mid L) p(M \mid X) p(Y \mid L)
$$

$$
p(L, M, Y \mid \operatorname{do}(X=\tilde{x}))=p(L) p(M \mid \tilde{x}) p(Y \mid L)
$$

$$
\begin{aligned}
p(Y \mid \operatorname{do}(X=\tilde{x})) & =\sum_{l, m} p(L=I) p(M=m \mid \tilde{x}) p(Y \mid L=I) \\
& =\sum_{l} p(L=I) p(Y \mid L=I) \\
& =p(Y) \neq P(Y \mid \tilde{x})
\end{aligned}
$$

since $X \not \Perp Y$. 'Correlation is not Causation'.

Example with M unobserved

$p(Y \mid \operatorname{do}(X=\tilde{x}))=\sum_{l, m} p(L=I) p(M=m \mid \tilde{x}) p(Y \mid L=I, M=m)$

Example with M unobserved

$$
\begin{aligned}
p(Y \mid \operatorname{do}(X=\tilde{x})) & =\sum_{l, m} p(L=I) p(M=m \mid \tilde{x}) p(Y \mid L=I, M=m) \\
& =\sum_{l, m} p(L=I) p(M=m \mid \tilde{x}, L=I) p(Y \mid L=I, M=m, X=\tilde{x})
\end{aligned}
$$

Here we have used that $M \Perp L \mid X$ and $Y \Perp X \mid L, M$.

Example with M unobserved

$$
\begin{aligned}
p(Y \mid \operatorname{do}(X=\tilde{x})) & =\sum_{l, m} p(L=I) p(M=m \mid \tilde{x}) p(Y \mid L=I, M=m) \\
& =\sum_{l, m} p(L=I) p(M=m \mid \tilde{x}, L=I) p(Y \mid L=I, M=m, X=\tilde{x}) \\
& =\sum_{l, m} p(L=I) p(Y, M=m \mid L=I, X=\tilde{x})
\end{aligned}
$$

Example with M unobserved

$$
\begin{aligned}
p(Y \mid \operatorname{do}(X=\tilde{x})) & =\sum_{l, m} p(L=I) p(M=m \mid \tilde{x}) p(Y \mid L=I, M=m) \\
& =\sum_{l, m} p(L=I) p(M=m \mid \tilde{x}, L=I) p(Y \mid L=I, M=m, X=\tilde{x}) \\
& =\sum_{l, m} p(L=I) p(Y, M=m \mid L=I, X=\tilde{x}) \\
& =\sum_{l} p(L=I) p(Y \mid L=I, X=\tilde{x})
\end{aligned}
$$

\Rightarrow can find $p(Y \mid \operatorname{do}(X=\tilde{x}))$ even if M not observed.
This is an example of the 'back door formula'.

Example with L unobserved

$p(Y \mid \operatorname{do}(X=\tilde{x}))$

Example with L unobserved

$$
\begin{aligned}
& p(Y \mid \operatorname{do}(X=\tilde{x})) \\
& \quad=\sum_{m} p(M=m \mid \operatorname{do}(X=\tilde{x})) p(Y \mid \operatorname{do}(M=m))
\end{aligned}
$$

Example with L unobserved

$$
\begin{aligned}
p(Y \mid & \operatorname{do}(X=\tilde{x})) \\
& =\sum_{m} p(M=m \mid \operatorname{do}(X=\tilde{x})) p(Y \mid \operatorname{do}(M=m)) \\
& =\sum_{m} p(M=m \mid X=\tilde{x}) p(Y \mid \operatorname{do}(M=m))
\end{aligned}
$$

Example with L unobserved

$$
\begin{aligned}
& p(Y \mid\operatorname{do}(X=\tilde{x})) \\
&=\sum_{m} p(M=m \mid \operatorname{do}(X=\tilde{x})) p(Y \mid \operatorname{do}(M=m)) \\
& \quad=\sum_{m} p(M=m \mid X=\tilde{x}) p(Y \mid \operatorname{do}(M=m)) \\
& \quad=\sum_{m} p(M=m \mid X=\tilde{x})\left(\sum_{x^{*}} p\left(X=x^{*}\right) p\left(Y \mid M=m, X=x^{*}\right)\right)
\end{aligned}
$$

Example with L unobserved

$$
\begin{aligned}
p(Y \mid & \operatorname{do}(X=\tilde{x})) \\
& =\sum_{m} p(M=m \mid \operatorname{do}(X=\tilde{x})) p(Y \mid \operatorname{do}(M=m)) \\
\quad & =\sum_{m} p(M=m \mid X=\tilde{x}) p(Y \mid \operatorname{do}(M=m)) \\
\quad & \sum_{m} p(M=m \mid X=\tilde{x})\left(\sum_{x^{*}} p\left(X=x^{*}\right) p\left(Y \mid M=m, X=x^{*}\right)\right)
\end{aligned}
$$

\Rightarrow can find $p(Y \mid \operatorname{do}(X=\tilde{x}))$ even if L not observed.
This is an example of the 'front door formula'.

But with both L and M unobserved....

...we are out of luck!

But with both L and M unobserved....

...we are out of luck!
Given $P(X, Y)$, absent further assumptions we cannot distinguish:

General Identification Question

Given: a latent DAG $\mathcal{G}(O \cup H)$, where O are observed, H are hidden, and disjoint subsets $X, Y \subseteq O$.

Q : Is $p(Y \mid \operatorname{do}(X))$ identified given $p(O)$?

General Identification Question

Given: a latent DAG $\mathcal{G}(O \cup H)$, where O are observed, H are hidden, and disjoint subsets $X, Y \subseteq O$.

Q: Is $p(Y \mid \operatorname{do}(X))$ identified given $p(O)$?
A: Provide either an identifying formula that is a function of $p(O)$
or report that $p(Y \mid \operatorname{do}(X))$ is not identified.

Latent Projection

Can preserve conditional independences and causal coherence with latents using paths. DAG \mathcal{G} on vertices $V=O \dot{\cup} H$, define latent projection as follows: (Verma and Pearl, 1992)

Latent Projection

Can preserve conditional independences and causal coherence with latents using paths. DAG \mathcal{G} on vertices $V=O \dot{\cup} H$, define latent projection as follows: (Verma and Pearl, 1992)

Whenever there is a path of the form

add

Latent Projection

Can preserve conditional independences and causal coherence with latents using paths. DAG \mathcal{G} on vertices $V=O \dot{\cup} H$, define latent projection as follows: (Verma and Pearl, 1992)

Whenever there is a path of the form

add

Whenever there is a path of the form

add

Latent Projection

Can preserve conditional independences and causal coherence with latents using paths. DAG \mathcal{G} on vertices $V=O \dot{\cup} H$, define latent projection as follows: (Verma and Pearl, 1992)

Whenever there is a path of the form

add

Whenever there is a path of the form

add

Then remove all latent variables H from the graph.

ADMGs

ADMGs

Latent projection leads to an acyclic directed mixed graph (ADMG)

ADMGs

Latent projection leads to an acyclic directed mixed graph (ADMG) Can read off independences with d / m-separation.

The projection preserves the causal structure; Verma and Pearl (1992).

‘Conditional’ Acyclic Directed Mixed Graphs

An 'conditional' acyclic directed mixed graph (CADMG) is a bi-partite graph $\mathcal{G}(V, W)$, used to represent structure of a distribution over V, indexed by W, for example $P(V \mid \operatorname{do}(W))$.

We require:
(i) The induced subgraph of \mathcal{G} on V is an ADMG;
(ii) The induced subgraph of \mathcal{G} on W contains no edges;
(iii) Edges between vertices in W and V take the form $w \rightarrow v$.

We represent V with circles, W with squares:

Here $V=\left\{L_{1}, Y\right\}$ and $W=\left\{A_{0}, A_{1}\right\}$.

Ancestors and Descendants

In a CADMG $\mathcal{G}(V, W)$ for $v \in V$, let the set of ancestors, descendants of v be:

$$
\begin{aligned}
\operatorname{an}_{\mathcal{G}}(v) & =\{a \mid a \rightarrow \cdots \rightarrow v \text { or } a=v \text { in } \mathcal{G}, a \in V \cup W\}, \\
\operatorname{de}_{\mathcal{G}}(v) & =\{d \mid d \leftarrow \cdots \leftarrow v \text { or } d=v \text { in } \mathcal{G}, d \in V \cup W\},
\end{aligned}
$$

Ancestors and Descendants

In a CADMG $\mathcal{G}(V, W)$ for $v \in V$, let the set of ancestors, descendants of v be:

$$
\begin{aligned}
\operatorname{an}_{\mathcal{G}}(v) & =\{a \mid a \rightarrow \cdots \rightarrow v \text { or } a=v \text { in } \mathcal{G}, a \in V \cup W\}, \\
\operatorname{de}_{\mathcal{G}}(v) & =\{d \mid d \leftarrow \cdots \leftarrow v \text { or } d=v \text { in } \mathcal{G}, d \in V \cup W\},
\end{aligned}
$$

In the example above:

$$
\operatorname{an}(y)=\left\{a_{0}, l_{1}, a_{1}, y\right\} .
$$

Districts

Define a district in a C/ADMG to be maximal sets connected by bi-directed edges:

Districts

Define a district in a C/ADMG to be maximal sets connected by bi-directed edges:

Districts

Define a district in a C/ADMG to be maximal sets connected by bi-directed edges:

$$
\sum_{u, v} p(u) p\left(x_{1} \mid u\right) p\left(x_{2} \mid u\right) \quad p(v) p\left(x_{3} \mid x_{1}, v\right) p\left(x_{4} \mid x_{2}, v\right) \quad p\left(x_{5} \mid x_{3}\right)
$$

Districts

Define a district in a C/ADMG to be maximal sets connected by bi-directed edges:

Districts

Define a district in a C/ADMG to be maximal sets connected by bi-directed edges:

$$
\begin{aligned}
& \sum_{u, v} p(u) p\left(x_{1} \mid u\right) p\left(x_{2} \mid u\right) p(v) p\left(x_{3} \mid x_{1}, v\right) p\left(x_{4} \mid x_{2}, v\right) p\left(x_{5} \mid x_{3}\right) \\
& =\sum_{u} p(u) p\left(x_{1} \mid u\right) p\left(x_{2} \mid u\right) \sum_{v} p(v) p\left(x_{3} \mid x_{1}, v\right) p\left(x_{4} \mid x_{2}, v\right) p\left(x_{5} \mid x_{3}\right)
\end{aligned}
$$

Districts

Define a district in a C/ADMG to be maximal sets connected by bi-directed edges:

$$
\begin{aligned}
& \sum_{u, v} p(u) p\left(x_{1} \mid u\right) p\left(x_{2} \mid u\right) p(v) p\left(x_{3} \mid x_{1}, v\right) p\left(x_{4} \mid x_{2}, v\right) p\left(x_{5} \mid x_{3}\right) \\
& =\sum_{u} p(u) p\left(x_{1} \mid u\right) p\left(x_{2} \mid u\right) \sum_{v} p(v) p\left(x_{3} \mid x_{1}, v\right) p\left(x_{4} \mid x_{2}, v\right) p\left(x_{5} \mid x_{3}\right) \\
& =q\left(x_{1}, x_{2}\right) \cdot q\left(x_{3}, x_{4} \mid x_{1}, x_{2}\right) \cdot q\left(x_{5} \mid x_{3}\right) .
\end{aligned}
$$

Districts

Define a district in a C/ADMG to be maximal sets connected by bi-directed edges:

$$
\begin{aligned}
& \sum_{u, v} p(u) p\left(x_{1} \mid u\right) p\left(x_{2} \mid u\right) p(v) p\left(x_{3} \mid x_{1}, v\right) p\left(x_{4} \mid x_{2}, v\right) p\left(x_{5} \mid x_{3}\right) \\
& =\sum_{u} p(u) p\left(x_{1} \mid u\right) p\left(x_{2} \mid u\right) \sum_{v} p(v) p\left(x_{3} \mid x_{1}, v\right) p\left(x_{4} \mid x_{2}, v\right) p\left(x_{5} \mid x_{3}\right) \\
& =q\left(x_{1}, x_{2}\right) \cdot q\left(x_{3}, x_{4} \mid x_{1}, x_{2}\right) \cdot q\left(x_{5} \mid x_{3}\right) . \\
& =\prod_{i} q_{D_{i}\left(x_{D_{i}} \mid x_{\mathrm{pa}\left(D_{i}\right) \backslash D_{i}}\right)}
\end{aligned}
$$

Districts

Define a district in a C/ADMG to be maximal sets connected by bi-directed edges:

$$
\begin{aligned}
& \sum_{u, v} p(u) p\left(x_{1} \mid u\right) p\left(x_{2} \mid u\right) p(v) p\left(x_{3} \mid x_{1}, v\right) p\left(x_{4} \mid x_{2}, v\right) p\left(x_{5} \mid x_{3}\right) \\
& =\sum_{u} p(u) p\left(x_{1} \mid u\right) p\left(x_{2} \mid u\right) \sum_{v} p(v) p\left(x_{3} \mid x_{1}, v\right) p\left(x_{4} \mid x_{2}, v\right) p\left(x_{5} \mid x_{3}\right) \\
& =q\left(x_{1}, x_{2}\right) \cdot q\left(x_{3}, x_{4} \mid x_{1}, x_{2}\right) \cdot q\left(x_{5} \mid x_{3}\right) . \\
& =\prod_{i} q_{D_{i}\left(x_{D_{i}} \mid x_{\mathrm{pa}\left(D_{i}\right) \backslash D_{i}}\right)}
\end{aligned}
$$

Districts are called 'c-components' by Tian.

Edges between districts

There is no ordering on vertices such that parents of a district precede every vertex in the district.
(Cannot form a 'chain graph' ordering.)

Notation for Districts

In a CADMG $\mathcal{G}(V, W)$ for $v \in V$, the district of v is:

$$
\operatorname{dis}_{\mathcal{G}}(v)=\{d \mid d \leftrightarrow \cdots \leftrightarrow v \text { or } d=v \text { in } \mathcal{G}, d \in V\} .
$$

Only variables in V are in districts.

Notation for Districts

In a CADMG $\mathcal{G}(V, W)$ for $v \in V$, the district of v is:

$$
\operatorname{dis}_{\mathcal{G}}(v)=\{d \mid d \leftrightarrow \cdots \leftrightarrow v \text { or } d=v \text { in } \mathcal{G}, d \in V\} .
$$

Only variables in V are in districts.
In example above:

$$
\operatorname{dis}(y)=\left\{I_{0}, I_{1}, y\right\}, \quad \operatorname{dis}\left(a_{1}\right)=\left\{a_{1}\right\} .
$$

Notation for Districts

In a CADMG $\mathcal{G}(V, W)$ for $v \in V$, the district of v is:

$$
\operatorname{dis}_{\mathcal{G}}(v)=\{d \mid d \leftrightarrow \cdots \leftrightarrow v \text { or } d=v \text { in } \mathcal{G}, d \in V\} .
$$

Only variables in V are in districts.
In example above:

$$
\operatorname{dis}(y)=\left\{I_{0}, I_{1}, y\right\}, \quad \operatorname{dis}\left(a_{1}\right)=\left\{a_{1}\right\} .
$$

We use $\mathcal{D}(\mathcal{G})$ to denote the set of districts in \mathcal{G}.
In example $\mathcal{D}(\mathcal{G})=\left\{\left\{l_{0}, l_{1}, y\right\},\left\{a_{1}\right\}\right\}$.

Tian's ID algorithm for identifying $P(Y \mid \mathbf{d o}(X))$

(A) Re-express the query as a sum over a product of intervention distributions on districts:

$$
p(Y \mid \operatorname{do}(X))=\sum \prod_{i} p\left(D_{i} \mid \operatorname{do}\left(\operatorname{pa}\left(D_{i}\right) \backslash D_{i}\right)\right) .
$$

Tian's ID algorithm for identifying $P(Y \mid \mathbf{d o}(X))$

(A) Re-express the query as a sum over a product of intervention distributions on districts:

$$
p(Y \mid \operatorname{do}(X))=\sum \prod_{i} p\left(D_{i} \mid \operatorname{do}\left(\operatorname{pa}\left(D_{i}\right) \backslash D_{i}\right)\right) .
$$

(B) Check whether each term: $p\left(D_{i} \mid \operatorname{do}\left(\operatorname{pa}\left(D_{i}\right) \backslash D_{i}\right)\right)$ is identified.

Tian's ID algorithm for identifying $P(Y \mid \mathbf{d o}(X))$

(A) Re-express the query as a sum over a product of intervention distributions on districts:

$$
p(Y \mid \operatorname{do}(X))=\sum \prod_{i} p\left(D_{i} \mid \operatorname{do}\left(\operatorname{pa}\left(D_{i}\right) \backslash D_{i}\right)\right) .
$$

(B) Check whether each term: $p\left(D_{i} \mid \operatorname{do}\left(\operatorname{pa}\left(D_{i}\right) \backslash D_{i}\right)\right)$ is identified.

This is clearly sufficient for identifiability.
Necessity follows from results of Shpitser (2006).

(A) Decomposing the query

(1) Remove edges into X :

Let $\mathcal{G}[V \backslash X]$ denote the graph formed by removing edges with an arrowhead into X.

(A) Decomposing the query

(1) Remove edges into X :

Let $\mathcal{G}[V \backslash X]$ denote the graph formed by removing edges with an arrowhead into X.
(2) Restrict to variables that are (still) ancestors of Y :

Let $T=\operatorname{an}_{\mathcal{G}[V \backslash X]}(Y)$
be vertices that lie on directed paths between X and Y (after intervening on X).

(A) Decomposing the query

(1) Remove edges into X :

Let $\mathcal{G}[V \backslash X]$ denote the graph formed by removing edges with an arrowhead into X.
(2) Restrict to variables that are (still) ancestors of Y :

Let $T=\operatorname{an}_{\mathcal{G}[V \backslash X]}(Y)$
be vertices that lie on directed paths between X and Y (after intervening on X).
Let \mathcal{G}^{*} be formed from $\mathcal{G}[V \backslash X]$ by removing vertices not in T.

(A) Decomposing the query

(1) Remove edges into X :

Let $\mathcal{G}[V \backslash X]$ denote the graph formed by removing edges with an arrowhead into X.
(2) Restrict to variables that are (still) ancestors of Y :

Let $T=\operatorname{an}_{\mathcal{G}[V \backslash X]}(Y)$
be vertices that lie on directed paths between X and Y (after intervening on X).
Let \mathcal{G}^{*} be formed from $\mathcal{G}[V \backslash X]$ by removing vertices not in T.
(3) Find the districts:

Let D_{1}, \ldots, D_{s} be the districts in \mathcal{G}^{*}.

(A) Decomposing the query

(1) Remove edges into X :

Let $\mathcal{G}[V \backslash X]$ denote the graph formed by removing edges with an arrowhead into X.
(2) Restrict to variables that are (still) ancestors of Y :

Let $T=\operatorname{an}_{\mathcal{G}[V \backslash X]}(Y)$
be vertices that lie on directed paths between X and Y (after intervening on X).
Let \mathcal{G}^{*} be formed from $\mathcal{G}[V \backslash X]$ by removing vertices not in T.
(3) Find the districts:

Let D_{1}, \ldots, D_{s} be the districts in \mathcal{G}^{*}.
Then:

$$
P(Y \mid \operatorname{do}(X))=\sum_{T \backslash(X \cup Y)} \prod_{D_{i}} p\left(D_{i} \mid \operatorname{do}\left(\operatorname{pa}\left(D_{i}\right) \backslash D_{i}\right)\right) .
$$

Example: front door graph

Example: front door graph

$\mathcal{G}_{[V \backslash\{X\}]}=\mathcal{G}^{*}$

Example: front door graph

$\mathcal{G}_{[V \backslash\{X\}]}=\mathcal{G}^{*}$

Districts in $T \backslash\left\{A_{0}, A_{1}\right\}$ are $D_{1}=\{M\}, D_{2}=\{Y\}$.

$$
p(Y \mid \operatorname{do}(X))=\sum_{M} p(M \mid \operatorname{do}(X)) p(Y \mid \operatorname{do}(M))
$$

Example: The Verma Graph

Example: The Verma Graph

Example: The Verma Graph

Example: The Verma Graph

(Here the decomposition is trivial since there is only one district and no summation.)

(B) Finding if $P(D \mid \operatorname{do}(\mathrm{pa}(D) \backslash D))$ is identified

Idea: Find an ordering r_{1}, \ldots, r_{p} of $O \backslash D$ such that:
If $P\left(O \backslash\left\{r_{1}, \ldots, r_{t-1}\right\} \mid \mathrm{do}\left(r_{1}, \ldots, r_{t-1}\right)\right)$ is identified
Then $P\left(O \backslash\left\{r_{1}, \ldots, r_{t}\right\} \mid \mathrm{do}\left(r_{1}, \ldots, r_{t}\right)\right)$ is also identified.

(B) Finding if $P(D \mid \operatorname{do}(\mathrm{pa}(D) \backslash D))$ is identified

Idea: Find an ordering r_{1}, \ldots, r_{p} of $O \backslash D$ such that:
If $P\left(O \backslash\left\{r_{1}, \ldots, r_{t-1}\right\} \mid \mathrm{do}\left(r_{1}, \ldots, r_{t-1}\right)\right)$ is identified
Then $P\left(O \backslash\left\{r_{1}, \ldots, r_{t}\right\} \mid \mathrm{do}\left(r_{1}, \ldots, r_{t}\right)\right)$ is also identified.
Sufficient for identifiability of $P(D \mid \mathrm{do}(\mathrm{pa}(D) \backslash D)$, since:
$P(O)$ is identified
$D=O \backslash\left\{r_{1}, \ldots, r_{p}\right\}$, so
$P\left(O \backslash\left\{r_{1}, \ldots, r_{p}\right\} \mid \operatorname{do}\left(r_{1}, \ldots, r_{p}\right)\right)=P(D \mid \operatorname{do}(\mathrm{pa}(D) \backslash D))$.

(B) Finding if $P(D \mid \operatorname{do}(\mathrm{pa}(D) \backslash D))$ is identified

Idea: Find an ordering r_{1}, \ldots, r_{p} of $O \backslash D$ such that:

If $P\left(O \backslash\left\{r_{1}, \ldots, r_{t-1}\right\} \mid \mathrm{do}\left(r_{1}, \ldots, r_{t-1}\right)\right)$ is identified
Then $P\left(O \backslash\left\{r_{1}, \ldots, r_{t}\right\} \mid \operatorname{do}\left(r_{1}, \ldots, r_{t}\right)\right)$ is also identified.
Sufficient for identifiability of $P(D \mid \mathrm{do}(\mathrm{pa}(D) \backslash D))$, since:
$P(O)$ is identified
$D=O \backslash\left\{r_{1}, \ldots, r_{p}\right\}$, so
$P\left(O \backslash\left\{r_{1}, \ldots, r_{p}\right\} \mid \operatorname{do}\left(r_{1}, \ldots, r_{p}\right)\right)=P(D \mid \operatorname{do}(\mathrm{pa}(D) \backslash D))$.
Such a vertex r_{t} will said to be 'fixable', given that we have already 'fixed' r_{1}, \ldots, r_{t-1} :
'fixing' differs from 'do'/intervening since the latter does not preserve identifiability.

(B) Finding if $P(D \mid \operatorname{do}(\mathrm{pa}(D) \backslash D))$ is identified

Idea: Find an ordering r_{1}, \ldots, r_{p} of $O \backslash D$ such that:

If $P\left(O \backslash\left\{r_{1}, \ldots, r_{t-1}\right\} \mid \mathrm{do}\left(r_{1}, \ldots, r_{t-1}\right)\right)$ is identified
Then $P\left(O \backslash\left\{r_{1}, \ldots, r_{t}\right\} \mid \operatorname{do}\left(r_{1}, \ldots, r_{t}\right)\right)$ is also identified.
Sufficient for identifiability of $P(D \mid \mathrm{do}(\mathrm{pa}(D) \backslash D)$, since:
$P(O)$ is identified
$D=O \backslash\left\{r_{1}, \ldots, r_{p}\right\}$, so
$P\left(O \backslash\left\{r_{1}, \ldots, r_{p}\right\} \mid \operatorname{do}\left(r_{1}, \ldots, r_{p}\right)\right)=P(D \mid \operatorname{do}(\mathrm{pa}(D) \backslash D))$.
Such a vertex r_{t} will said to be 'fixable', given that we have already 'fixed' r_{1}, \ldots, r_{t-1} :
'fixing' differs from 'do'/intervening since the latter does not preserve identifiability.

To do:

- Give a graphical characterization of 'fixability';
- Construct the identifying formula.

The set of fixable vertices

Given a CADMG $\mathcal{G}(V, W)$ we define the set of fixable vertices,

$$
F(\mathcal{G}) \equiv\left\{v \mid v \in V, \operatorname{dis}_{\mathcal{G}}(v) \cap \operatorname{de}_{\mathcal{G}}(v)=\{v\}\right\} .
$$

In words, a vertex $v \in V$ is fixable in \mathcal{G} if there is no (proper) descendant of v that is in the same district as v in \mathcal{G}.

The set of fixable vertices

Given a CADMG $\mathcal{G}(V, W)$ we define the set of fixable vertices,

$$
F(\mathcal{G}) \equiv\left\{v \mid v \in V, \operatorname{dis}_{\mathcal{G}}(v) \cap \operatorname{de}_{\mathcal{G}}(v)=\{v\}\right\} .
$$

In words, a vertex $v \in V$ is fixable in \mathcal{G} if there is no (proper) descendant of v that is in the same district as v in \mathcal{G}.

Thus v is fixable if there is no vertex $y \neq v$ such that

$$
v \leftrightarrow \cdots \leftrightarrow y \quad \text { and } \quad v \rightarrow \cdots \rightarrow y \quad \text { in } \mathcal{G} .
$$

Note that the set of fixable vertices is a subset of V, and contains at least one vertex from each district in \mathcal{G}.

Example: front door graph

```
    G
```


$F(\mathcal{G})=\{M, Y\}$
X is not fixable since Y is a descendant of X and Y is in the same district as X

Example: The Verma Graph

Here $F(\mathcal{G})=\left\{A_{0}, A_{1}, Y\right\}$.
L_{1} is not fixable since Y is a descendant of L_{1} and
Y is in the same district as L_{1}.

The graphical operation of fixing vertices

Given a CADMG $\mathcal{G}(V, W, E)$, for every $r \in F(\mathcal{G})$ we associate a transformation ϕ_{r} on the pair $\left(\mathcal{G}, P\left(X_{V} \mid X_{W}\right)\right)$:

$$
\phi_{r}(\mathcal{G}) \equiv \mathcal{G}^{\dagger}(V \backslash\{r\}, W \cup\{r\}),
$$

where in \mathcal{G}^{\dagger} we remove from \mathcal{G} any edge that has an arrowhead at r.

The graphical operation of fixing vertices

Given a CADMG $\mathcal{G}(V, W, E)$, for every $r \in F(\mathcal{G})$ we associate a transformation ϕ_{r} on the pair $\left(\mathcal{G}, P\left(X_{V} \mid X_{W}\right)\right)$:

$$
\phi_{r}(\mathcal{G}) \equiv \mathcal{G}^{\dagger}(V \backslash\{r\}, W \cup\{r\}),
$$

where in \mathcal{G}^{\dagger} we remove from \mathcal{G} any edge that has an arrowhead at r.
The operation of 'fixing r ' simply transfers r from ' V ' to ' W ', and removes edges $r \leftrightarrow$ or $r \leftarrow$.

Example: front door graph

\mathcal{G}

$F(\mathcal{G})=\{M, Y\}$

$$
\phi_{M}(\mathcal{G})
$$

$F\left(\phi_{M}(\mathcal{G})\right)=\{X, Y\}$

Note that X was not fixable in \mathcal{G}, but it is fixable in $\phi_{M}(\mathcal{G})$ after fixing M.

Example: The Verma Graph

Here $F(\mathcal{G})=\left\{A_{0}, A_{1}, Y\right\}$.

Notice $F\left(\phi_{A_{1}}(\mathcal{G})\right)=\left\{A_{0}, L_{1}, Y\right\}$.
Thus L_{1} was not fixable prior to fixing A_{1}, but L_{1} is fixable in $\phi_{A_{1}}(\mathcal{G})$ after fixing A_{1}.

The probabilistic operation of fixing vertices

Given a distribution $P(V \mid W)$ we associate a transformation:

$$
\phi_{r}(P(V \mid W) ; \mathcal{G}) \equiv P(V \mid W) / P\left(r \mid \mathrm{mb}_{\mathcal{G}}(r)\right) .
$$

Here $\operatorname{mb}_{\mathcal{G}}(r)=\{y \neq r \mid(r \leftarrow y)$ or $(r \leftrightarrow 0 \cdots \circ \leftrightarrow y)$ or $(r \leftrightarrow 0 \cdots \circ \leftrightarrow \circ \leftarrow y)\}$.
In words: we divide by the conditional distribution of r given the other vertices in the district containing r, and the parents of the vertices in that district.

The probabilistic operation of fixing vertices

Given a distribution $P(V \mid W)$ we associate a transformation:

$$
\phi_{r}(P(V \mid W) ; \mathcal{G}) \equiv P(V \mid W) / P\left(r \mid \mathrm{mb}_{\mathcal{G}}(r)\right) .
$$

Here
$\mathrm{mb}_{\mathcal{G}}(r)=\{y \neq r \mid(r \leftarrow y)$ or $(r \leftrightarrow 0 \cdots \circ \leftrightarrow y)$ or $(r \leftrightarrow 0 \cdots \circ \leftrightarrow \circ \leftarrow y)\}$.
In words: we divide by the conditional distribution of r given the other vertices in the district containing r, and the parents of the vertices in that district. It can be shown that if r is fixable in \mathcal{G} then:

$$
\phi_{r}(P(V \mid \operatorname{do}(W)) ; \mathcal{G})=P(V \backslash\{r\} \mid \operatorname{do}(W \cup\{r\})) .
$$

as required.
Note: If r is fixable in \mathcal{G} then $\operatorname{mb}_{\mathcal{G}}(r)$ is the 'Markov blanket' of r in an $\mathcal{G}_{\mathcal{G}}\left(\operatorname{dis}_{\mathcal{G}}(r)\right)$.

Unifying Marginalizing and Conditioning

Some special cases:

- If $\mathrm{mb}_{\mathcal{G}}(r)=(V \cup W) \backslash\{r\}$ then fixing corresponds to marginalizing:

$$
\phi_{r}(P(V \mid W) ; \mathcal{G})=\frac{P(V \mid W)}{P(r \mid(V \cup W) \backslash\{r\})}=P(V \backslash\{r\} \mid W)
$$

- If $\mathrm{mb}_{\mathcal{G}}(r)=W$ then fixing corresponds to ordinary conditioning:

$$
\phi_{r}(P(V \mid W) ; \mathcal{G})=\frac{P(V \mid W)}{P(r \mid W)}=P(V \backslash\{r\} \mid W \cup\{r\})
$$

- In the general case fixing corresponds to re-weighting, so

$$
\phi_{r}(P(V \mid W) ; \mathcal{G})=P^{*}(V \backslash\{r\} \mid W \cup\{r\}) \neq P(V \backslash\{r\} \mid W \cup\{r\})
$$

Composition of fixing operations

We use \circ to indicate composition of operations in the natural way, so that:

$$
\begin{aligned}
\phi_{r} \circ \phi_{s}(\mathcal{G}) & \equiv \phi_{r}\left(\phi_{s}(\mathcal{G})\right) \\
\phi_{r} \circ \phi_{s}(P(V \mid W) ; \mathcal{G}) & \equiv \phi_{r}\left(\phi_{s}(P(V \mid W) ; \mathcal{G}) ; \phi_{s}(\mathcal{G})\right)
\end{aligned}
$$

Example: front door graph $\left(D_{1}\right)$

\mathcal{G}

$$
F(\mathcal{G})=\{M, Y\}
$$

$F\left(\phi_{Y}(\mathcal{G})\right)=\{X, M\}$

$$
\phi_{X} \circ \phi_{Y}(\mathcal{G})
$$

This proves that $p(M \mid \operatorname{do}(X))$ is identified.

Example: front door graph $\left(D_{2}\right)$

$$
\mathcal{G}
$$

$$
F(\mathcal{G})=\{M, Y\}
$$

$$
\phi_{M}(\mathcal{G})
$$

$F\left(\phi_{M}(\mathcal{G})\right)=\{X, Y\}$

$$
\phi_{X} \circ \phi_{M}(\mathcal{G}), X
$$

This proves that $p(Y \mid \operatorname{do}(M))$ is identified.

Example: The Verma Graph

This establishes that $P\left(Y \mid \operatorname{do}\left(A_{0}, A_{1}\right)\right)$ is identified.

Review: Tian's ID algorithm via fixing

(A) Re-express the query as a sum over a product of intervention distributions on districts:

$$
p(Y \mid \operatorname{do}(X))=\sum \prod_{i} p\left(D_{i} \mid \operatorname{do}\left(\operatorname{pa}\left(D_{i}\right) \backslash D_{i}\right)\right) .
$$

- Cut edges into X;
- Restrict to vertices that are (still) ancestors of Y;
- Find the set of districts D_{1}, \ldots, D_{p}.

Review: Tian's ID algorithm via fixing

(A) Re-express the query as a sum over a product of intervention distributions on districts:

$$
p(Y \mid \operatorname{do}(X))=\sum \prod_{i} p\left(D_{i} \mid \operatorname{do}\left(\operatorname{pa}\left(D_{i}\right) \backslash D_{i}\right)\right) .
$$

- Cut edges into X;
- Restrict to vertices that are (still) ancestors of Y;
- Find the set of districts D_{1}, \ldots, D_{p}.
(B) Check whether each term: $p\left(D_{i} \mid \operatorname{do}\left(\operatorname{pa}\left(D_{i}\right) \backslash D_{i}\right)\right)$ is identified.
- Iteratively find a vertex that r_{t} that is fixable in $\phi_{r_{t-1}} \circ \cdots \circ \phi_{r_{1}}(\mathcal{G})$, with $r_{t} \notin D_{i}$;
- If no such vertex exists then $P\left(D_{i} \mid \operatorname{do}\left(\operatorname{pa}\left(D_{i}\right) \backslash D_{i}\right)\right)$ is not identified.

Not identified example

$F(\mathcal{G})=\{Y\}$
We see that $p(Y \mid \operatorname{do}(M))$ is not identified since the only fixable vertex is Y.

Reachable subgraphs of an ADMG

A CADMG $\mathcal{G}(V, W)$ is reachable from ADMG $\mathcal{G}^{*}(V \cup W)$ if there is an ordering of the vertices in $W=\left\langle w_{1}, \ldots, w_{k}\right\rangle$, such that for $j=1, \ldots, k$,

$$
\begin{aligned}
& w_{1} \in F\left(\mathcal{G}^{*}\right) \text { and for } j=2, \ldots, k, \\
& \quad w_{j} \in F\left(\phi_{w_{j-1}} \circ \cdots \circ \phi_{w_{1}}\left(\mathcal{G}^{*}\right)\right) .
\end{aligned}
$$

Thus a subgraph is reachable if, under some ordering, each of the vertices in W may be fixed, first in \mathcal{G}^{*}, and then in $\phi_{w_{1}}\left(\mathcal{G}^{*}\right)$, then in $\phi_{w_{2}}\left(\phi_{w_{1}}\left(\mathcal{G}^{*}\right)\right)$, and so on.

Intrinsic sets

A set D is said to be intrinsic if it forms a district in a reachable subgraph.

If D is intrinsic in \mathcal{G} then $p(D \mid \operatorname{do}(\operatorname{pa}(D) \backslash D))$ is identified.

The intervention distributions $p(D \mid \operatorname{do}(p a(D) \backslash D))$ for intrinsic D play the same role as $P(v \mid \operatorname{do}(\mathrm{pa}(v)))=p(v \mid \mathrm{pa}(v))$ in the simple fully observed case.

Given an ADMG \mathcal{G} we let $\mathcal{I}(\mathcal{G})$ denote the intrinsic sets in \mathcal{G}.

Intrinsic sets and 'hedges'

Shpitser (2006) provided a characterization in terms of graphical structures called 'hedges' of those interventional distributions that were not identified.

It may be shown that if a \leftrightarrow-connected set is not intrinsic then there exists a hedge, hence we have:
\leftrightarrow-connected set S is intrinsic iff $p(S \mid \operatorname{do}(\mathrm{pa}(S) \backslash S)$) is identified.
It follows that intrinsic sets may thus also be defined in terms of the non-existence of a hedge.

Deriving constraints via fixing

Let $p(O)$ be the observed margin from a DAG with latents $\mathcal{G}(O \cup H)$, Idea: If $r \in O$ is fixable then $\phi_{r}(p(O) ; \mathcal{G})$ will obey the Markov property for the graph $\phi_{r}(\mathcal{G})$.
... and this can be iterated.
This gives non-parametric constraints that are not independences, that are implied by the latent DAG.

Example: The Verma Constraint

G

Here $F(\mathcal{G})=\left\{A_{0}, A_{1}, Y\right\}$.

Example: The Verma Constraint

G

Here $F(\mathcal{G})=\left\{A_{0}, A_{1}, Y\right\}$.

$$
\phi_{A_{1}}(\mathcal{G})
$$

$$
\begin{aligned}
\phi_{A_{1}}\left(p\left(A_{0}, L_{1}, A_{1}, Y\right)\right)= & p\left(A_{0}, L_{1}, A_{1}, Y\right) / p\left(A_{1} \mid A_{0}, L_{1}\right) \\
A_{0} \Perp Y \mid A_{1} & {\left[\phi_{A_{1}}\left(p\left(A_{0}, L_{1}, A_{1}, Y\right) ; \mathcal{G}\right)\right] }
\end{aligned}
$$

References

- Evans, R.J. and Richardson, T.S. (2014). Markovian acyclic directed mixed graphs for discrete data. Annals of Statistics vol. 42, No. 4, 1452-1482.
- Richardson, T.S. (2003). Markov Properties for Acyclic Directed Mixed Graphs. The Scandinavian Journal of Statistics, March 2003, vol. 30, no. 1, pp. 145-157(13).
- Richardson, T.S., Robins, J.M., and Shpitser, I., (2012). Parameter and Structure Learning in Nested Markov Models. To be presented at UAI 2012 Causal Structure Learning Workshop.
- Shpitser, I., Evans, R.J., Richardson, T.S., Robins, J.M. (2014). Introduction to Nested Markov models. Behaviormetrika, vol. 41, No.1, 2014, 3-39.
- Shpitser, I., Richardson, T.S. and Robins, J.M. (2011). An efficient algorithm for computing interventional distributions in latent variable causal models. Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence.
- Shpitser, I. and Pearl, J. (2006). Identification of joint interventional distributions in recursive semi-Markovian causal models. Twenty-First National Conference on Artificial Intelligence.
- Tian, J. and Pearl, J. (2002). A general identification condition for causal effects. Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence.

