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Peter A. Thwaites Jim Q. Smith Robert G. CowellStatistis Dept. Statistis Dept Cass Business ShoolUniversity of Warwik University of Warwik City UniversityCoventry UK CV4 7AL Coventry UK CV4 7AL London EC1Y 8TZAbstratA Chain Event Graph (CEG) is a graphialmodel whih is designed to embody onditionalindependenies in problems whose state spaesare highly asymmetri and do not admit anatural produt struture. In this paper wepresent a probability propagation algorithmwhih uses the topology of the CEG to build atransporter CEG. Intriguingly, the transporterCEG is diretly analogous to the triangulatedBayesian Network (BN) in the more onven-tional juntion tree propagation algorithmsused with BNs. The propagation method usesfatorization formulae also analogous to (butdi�erent from) the ones using potentials onliques and separators of the BN. It appearsthat the methods will be typially more eÆ-ient than the BN algorithms when applied toontexts where there is signi�ant asymmetrypresent.1 INTRODUCTIONBased on an event tree, a Chain Event Graph (CEG)is a more expressive alternative to a disrete BayesianNetwork (BN), embodying olletions of onditionalindependene statements in its topology. In Andersonand Smith (2008) it is shown not only how asymme-tries in a problem's sample spae an be representedexpliitly through the topology of its CEG, but alsohow it an express a muh wider range of types of on-ditional independene statement not simultaneouslyexpressible through a single BN. As with the BN, theCEG of an hypothesised model an be interrogated us-ing natural language before the graph is embellishedwith probabilities. In Thwaites and Smith (2006) andRiomagno and Smith (2005) we demonstrate howthe CEG an also be used to represent and analysevarious ausal hypotheses. In this paper we ontinuethe development of CEGs by demonstrating how the

graph provides a useful struture for fast probabilitypropagation in asymmetri models.It has been noted that the CEG is an espeially power-ful framework for inferene when a probability modelis highly asymmetri and eliited through a desrip-tion of how situations unfold. Although theoretiallya BN an be used in this ontext, the lique probabil-ity tables are then very sparse and ontain many ze-ros or repeated probabilities. This impedes fast prop-agation algorithms and has led to the developmentof many ontext spei� variants of BNs (Boutilieret al 1996, MAllester et al 2004, Poole and Zhang2003, Salmeron et al 2000), often based on trees withinliques. These developments provoke the question asto whether a single tree might be used for propagationinstead of the BN. Now obviously the event tree itselfexpresses no onditional independenies in its topol-ogy and these independenies are the building bloksof urrent propagation algorithms. However, unlikethe event tree, the CEG expresses a fairly omprehen-sive olletion of onditional independenies. In thispaper we demonstrate the surprising fat that thereis a diret analogue between a distribution on a BNexpressed as a produt of potentials supported by agraph of liques and separators, and propagation al-gorithms on CEGs using the distributions on the hil-dren of the CEG's non-leaf nodes and marginal likeli-hoods on the verties themselves. This enables us todevelop fast propagation algorithms that use a singlegraph, the transporter CEG { analogous to a triangu-lated BN { as its framework. This framework is highlyeÆient for asymmetri/non-produt-spae ontexts,and in partiular does not involve propagating zerosin sparse but large probability tables, nor ontinuallyrepeating the same alulations, whih would be thease if we were to use the BN as a framework in thissort of environment with a naive BN propagation al-gorithm.In the next setion we formally de�ne the transporterCEG C(T ) of a hypothesised probability tree T . In



setion 3 we present an algorithm analogous to thatof Cowell and Dawid (1992) for a BN where ondi-tional probability tables assoiated with the hildrenof a given vertex of the CEG take the role of liques,and vertex probabilies take the role of separators. Insetion 4 we demonstrate the eÆieny of this algo-rithm with a simple example.2 PROBABILITY TREES ANDCHAIN EVENT GRAPHSProbability trees (Shafer 1996), and their ontrol ana-logues deision trees, have been found to be a very nat-ural and expressive framework for probability and de-ision problems, and they provide an exellent frame-work for desribing sample spae asymmetry and inho-mogeneity in a given ontext (see for example Frenhand Insua (2000)). We start with an event tree T withvertex set V (T ) and (direted) edge set E(T ). Hene-forth all the tree's non-leaf verties fvg situations,and denote this set of verties S(T ) � V (T ). We anonvert an event tree into a probability tree by speify-ing a transition matrix from its verties V (T ), wherethe absorbing states orrespond to the leaf verties.Transition probabilities from a situation are zero ex-ept for transitions to one of that situation's hildren.This makes the transition matrix upper triangular.Suh a matrix would look like the one in Table 1 whihshows part of the matrix for the problem desribed inExample 1. Note that eah transition probability anbe identi�ed by an edge on the tree.Table 1: Part of the transition matrix for Example 1v0 v1 v2 v3 v14 v24 v34 v15 v25 � � � v11 � � �v0 0 �1 �2 �3 0 0 0 0 0 � � � 0 � � �v1 0 0 0 0 �5 0 0 0 0 � � � �4 � � �v2 0 0 0 0 0 �6 0 �7 0 � � � 0 � � �v3 0 0 0 0 0 0 �8 0 �9 � � � 0 � � �... ... ...One way of seeing onditional independenestatements on a BN is as identities in ertain vetors ofonditional probabilties { expliitly those probabilityvetors assoiated with di�erent anestor on�gura-tions but the same parent on�guration of a variablein the BN (Riomagno and Smith 2007). There is alarge lass of models where the probabilities in someof the rows of the transition matrix an be identitifedwith eah other. The CEG is a topologial representa-tion of this lass of models, and the transporter CEGde�ned below is a subgraph of the CEG.Let T (vi), i = 1; 2 be the unique subtrees whose rootsare the situations vi, and whih ontain all vertiesafter vi in T . Say v1 and v2 are in the same positionw if:

1. the trees T (v1) and T (v2) are topologially iden-tial.2. there is a map between T (v1) and T (v2) suh thatthe edges in T (v2) are annotated, under that map,by the same (possibly unknown) probabilities asthe orresponding edges in T (v1).It is easily heked that the set W (T ) of positions wpartitions S(T ). Furthermore, somewhat more sub-tlely, if v1; v2 2 w and vij 2 V (T (vi)), then the vertexsets of T (vi) i = 1; 2 are mapped on to eah other bythis map, and vij 2 wj i = 1; 2 for some position wj(providing vij is not a leaf-vertex in either subtree).For details of this property see Anderson and Smith(2008).We now draw a new graph to depit both the samplespae of T and ertain onditional independene state-ments. The transporter CEG C(T ) is a direted graphwhose verties W (C(T )) are W (T ) [ fw1g. There isan edge (e 2 E(C(T ))) from w1 to w2 6= w1 for eahsituation v2 2 w2 whih is a hild of a �xed repre-sentative v1 2 w1 for some v1 2 S(T ), and an edgefrom w1 to w1 for eah leaf node v 2 V (T ) whih isa hild of some �xed representative v1 2 w1 for somev1 2 S(T ). The transporter CEG (heneforth labelledsimply as C) is the subgraph of a CEG (de�ned in An-derson and Smith (2008)) where all undireted edgesin the CEG are omitted. The relationship between thetransporter CEG and the CEG is diretly analogousto the relationship between a triangulated BN and theoriginal BN. Certain onditional independene state-ments that an be lost through onditioning are simplyforgotten so that an homogeneous propagation algo-rithm an be onstruted on the basis of the enduringonditional independenies. Unlike the BN, this CEGan have many edges between two verties and alwayshas a single sink vertex w1. Although typially hav-ing many fewer verties than T , it retains a depitionof the sample spae struture of T . Thus it is easyto hek that the set of root to leaf paths of the tree(representing the set of all possible unfoldings of thehistory of a unit) are in one to one orrespondenewith the set of root to sink paths on the transporterCEG. The CEG-onstrution proess is illustrated inExample 1.Example 1Consider the tree in Figure 1, whih has 16 atoms(root-to-leaf paths). Note that as the subtrees rootedin the verties fvi4g are the same, and those rooted infvi5g are the same, the distribution on the tree an bestored using 7 onditional tables whih ontain 16 (9free) probabilities.Our transporter CEG (Figure 2) is produed by om-bining the verties fvi4g into one position w4, the ver-



ties fvi5g into one position w5, the verties fvi6g intoone position w6, and all leaf-verties into a single sink-node w1. The full CEG for our example is simple { ithas no undireted edges, and is idential to the trans-porter CEG C. For a simple CEG, all the onditionalindependenies inherent in the problem are onveyedby the transporter CEG.
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Figure 2: Transporter CEG for Example 1Figure 2 shows the probabilities of reahing eah po-sition w (the event reahing w, denoted �(w), is theunion of all root-to-sink paths passing through w). Italso shows eah edge-probability �e(w0 j w)(= �(�(e(w;w0)) j �(w)), where �(e(w;w0)) is theunion of all root-to-sink paths utilising the edgee(w;w0) ).The problem represented by the tree in Figure 1 isasymmetri in that not all the root-to-leaf paths areof the same length, and also in the loal struture as-soiated with its verties. We do not know whetherthe verties fvi4g are related in any ontextual way tothe verties fvi5g or fvi6g, and hene we annot obvi-ously de�ne variables on the sigma-algebra of the treeto allow us to represent the problem as a BN. Evensupposing we were able to represent the problem in

suh a way, the onditional independenies embodiedin the problem (and in our transporter CEG) annotbe eÆiently oded in a BN without introduing ta-bles with many zeros. Consequently, even in this verysimple example we have eÆieny gains in storing thisdistribution over using a saturated model, a BN, or atree.3 A SIMPLE PROPAGATIONALGORITHM3.1 THE FRAMEWORKTo speify the joint distribution of all random vari-ables measurable with respet to a CEG we simplyneed to speify the vetor of onditional probabilitymass funtions assoiated with eah of its positions.The �rst step of our propagation algorithm is analo-gous to the triangulation step for a BN, whih allowsus to retain all onditional independene properties atthe ost of a possible loss of eÆieny. To do this weignore onditional independene statements oded bythe undireted edges of the CEG and work only withthe subgraph onsisting of its positions, together withits direted edges, but not its undireted edges { ourtransporter CEG C.For eah position w 2 W = W (C)nfw1g we store avetor of probabilites �(w) = f�e(w0 j w) j e(w;w0) 2E(w)g where E(w) � E(C) is the set of all edgesemanating from w. �(w) is of ourse a onditionalprobability distribution. We let X(w) be the randomvariable taking values on f1; 2; : : : ; n(E(w))g (wheren(E(w)) is the number of edges emanating from w)whose probability mass funtion is given by the om-ponents of �(w) taken in order. The positions w 2Wtake the role of the liques in a triangulated BN, whilstthe vetors f�(w) j w 2 Wg are analogous to the liqueprobability tables.We an now speify the probability �� of every atom �(a root to sink path of C, of length n(�) ) as a funtionof f�(w) j w 2 Wg and C. If:� = (w0 = w�[0℄; e�[1℄; w�[1℄; : : : ; e�[n(�)℄; w1)then �� = n(�)Yi=1 �(e�[i℄)where �(e�[i℄) is a omponent of the probability ve-tor �(w�[i � 1℄), 1 � i � n(�). It follows that thedistribution of any random variable measurable withrespet to C an be alulated from f�(w) j w 2Wg.3.2 COMPATIBLE OBSERVATIONSReall that propagation algorithms for BNs based ontriangulation are only designed to propagate informa-tion that an be expressed in the form



O(A) = fXj 2 Ajg for some subsets fAjg of thesample spaes of fXjg the vertex-variables of the BN.Propagating information about the value of some gen-eral funtion of the vertex variables using loal mes-sage passing is not generally possible, beause ondi-tioning on the values of suh a funtion an destroy theonditional independenies on whih the loal steps ofthe propagation algorithm depend for their validity.In the same way the types of observation we an ef-�iently propagate using C and f�(w) j w 2 Wgneeds to be onstrained. In general an observationan be identi�ed with a subset � of the set of allroot to sink paths f�g. The most obvious onstrain-ing assumption on � (and the one we will heneforthmake in this paper) about what we might learn isthat our observation � an be identi�ed with havinglearned that fX(w) 2 A(w)g for some subsets fA(w)gof the sample spaes of the position random variablesfX(w)g. Call suh a set C�ompatible. Note that �is C�ompatible if and only if there exists possiblyempty subsets fE�(w) j w 2Wg suh that� = f� j e� 2 E�(w) for some w 2W; for eah edgee� on the path � in CgSo we an identify a ompatible observation with theset of edges E� = Sw2W E�(w) � E(C). We notethat the set of ompatible observations is large andin partiular when the CEG is expressible as a BNontains all sets of the form O(A) de�ned above.Example 2Consider:� = f� j e� 2 fe1(w0; w1); e2(w0; w2); e4(w1; w1);e5(w1; w4); e6(w2; w4); e7(w2; w5); e10(w4; w1);e11(w4; w1); e14(w5; w6); e15(w6; w1)ggThis orresponds to all the root-to-sink paths in thesubgraph of C given in Figure 3.
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3.3 MESSAGE PASSING FROMCOMPATIBLE OBSERVATIONS ONA CEGThe message passing algorithm is a funtion from theoriginal probabilities f�(w) j w 2Wg to revised prob-abilities on the same graph f�̂(w) j w 2 Wg ondi-tional on the observation �. Note that one edge-probabilities have been revised, the resulting graphmay not be a minimal CEG (in that we may haveverties within the graph whih are the roots of iden-tial sub-graphs). It is possible (although unneessaryfor information-propagating purposes) to add a fur-ther algorithm step to produe a minimal CEG if thisis required. This step ensures that any verties thatare equivalent are ombined into a single position.Messages are passed from the terminal edges bak-wards through the transporter CEG along neighbour-ing edges until reahing the root in a ollet step givinga new pair f� (w);�(w) j w 2Wg. We then move for-ward from the root produing revised f�̂(w) j w 2Wg.Let W (�1) denote the set of positions all of whoseoutgoing edges terminate in w1 in C.1. For any edge e(w;w1) suh that w 2W (�1), setthe potential �e(w1 j w) = 0 if e(w;w1) =2 E�,and �e(w1 j w) = �e(w1 j w) if e(w;w1) 2 E�.Let the emphasis:�(w) = Xe2E(w) �e(w1 j w)Say that w1 and eah of these positions is aom-modated.2. For any position w all of whose hildren are a-ommodated, and edge e(w;w0), set the potential�e(w0 j w) = 0 if e(w;w0) =2 E�, and �e(w0 j w) =�e(w0 j w) �(w0) if e(w;w0) 2 E�. Let the em-phasis: �(w) = Xe2E(w) �e(w0 j w)Say that w is aommodated.3. Repeat step 2 until all w 2 W are aommodated.This ompletes the ollet steps.4. For all w 2W , set:�̂(w) = 0 if � (w) = 0�̂(w) = � (w)�(w) if � (w) 6= 0where � (w) = f�e(w0 j w) j e(w;w0) 2 E(w)g.Clearly we have that:�̂e(w0 j w) = 0 if e(w;w0) =2 E��̂e(w0 j w) = �e(w0 j w)�(w) if e(w;w0) 2 E�



A proof of these results is given in the appendix.Note that as we move forward through the graph theupdated probabilities of �(w0; w) subpaths will be ofthe form: �̂�(w j w0) =Yi=0 �̂e(wi+1 j wi)and we get:̂�(�(w)) = X�2f�(w0;w)g �̂�(w j w0)From the de�nition of aommodation, the order ofthese operations (like the perfet order used to updatea triangulated BN) depends only on the toplogy of C,so it an be set up beforehand.Example 3Steps 1, 2 and 3 give us the graph in Figure 4. Step 4gives us the CEG in Figure 5 (note that our CEG isagain simple, and also minimal without the need forthe additional step previously mentioned).
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� = (w0 = w�[0℄; e�[1℄; w�[1℄; : : : ; e�[n(�)℄; w1) isgiven by the invariane formula:�(� j �) = �̂(�) = n(�)Yi=1 �̂(e�[i℄) = n(�)Qi=1 �(e�[i℄)n(�)�1Qi=0 �(w�[i℄)Also note that at the ost of some omputation, wean perform inferene on the redued graph C� whoseedges E(C�) are just the edges e in E(C) with non-zero probabilities �̂(e), and whose verties W (C�) arethe w 2 W (C) for whih �(w) 6= 0. The non-zeroedge and vertex probabilities of C then simply mapon to their orresponding edge and vertex probabilitiesin C�. Note that, unlike for the BN, any non trivialC�ompatible observation stritly redues the numberof edges in the edge set after this operation.A pseudo-ode version of our algorithm is providedbelow:Let C(W (C); E(C)) be a transporter CEG with edgesin E(C) having labels ei; i = 1; 2; : : : ne, suh thati < j ) ei � ej (ei does not lie downstream of ej onany w0 ! w1 path); and positions in W (C)nfw1ghaving labels wi; i = 0; 1; 2; : : :mw, suh that i < j )wi � wj . To update the edge-probabilities on C fol-lowing observation of an event �, do:(1) Set A = �(2) Set B = �(3) Set i = 1(4) Repeat(a) Selet ei(b) If ei 2 E�, add ei to Aotherwise, set �̂ei = 0() Set i = i+ 1Until i = ne + 1(5) Set �(w1) = 1(6) Set j = mw(7) Repeat(a) Selet wj(b) Repeat(i) Selet e(wj ; w0j) 2 E(wj) \ A(ii) Set �e(w0j j wj) = �e(w0j j wj) �(w0j)(iii) Add e(wj ; w0j) to BUntil E(wj) \ A � B() Set �(wj) =Pe2E(wj) �e(w0j j wj)(d) Set j = j � 1Until j = �1(8) For eah e(w;w0) 2 E�, set �̂e(w0 j w) = �e(w0 j w)�(w)(9) Return f�̂eg4 A CLOSER LOOK AT OUREXAMPLEConsider the CEG in Figure 2 and let the 16 edges belabelled ei in the same order as the f�ig thereon. In



Examples 1 to 3 we showed how to reate and use aTransporter CEG without onerning ourselves with aontext. We now add that ontext and suppose thatthis CEG represents a Treatment regime for a seriousmedial ondition, and the edges arry the meaningsgiven in Table 2:Table 2: Edge desriptorsEdge Desriptione1 Not ritial { Treatment presribed Ie2 Liver failure { Treatment : : : IIe3 Liver & Kidney failure { Treatment : : : IIe4 Responds to I { Full reoverye5 No response to I { Surgery presribed IIIe6; e8 Responds to II { Surgery : : : IIIe7; e9 No response to II { Surgery : : : IVe10 Reovery { Lifetime monitoringe11 Reovery { Lifetime mediatione12; e13 Death in surgerye14 Survives surgery IV { Treatment : : : Ve15 Reovery { Lifetime on treatment Ve16 No response to V { DiesAs alluded to in setion 2, it is not possible to representthis regime eÆiently as a BN, nor yet as a ontext-spei� BN, given that the asymmetry of the prob-lem does not just lie in it having asymmetri samplespae strutures. By equating the desriptions of edgese4 and e10; edges e11 and e15; and edges e12; e13 ande16, we an however approximate the problem witha 4-variable BN; where X1 Diagnosis and initial treat-ment an take values orresponding to the outomesfNot ritial, Liver failure, Liver & Kidney failureg;X2 2nd treatment to fNone, III, IVg; X3 3rd treatmentto fNone, Vg; and X4 Response to fDeath, Partial re-overy, Full reoveryg. The BN for this approximationto the model is given in Figure 6.
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X4Figure 6: BN for our exampleTo store the model using a CEG requires 16 ells (or-responding to the 16 edges), but in this BN 27 ells (9for the lique fX1; X2g and 18 for fX2; X3; X4g), 14of whih are storing the value zero.The event � in our example orresponds to the ob-servation that a patient was not diagnosed with Liverand Kidney failure, and is still alive. Propagationof this event enables a pratitioner to establish prob-

ability distributions for the possible histories of ourpatient. Note that it is only the fat that we an de-sribe � in suh a simple manner that has allowed usto approximate the problem with the BN in Figure 6.Propagating of the event � using a simple JuntionTree algorithm on the liques of the BN takes a mini-mum of 43 operations. Propagation on the CEG usingour algorithm requires 32 operations (orrespondingto 16 bakward edges, 6 bakward verties and 10 for-ward edges). So even in this simple example, usingthe CEG is more eÆient than the BN. The eÆienyhere is due mainly to the fat that the lique probabil-ity tables ontain many zeros. This is reeted in theCEG by the w0 ! w1 paths not all having the samelength. It is this form of asymmetry in a model thatontext-spei� BNs do not ope with adequately, andwhy CEGs are a better struture for use with this typeof problem.The problems in whih the algorithm desribed aboveare most eÆient are when the CEG struture is knownto be simple. To store the probability tables for theCEG requires only N = #(W (C)) + #(E(C))< 2#(E(C)) ells. In this ase the ollet step involvesonly N alulations and the topology of the CEG isvalid so that in partiular the original probability ta-ble struture an be preserved. The potential produtneessitates only a single distribute step whih againonly involves at most N alulations. For large treeswith muh of the type of subtree symmetry disussedabove the propagation is extremely fast.It is worth quikly looking at a very simple exam-ple arising from model seletion in graphial or par-tition model problems, an area urrently attratingsome interest: Consider a model with random vari-ables X1; : : : Xn, where X1 with M = 1=2(n � 1)(n � 2) possible states, determines whih pair of bi-nary variables from fX2; : : : Xng are dependent, allother variables from fX2; : : :Xng being independentof eah other and of the pair determined. The CEG ofthis model has at most M(1 + 2n) edges and 2 +Mnpositions, whereas the BN is a single lique requiringM � 2n�1 ells for storage. As the number of opera-tions required for propagation on both the BN and theCEG is of the same order of magnitude as the numberof ells required for storage, it is lear that the CEGis far more eÆient in this example.5 DISCUSSIONThere are several advantages of this method over theoding of this type of problem through a BN. Firstly,the alulated probabilities an be projeted bak onto the edges of the eliited tree, so that the onse-quenes of inferenes given di�erent types of informa-tion an be immediately appreiated by the prati-



tioner. Seondly, the aommmodation of data in theform of a ompatible observation is muh more generalthan the aommodation of subsets of observationsfrom a predetermined set of random variables, so theCEG provides a more exible framework for propaga-tion, partiularly when data is ontingently ensored.Thirdly, there are eÆieny gains as outlined above.We intend to show how great these gains an be forvery large problems in a later paper.Note also that, as is the ase with the triangulationstep in BN-based algorithms, there are faster algo-rithms (Thwaites 2008) than the one desribed above,although they lose some of this algorithm's generality.Our algorithms are urrently being oded by Cowellwithin freely available software, and will be availableshortly.Of ourse BNs provide a simpler representation ofmore symmetri problems and should always be pre-ferred when the three ontingenies are not satisi�ed.The CEG does not provide a universal improvementover the BN for propagation. In partiular in prob-lems when the underlying BN is deomposable but theCEG is not simple the BN propagation an be muhmore eÆient. But in highly asymmetri problems,the CEG should de�nitely be a �rst hoie.It should be noted that it is also possible to de�ne adynami analogue of the CEG, and our investigationof these suggests that a time-slied CEG (analogousto a time-slied BN) will be an ideal vehile for a dy-nami updating algorithm. We hope to report on thesedevelopments in the near-future.APPENDIXWe laim that:�̂e(w0 j w) , �(�(e(w;w0)) j �;�(w))= ( �e(w0 j w)�(w) if e(w;w0) 2 E�0 if e(w;w0) 62 E�Proof:For a CEG C, and C�ompatible event �, let T bethe tree assoiated with C, T� the tree assoiated withC�, and T(�) the subtree of T ontaining only thoseroot-to-leaf paths in �. T(�) di�ers from T� in thatthe former retains the edge-probabilities from T .Consider a position w 2 C (w 2 C�) orresponding toa set of verties fvig 2 T . Then the subtrees rootedin eah vi are idential both in topology and in theiredge-probabilities.If there is a subpath �(w0; w) whih is not part of aw0 ! w1 path in � (ie. �(w0; w) exists in C, but notin C�) then there will exist a subset of fvig whih doesnot exist in T� (or T(�)). We split the set fvig into:

fvigi2I verties existing in T�fvigi2J verties not existing in T�Beause � is C�ompatible, the subtrees in T(�)rooted in eah vi 2 fvigi2I are also idential bothin topology and in their edge-probabilities that theyretain from T .Suppose there exists an edge e(w;w0) in C, then foreah vi 2 fvig, there exists an edge e(vi; v0i) in T or-responding to this edge. Note that:�(w) = [i2I[J �(vi)�(e(w;w0)) = [i2I[J �(e(vi; v0i))�e(v0i j vi) = �e(w0 j w) 8i 2 I [ Jand sine the subtrees in T(�) rooted in eahvi 2 fvigi2I are idential, we also have:�(� j �(vi)) = �(� j �(vj))�(�;�(e(vi; v0i)) j �(vi)) = �(�;�(e(vj ; v0j)) j �(vj))for i; j 2 I[�(� j �(vi)) is the sum of the probabilities of all the�(vi; vleaf ) subpaths in T(�), and�(�;�(e(vi; v0i)) j �(vi)) is the sum of the probabili-ties of all the �(vi; e(vi; v0i); v0i; vleaf ) subpaths in T(�)℄So:�̂e(w0 j w) = �(�(e(w;w0)) j �;�(w))= �(�;�(w);�(e(w;w0)))�(�;�(w))= �(�;Si2I[J [�(vi);�(e(vi; v0i))℄)�(�;Si2I[J �(vi))(an expression evaluated on T )sine �(vi) \ �(e(vj ; v0j)) = � for i 6= j= Pi2I[J �(�;�(vi);�(e(vi; v0i)))Pi2I[J �(�;�(vi))But � \ �(vi) = � for vi 2 fvigi2J , so this equals:Pi2I �(�;�(vi);�(e(vi; v0i)))Pi2I �(�;�(vi))= Pi2I �(�;�(e(vi; v0i)) j �(vi)) �(�(vi))Pi2I �(� j �(vi)) �(�(vi))= �(�;�(e(vj ; v0j)) j �(vj)) Pi2I �(�(vi))�(� j �(vj)) Pi2I �(�(vi))for any vj 2 fvigi2I= �(�;�(e(vj ; v0j)) j �(vj))�(� j �(vj))for any vj 2 fvigi2ITurning our attention to the terms in the algorithm,we laim that �(w) = �(� j �(vi)) and �e(w0 j w) =�(�;�(e(vi; v0i)) j �(vi)) (vi 2 fvigi2I) for all w;e(w;w0) 2 C�, where fvigi2I is the set of verties inT(�) orresponding to w. We prove this by indution:



Step 1.Consider positions w 2W (�1). Then:�(w) =Xe �e(w1 j w) =Xe �e(w1 j w)=Xe �e(vleaf j vi) in T(�)for any vi 2 fvigi2I= �(� j �(vi))Step 2.Suppose w is suh that all of its outgoing edges termi-nate in positions fw0g for whih�(w0) = �(� j �(v0i)). Then:�(w) =Xe �e(w0 j w) =Xe �e(w0 j w) �(w0)=Xe �e(v0i j vi) �(� j �(v0i))for any vi 2 fvigi2I=Xe �(�(e(vi; v0i)) j �(vi)) �(� j �(v0i))But �(v0i) = �(e(vi; v0i)) � �(vi) in a tree, so thisequals: Xe �(�(e(vi; v0i));�(v0i) j �(vi))� �(� j �(vi);�(e(vi; v0i));�(v0i))=Xe �(�;�(e(vi; v0i));�(v0i) j �(vi))=Xe �(�;�(e(vi; v0i)) j �(vi))= �(�;�(vi) j �(vi)) = �(� j �(vi))Hene:�e(w0 j w) = �e(w0 j w) �(w0)= �e(v0i j vi) �(� j �(v0i))for any vi 2 fvigi2I= �(�(e(vi; v0i)) j �(vi)) �(� j �(v0i))= : : : = �(�;�(e(vi; v0i)) j �(vi))We now ombine our two results to give:�̂e(w0 j w) = �(�;�(e(vj ; v0j)) j �(vj))�(� j �(vj))= �e(w0 j w)�(w) �AknowledgementsThis work has been partly funded by the EPSRC as
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