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Abstract

Bayesian networks can be used to extract
explanations about the observed state of a
subset of variables. In this paper, we ex-
plicate the desiderata of an explanation and
confront them with the concept of expla-
nation proposed by existing methods. The
necessity of taking into account causal ap-
proaches when a causal graph is available is
discussed. We then introduce causal expla-
nation trees, based on the construction of ex-
planation trees using the measure of causal
information �ow (Ay and Polani, 2006). This
approach is compared to several other meth-
ods on known networks.

1 INTRODUCTION

A Bayesian network (BN, Pearl, 1988) is an algebraic
tool to compactly represent the joint probability distri-
bution of a set of variables V by exploiting conditional
independence amongst variables. It represents all vari-
ables in a directed acyclic graph (DAG), where the ab-
sence of arcs between nodes denotes (conditional) inde-
pendence. In addition to graphically representing the
structure of the dependencies between the variables,
BNs allow inference tasks to be solved more e�ciently.
In this paper, we discuss the extraction of explanations
in causal BNs (Pearl, 2000; Spirtes et al., 2001)�BNs
where the arcs depict direct cause�e�ect relationships
between variables.

Generally, explanations in BNs can be classi�ed in
three categories (Lacave and Diez, 2002) depending
on the focus of the explanation:

• Explanation of evidence. Given a subset of ob-
served (instantiated) variables O ( V, what is
the state of (some of) the other variables V \ O
that best explains O = o?

• Explanation of the reasoning process. When we
have received some evidence and belief states are
updated by probabilistic inference, how was the
reasoning process by which we arrive at this state?

• Explanation of the model, which provides insight
into the static components of a network such as
(conditional) independence relationships, causal
mechanisms, etc.

We shall focus our attention on the explanation of ev-
idence: we wish to explain why variables in O took on
speci�c observed values using assignments in V \ O.
To this purpose, we discuss in section 2 the require-
ments of such an explanation. In section 3, we list the
standard approaches to evidence explanation as well as
some recent methods to make explanations more con-
cise, and explain some of their drawbacks. We then
present causal information trees in section 4, and de-
tail experiments and comparisons in section 5.

NOTATION

Boldface capitals denote sets of random variables or
nodes in a graph, depending on the context. V is the
set of all variables in the analysis. Italicized capitals
like X, Xi, Y are random variables or nodes and el-
ements of V; calligraphic capitals such as X ,Y are
their respective domains. Vectors are denoted bold-
face lowercase, as e or p; scalars in italics. Unless
otherwise stated, the scalars x, y are assumed to be
a value of their respective uppercase random variable.
The probability distribution of a random variable X is
denoted by p(X), and we write p(X = x) or p(x) the
probability of x. We only work with discrete variables.

2 AN IDEALIZED EXPLANATION

Even though many variables O may be observed, the
explanation can be focused only on a speci�c subset
E ⊆ O. The state E = e is then called explanandum.



The set of explanatory variables H ( V can include
both observed and unobserved variables, and an ex-
planation is an assignment H = h (compatible with
O = o for variables both in H and in O).

all variables V

observed variables
O = o

explanandum
E = e

explanatory
variables H

We insist on the distinction between the explanandum
e and the observations o (Chajewska and Halpern,
1997). Observations are all our knowledge about the
current state of a system, and this might not coincide
exactly with what we want explained. Consider for ex-
ample the case where we wish to know why the grass
is wet while we know it has been raining. We do not
seek an explanation for why it has rained, only for why
the grass is wet. A perfectly valid explanation is that
the grass is wet because it is raining if no other factors
can su�ciently explain the facts.

An algorithm respecting this should then determine,
for each variable in O, whether its observed state is
relevant to explain e, and for each unobserved variable
in V \O, whether knowing its state adds �explanatory
power� to the proposed explanation. This excludes
methods which marginalize out O, preventing these
variables from being part of an explanation.

To explain why a given system is observed in a given
state, we must intuitively convey some information
about the causal mechanisms that lead to the obser-
vation made. If we observe that it is raining and some
explanation tells us that �it rains because the grass is
wet,� we do not �nd it a good explanation as it con-
tradicts our understanding of how the system works;
that the grass being wet cannot make it rain. Sup-
pose we have an explanation H = h for E = e: an
intuitive interpretation of this result is that manually
setting H = h will be a favourable con�guration to
observe E = e. As Halpern and Pearl (2005) discuss,
explanations need to be causal to be consistent with
users' knowledge of the mechanisms of the system. It is
therefore important that the explanations are given in
a data-generating direction, such that users can infer
interventional rules from the given explanations (for
instance, �if I can make it rain somehow, then I know
that the grass will be wet,� as opposed to an impossible
�let me make the grass wet so as to make it rain�).

Causal methods are subject to the availability of causal
information. In this paper, we extract the causal infor-
mation from causal BNs, but in general, the approach

is adaptable to any causal model that can predict the
e�ect of interventions on certain variables.

In addition to assuming that the relationships between
the variables V can be represented by a fully oriented
causal BN, we assume that the corresponding joint
probability distribution is faithful and causally su�-
cient (Pearl, 2000; Spirtes et al., 2001). Faithfulness
of the distribution ensures that there is a unique graph
whose arcs depict all (conditional) dependencies of the
distribution, and only those. Causal su�ciency for-
bids hidden common causes for variables in V, such
that we can build a DAG whose arcs represent di-
rect causation. Although most expert-designed BN
are naturally oriented causally, the output of structure
causal learning algorithms are often partially directed
graphs and may need additional expert knowledge to
be fully oriented.

To summarize, we wish our explanations to give us
causal information by detailing the mechanisms that
lead to the explanandum, using all the available infor-
mation we have about the state of the network.

3 EXISTING METHODS

This section reviews and discusses some of the major
techniques to �nd explanations.

3.1 MOST PROBABLE EXPLANATION &

VARIANTS

A common noncausal measure of explanatory power
is the conditional probability of the explanatory vari-
ables H given the explanandum e. The most probable
explanation (MPE) approach (Pearl, 1988) then con-
siders h∗ = arg maxh p(h | e) as the best explanation
(or, alternatively, looks for the k best explanations by
maximizing this probability). The explanandum e is
in the case of MPE equal to the full set of observa-
tions O = o, and the set H is V \E. This list can be
long and uninformative because of lack of conciseness;
moreover, it is hard to distinguish between long expla-
nations, whose respective probabilities are low anyway
and close to one another.

In the partial abduction approach (Shimony, 1991),
the set of explanatory variables is a strict subset
H ( V \ E. The set of variables X = V \ H \ E
excluded from the explanation is then marginalized
out before the maximum is computed: we look for
arg maxh

∑
x p(h,x | e). This is the maximum a poste-

riori (MAP) model approach. The excluded variables
X are selected either by a user, or via automated anal-
ysis of the network. Automatically selecting the rel-
evant explanatory variable is a nontrivial issue (Shi-
mony, 1991).



Partial abduction is computationally more expensive
than standard MPE, because it cannot be readily
solved by message passing algorithms, but approxima-
tions exist (e.g., Park, 2002). On the other hand, it
globally leads to more concise explanations than MPE.

Further e�orts to make explanations more concise in-
clude de Campos et al. (2001), where the k most prob-
able explanations are found and then simpli�ed based
on relevance and probabilistic criteria; and Henrion
and Druzdzel (1990), where also partial assignments
are allowed but only within a prede�ned tree that lim-
its the set of possible explanations. An explanation is
then a path from the root of the tree to a leaf, denot-
ing variable assignments for each branch taken. This is
known as scenario-based explanation. The best expla-
nation is the one with the highest posterior probability.

There are several concerns with these approaches�
MPE/MAP or scenario-based�maximizing some con-
ditional probability of the explanatory variables (Cha-
jewska and Halpern, 1997). First, they do not dis-
tinguish the explanandum and the observations, such
that the additional state information that is not meant
to be explained is excluded from a possible explana-
tion. Furthermore, there is no distinction between ob-
serving an explanatory variable X in a certain state x,
and forcing it to have the value x.1 Thus, depending
on the choice of the explanatory variables, the intu-
itive interpretation (as described in the previous sec-
tion) stating that setting H = h∗ will be a favourable
con�guration for observing E = e does not hold.

MPEs and, to a lesser extent, MAP model explana-
tions, are not robust: little changes in the network will
often change the result of the analysis, even though the
changes occur in parts of the network largely indepen-
dent of the explanandum (Chan and Darwiche, 2006).
Common to the methods in this subsection is that
they order explanations by p(h, e) (this is equivalent
to p(h | e) as p(e) is constant for a given e): this joint
probability cannot be considered alone to determine
the explanatory power of h on e. Some of these prob-
lems are illustrated by the experiments in section 5.

3.2 SE ANALYSIS

In SE analysis, Jensen (2001) additionally considers
the sensitivity of an explanation h with respect to the
explanandum. Less sensitive explanations ensure that
little changes in the network's parameters will not lead
to severely di�erent explanations, so that the explana-
tion is stable with respect to the speci�cation of the
network.

1The di�erence between observation and intervention
is fundamental to causality and is best described with the
example of Simpson's paradox in Pearl (2000), chap. 6.

SE analysis also works by comparing two explanations
hi and hj , usually with Bayes' factor or the likelihood
ratio (Je�reys, 1961): Bayes' factor =

posterior ratio

prior ratio
=

p(hi | e) / p(hj | e)
p(hi) / p(hj)

=
p(e |hi)
p(e |hj)

.

The empirical interpretation of Bayes' factor given by
Je�reys (1961) is that if it is less than 1 it is in favor
of hj , if less than 3 it is a slight support for hi. If it is
between 3 and 12, it is a positive support; and higher
than 12, it is a strong support for hi.

In Yuan and Lu (2007), Bayes' factor is used to search
for explanations consisting of only a few variables by
ranking them by their Bayes' factor computed as the
ratio between the probability of the explanation given
the explanandum and its opposite:

Bayes' factor =
p(h | e)

1− p(h | e)
.

An exhaustive search is performed over all subsets of
the hypothesis, and the explanations are shown to be
more concise in a sample network than MPE, Shi-
mony's (1991) MAP, and the simpli�cations described
by de Campos et al. (2001).

A similar criticism as before can be applied to these
methods: additional observations are discarded, and
the causal directionality is ignored in the selection of
the relevant explanatory variables.

3.3 EXPLANATION TREES

The method of Flores (2005) constructs a set of best
explanations while at the same time giving a preference
for concise explanations, summarizing the results of
the analysis in an explanation tree. We describe this
method in more detail, as the causal information tree
method (described in section 4) is based on a similar
representation.

De�nition 1 An explanation tree for an explanan-
dum E = e is a tree in which every node X is an ex-
planatory variable (with X ∈ V \E), and each branch
out of X is a speci�c instantiation x ∈ X of X. A path
from the root to a leaf is then a series of assignments
X = x, Y = y, · · · , Z = z, summarized as P = p,
which constitutes a full explanation.

Flores's (2005) algorithm, summarized in Algorithm 1,
builds such an explanation tree. Starting with an
empty tree, the variable to use as the next node is
selected to be the one that, given the explanandum,
reduces the uncertainty the most in the rest of the ex-
planatory variables according to some measure. The
nodes that are on the path being grown are added to



a conditioning set, so that the part of the explana-
tory space they already account for is taken into ac-
count. Two stopping criteria are used to determine
when to stop growing the tree: the minimum poste-
rior probability β of the current branch, and the mini-
mum amount of uncertainty reduction α that must be
achieved by adding a new variable. Among all expla-
nations represented by the �nal tree, the best one is
the one with the largest posterior probability p(p | e).

Algorithm 1 Flores's (2005) Explanation Tree

1: function T = ExplanationTree(H, e,p; α, β)
Input: H : set of explanatory variables

E = e : explanandum
P = p : path of variable assignments

α, β : stopping criteria
Output: T : an explanation tree

2: X∗ ← arg maxX∈H

P
Y ∈H Inf(X; Y | e,p)

3: if max
Y ∈H\X∗

Inf(X; Y | e,p) < α or p(p | e) < β then

4: return ∅
5: end if

6: T ← new tree with root X∗

7: for each x ∈ domain(X∗) do
8: T ′ ← ExplanationTree(H \X∗, e,p ∪ {x})
9: add a branch x to T with subtree T ′ and
10: assign it the label p(p, x | e)
11: end for
12: return T

The algorithm is parametrized with the measure of
uncertainty reduction Inf(X;Y | e,p).2 For our im-
plementation, we used the conditional mutual infor-
mation. The mutual information I(X;Y | z) is a sym-
metrical measure of how much reduction in uncertainty
about Y we get by knowing X in the context Z = z,
and is de�ned as: I(X;Y | z) =∑

x∈X
p(x | z)

∑
y∈Y

p(y |x, z) log
p(y |x, z)
p(y | z)

. (1)

If X and Y are independent given Z = z, we have
I(X;Y | z) = 0. If X fully determines Y , then knowing
one is enough to know the other and full information
is shared.

Explanation trees are interesting in that they can
present many mutually exclusive explanations in a
compact form. Flores (2005) also argues that expla-
nations as constructed by Algorithm 1 are reasonable
and more sensible than (k-)MPE in the sense that on
simple networks, the returned explanations are those
that we expect. Four elements, however, are subject
to discussion.

First, on line 2 of Algorithm 1, variables are added to
the tree in order of how much information they provide

2See Flores (2005) for additional cases where max at
line 3 is replaced by min or avg, and Inf is the Gini index.

about the remaining variables in the set of explanatory
variables. But this does not measure the information
of the added variables shared with the explanandum.
Moreover, the explanandum actually grows as the tree
is constructed, since there is no di�erence between the
constructed path p and e at line 2. Thus, this max-
imization cannot be interpreted as selecting variables
reducing the uncertainty in the explanandum.

Second, the algorithm makes no distinction between
explanandum and observations. To try to �x this,
we could either additionally condition on observations
O = o, or marginalize out O altogether. The former
case is no di�erent from adding o to the explanandum
e, and the latter case excludes all X ∈ O from expla-
nations, such that both cases are unsatisfactory.

Third, the criterion to choose the best explanation is
the probability of the explanation path given the ev-
idence p(p | e), and not how likely the system is to
have produced the evidence we are trying to explain
with a con�guration p, p(e |p). Both measures are
linked, but since several explanations can cover almost
an equal share of the explanation space and often only
one will be included in the explanation tree, the cri-
terion p(p | e) will miss explanations which could have
explained the evidence well, but do not cover as large
a fraction of the explanation space.

Fourth, causal considerations are ignored: there is no
distinction between ancestors and descendants of a
variables, such that we can get explanations of the
type �it rains because the grass is wet.�

From an end-user perspective though, trees are a good
solution for representing several competing explana-
tions compactly and readably. We introduce in sec-
tion 4 a modi�ed approach, which can address the is-
sues discussed here.

4 CAUSAL EXPLANATION TREES

Like the previous method, causal explanation trees
take advantage of a tree representation. The tree is
grown so as to ensure that explanations in any path
are causal: variables can be selected as explanatory
only if they causally in�uence the explanandum.

Before de�ning the causal criterion used in this ap-
proach, we need to de�ne the concept of postinter-
vention distribution (Pearl, 2000, p. 72). A standard
conditional probability of the form p(e |x) gives the
probability (or probability density) of e when X = x
is observed. It does not represent, however, the proba-
bility of e if we manually force variable X to have value
x. Causally, we are interested in the intervention on
X, which we denote by do(X = x), rather the obser-
vation of x. In causal BNs, the tool used to evaluate



the e�ect of these conditionings is Pearl's (1995) do-
calculus, which uses the structure of the causal graph
to evaluate the postintervention distribution.

De�nition 2 Given a causal Bayesian network B
in the sense of Pearl (2000, p. 23) over variables
V = {X1, · · ·, Xd}, the postintervention distribu-

tion p(v | do(Xi = x′i)), also denoted p(v | x̂′i), after
an intervention do(Xi = x′i) can be expressed as:

p(x1, · · ·, xd | x̂′i) =

{∏
j 6=i p(xj |paj) if xi = x′i,

0 if xi 6= x′i,
(2)

where paj is the values of the graphical parents (i.e.,
direct causes) of the node Xj in B.

The truncated factorization of (2) states that the prob-
ability distribution is computed as if the manipulated
variable Xi had no incoming causal in�uence (i.e., no
direct causes), and as if p(Xi = x′i) had probability
one. This makes sense, as forcing Xi to have a certain
value e�ectively ignores its direct causes and �natural�
distribution.

With this concept, we can now de�ne the causal in-
formation �ow (Ay and Polani, 2006), which will be
our measure of causal contribution of explanatory vari-
ables towards our explanandum.

De�nition 3 The causal information �ow from
X to Y given the interventions do(Z = z), written
I(X→Y | ẑ), is: I(X→Y | ẑ) =

∑
x∈X

p(x | ẑ)
∑
y∈Y

p(y | x̂, ẑ) log
p(y | x̂, ẑ)
p∗(y | ẑ)

, (3)

where p∗(y | ẑ) =
∑

x′∈X
p(x′| ẑ)p(y | x̂′, ẑ).

The expression I(X → Y | ẑ) measures the amount of
information �owing from X to Y if we intervene on
Z, setting it to z (i.e., if we block the causal �ow
on all paths going through Z). Note that (3) is, in
essence, similar to (1). For faithful probability distri-
butions, I(X → Y | ẑ) = 0 if and only if all directed
paths (if any) from X to Y go through Z in the cor-
responding causal graph. For binary variables, if Y
is a deterministic function of X regardless of Z, then
I(X→Y | ẑ) = 1.

In our application, we use the causal information �ow
to decide which variable should be added to the tree
being built. This is shown in Algorithm 2. At line 2,
we use the do-conditioning on the already build path
p, and we allow inputting additional observed vari-
ables O in an additional conditioning set. We replace
Y from (3) with the state of the explanandum e, sup-
press the corresponding summation and divide by the

prior probability p(e |o, p̂), so that we end up comput-
ing I(X→e |o, p̂) =∑
x∈X

p(x |o, p̂)p(e |o, x̂, p̂)
p(e |o, p̂)

log
p(e |o, x̂, p̂)∑

x′∈X
p(x′|o, p̂)p(e |o, x̂′, p̂)

,

ensuring that the expected value EE

[
I(X→e |o, p̂)

]
=∑

e∈E p(e |o, p̂)I(X→e |o, p̂) equals I(X→E |o, p̂).

Using this criterion, the explanation tree is then
built as follows: the root node is selected as being
arg maxX I(X → e |o); i.e., the node which has the
maximum information �ow to the state of the ex-
planandum. The important part is that we may condi-
tion on o without confusing observation and explanan-
dum. Furthermore, we also allow selection of an ob-
served variable X ∈ O in addition to unobserved vari-
ables, consistently with our desiderata. When X ∈ O,
it is observed and we know its value x. We must then
compute the pointwise causal information �ow from x
to e, with o′ being o without the observation X = x:

I(x→e |o′, p̂) = log
p(e |o′, p̂, x̂)∑

x′∈X
p(x′|o′, p̂)p(e |o′, x̂′, p̂)

.

The tree is then grown recursively: for each possible
value for X, a branch is added to the root. For each
new leaf, the next explanatory variable is selected as
being arg maxY I(Y → e |o, x̂), and so on, where the
do-conditioning set always re�ects the selected vari-
able values from the root to the current leaf. We
use only one stopping criterion, the minimum infor-
mation �ow α we accept as a causal information con-
tribution. The algorithm furthermore allows explicitly
to restrict the search set for explanatory variables H
(defaulting to V \ {E}). Finally, each leaf is labeled
with log

(
p(e |o, p̂)/p(e |o)

)
(where we make sure that

variables selected in p̂ are removed from o if needed).
This measures how much performing the interventions
p̂ changes the probability of the explanandum (given
the observations) with respect to the prior probabil-
ity of the explanandum. Higher values indicate better
explanations; negative values indicate that the proba-
bility of the explanandum actually decreases with the
proposed explanation.

Using the information �ow criterion brings us two ad-
vantages over standard (conditional) mutual informa-
tion: �rst, we automatically only consider variables
that can causally in�uence the explanandum. Second,
when selecting the ith variable on a tree branch, we
take into account the previously selected variables 1
through i − 1 causally, as they enter the conditioning
set of variables that have been intervened on.

In practice, computing a causal information �ow of the
type I(X → e |o, p̂) at line 2 of Algorithm 2 requires



Algorithm 2 Causal Explanation Tree

1: function T = CausalExplTree(H,o, e, p̂; α)
Input: H : set of explanatory variables

O = o : observation set
E = e : explanandum

p̂ : path of interventions
α : stopping criterion

Output: T : a causal explanation tree

2: X∗ ← arg maxX∈H I(X→e |o, p̂)
3: if I(X∗→e |o, p̂) < α then return ∅

4: T ← new tree with root X∗

5: for each x ∈ domain(X∗) do
6: T ′ ← CausalExplTree(H \ {X∗},o, e, p̂ ∪ {x̂})
7: add a branch x to T with subtree T ′ and
8: assign it the contribution log

`
p(e |o, p̂, x̂)/p(e |o)

´
9: end for
10: return T

to know the distributions p(X |o, p̂), p(E |o, p̂), and
p(E |o, X̂, p̂) (i.e., p(E |o, x̂, p̂) for all x ∈ X ). Addi-
tionally, p(e |o) is needed to label the leaves, but as it
is only dependent on e and o, we compute it only once.
We can further avoid unnecessary computations by us-
ing the graphical reachability criterion from a candi-
date node X to E, blocking paths going through O∪P.
The inference steps were implemented using the factor
graph message-passing algorithm (Frey et al., 2001).

The complexity of this algorithm, in terms of number
of calls to an inference engine per node in the con-
structed tree, is O(nd), where n is the number of ex-
planatory variables |H| and d is the average domain
size of the variables, e.g., 2 for binary variables. For
comparison, Flores's (2005) approach is O(n2d2).

5 EXPERIMENTS

We compare causal explanation trees (CET) with pa-
rameter α = 0 to Most Probable Explanation (MPE),
Bayes' factor (BF) following Yuan and Lu (2007), and
standard (noncausal) explanation trees (ET) with pa-
rameters α = 0.02 and β = 0. We test the approach
on three simple networks3 to compare the relevance of
explanations. A more extended version of these exper-
iments and comments can be found in Nielsen (2007).

Drug (Figure 1). This network comes from Pearl
(2000, chap. 6). It represents the outcome of an exper-
iment designed to check the e�ciency of a new drug
on male and female patients. The males have a nat-
ural recovery rate of 70%; taking the drug decreases
it to 60%. Similarly, 30% of females recover naturally,

3The conditional probability tables have been omitted
in the �gures of the two larger BNs due to lack of space
and can be found at http://www.zurich.ibm.com/~uln/
causalexpl/.

but only 20% when given the drug. Thus, both the
absence of drug and being a male can explain a good
recovery rate.

Drug f m
yes (d) 0.25 0.75
no (¬d) 0.75 0.25

Sex
f 0.5
m 0.5

Recovery f, d f,¬d m, d m,¬d
recovery 0.2 0.3 0.6 0.7
death 0.8 0.7 0.4 0.3

Figure 1: The Drug network.

-0.710 0.474

Sex

Drug

female

Drug

male

-1.170

yes

-0.585

no

0.415

yes

0.637

no

0.306 0.694

Sex

Drug

female

Drug

male

0.056

yes

0.250

no

0.500

yes

0.194

no

(a) Causal explanation tree (b) Explanation tree

(c) MPE: p(Sex = m, Drug = yes |Recovery = rec.) = 0.5
(d) BF: BF(Sex = m) = 2.27

BF(Sex = m, Drug = no) = 1.68
BF(Drug = yes) = 1.25

Figure 2: Drug: explain Recovery = recovery.

In Figure 2, we try to explain a recovery. All ap-
proaches correctly realize that Sex = m largely ac-
counts for the recovery. However, ET selects Sex =
m ∧ Drug = yes as the best explanation according to
the leaves' labels, just like MPE. This contradicts the
natural idea of explanation, since the drug has a neg-
ative impact on the recovery. CET labels the leaves
more sensibly: branches where the drug was not given
have a higher rank. Moreover, the branches where Sex
= f have a negative label, indicating that they actu-
ally decrease the probability of recovery. Although the
�rst two BF explanations are sensible, the third one is
mistakenly selects Drug = yes as an explanation.

Academe (Figure 3). This network depicts the re-
lationships between various marks given to students
following a course. The Final mark is determined by
some Other outside factors and an intermediate mark
(T.P. mark), which is in turn determined by the stu-
dent's abilities in Theory and Practice as well as Extra
curricular activities in this tested subject.

In Figure 4, the explanandum was set to Final mark
= fail ; i.e., we want to explain why a student failed
the course. T.P. mark and Global mark have been
excluded from the possible explanatory variables in the
two tree algorithms as they are modeling artifacts.

ET tells us that Theory = bad is the best explanation.
We could have expected Practice to also be part of

http://www.zurich.ibm.com/~uln/causalexpl/
http://www.zurich.ibm.com/~uln/causalexpl/


Final mark

Other

Extra

Global mark

T.P. mark

Theory Practice

{pass, fail}

{positive, negative}

{good, average, bad}

{yes, no}

{good, average, bad}

{pass, fail}

{pass, fail}

Figure 3: The Academe network.
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(a) Causal explanation tree (b) Explanation tree

(c) MPE: p(Theory = bad, T.P. mark = fail, Global mark
= fail, Extra = no, Other = positive, Practice =
good |Final mark = fail) = 0.208

(d) BF: BF(Theory = bad) = 3.02
BF(Theory = bad, Extra = no) = 2.78
BF(Theory = bad, Other = negative) = 2.53

Figure 4: Academe: explain Final mark = fail.

alternate explanations, as it in�uences the �nal mark
very similarly to Theory. This is what CET does, in-
cluding Practice to explain the �nal failure when The-
ory is average or good. MPE includes Practice = good
in its long list of states, which does not seem intu-
itively likely. BF provides more concise explanations,
but, like ET, ignores Practice altogether, although a
bad practice can account for failure equally well.

Asia (Figure 5). This network (Lauritzen and
Spiegelhalter, 1988) models the relationships between
two indicators, X-ray results and dyspnea, of severe
diseases for a person. Tuberculosis (more likely if a
visit to Asia occurred) and lung cancer (more likely
when the person smokes) both increase abnormal X-
ray results and dyspnea; bronchitis also causes in-
creased dyspnea. TbOrCa is a modeling artifact, ex-
cluded from the the analysis in the two tree algorithms.

In Figure 6, we try to explain abnormal X-ray results.
Whereas both tree algorithms select a Lung cancer as
the best explanation, they di�er on how to explain

Visit to Asia Tuberculosis Lung Cancer

Smoking

Bronchitis

X − Ray Dyspnea

TborCa

{yes, no}{normal, abnormal}

{yes, no} {yes, no} {yes, no}

{yes, no}

{yes, no}

{yes, no}

Figure 5: The Asia network.

when it is absent : CET selects, justi�ably, Tuberculo-
sis, but ET uses Dyspnea and then Bronchitis, which
are not causes of X-ray and cannot explain it, espe-
cially not when we know that no lung cancer is present.
MPE surprisingly excludes a visit to Asia, when this is
expected to make abnormal X-rays more likely through
Tuberculosis. BF, while still providing very concise ex-
planations, is stuck on the middle node TbOrCa and,
like ET, ignore the important Tuberculosis.

-0.886

Lung cancer
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3.151
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-1.141

Absent

3.151
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0.511

0.243

Lung cancer
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0.058

Absent

0.185

Present

(a) Causal explanation tree (b) Explanation tree

(c) MPE: p(Bronchitis = yes, Dyspnea = yes, Lung can-
cer = yes, TbOrCa = yes, Smoker = yes, Tu-
berculosis = yes, Visit to Asia = no |X-ray =
abnormal) = 0.24

(d) BF: BF(TbOrCa = yes) = 19.60
BF(TbOrCa = yes, Visit to Asia = no) = 19.21
BF(TbOrCa = yes, Lung cancer = yes) = 16.42

Figure 6: Asia: explain X-ray = abnormal.

In Figure 7, we try to explain the presence of dyspnea
for a smoker. While CET is still able to select Smoker
as explanatory variable, ET can only add this obser-
vation to the explanandum and thus cannot select it.
Instead, the best explanation according to ET is nor-
mal X-rays, which does not seem very likely. Although
ET does select the important Lung cancer and Tuber-
culosis, it ignores the largest factor according to BF
and CET, namely Bronchitis. Here too, CET selects
the more intuitively interpretable explanations.
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(a) Causal explanation tree (b) Explanation tree

(c) MPE: p(Bronchitis = yes, X-ray = normal, Lung can-
cer = no, TbOrCa = no, Smoker = yes, Tuber-
culosis = no, Visit to Asia = no |Dyspnea =
yes) = 0.46

(d) BF: BF(Bronchitis = yes) = 6.14
BF(Bronchitis = yes, Visit to Asia = no) = 5.89
BF(Bronchitis = yes, Tuberculosis = no) = 5.84

Figure 7: Asia: explain Dyspnea = yes |Smoker = yes.

6 CONCLUSION

We have presented an approach to explanation in
causal BNs, causal explanation trees. Explanations
are presented as a tree, compactly representing several
explanations and making it more readable than a (pos-
sibly long) list. Assuming that the BN is causal allows
us to use the causal information �ow criterion to build
the tree. This leads to more sensible explanations,
in that we only explain a given state with variables
that can causally in�uence it. The approach makes an
explicit distinction between observation and explanan-
dum. This lets the user input all available knowledge
about the network as observation, while still focusing
on explaining one of them and allowing the observed
variables to be selected as part of a good explanation.
The algorithm labels the leaves so as to re�ect how
a proposed explanation changes the probability of the
explanandum, making the tree easy to interpret.

Causal explanation trees, unlike other techniques, do
not condition on the explanandum to maximize the
probability of the explanatory variables p(h | e), but
focus on p(e |h) instead by means of the causal in-
formation �ow. This allows it to compare favorably
to MPE, Bayes' factor, and Flores's (2005) noncausal
explanation trees on the tested networks because the
returned explanations are intuitive, and those with a
positive label in the tree ensure that they increase the
probability of the explanandum.
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