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Abstract

We study a multiagent learning problem where
agents can either learn via repeated interactions,
or can follow the advice of a mediator who sug-
gests possible actions to take. We present an al-
gorithm that each agent can use so that, with high
probability, they can verify whether or not the
mediator’s advice is useful. In particular, if the
mediator’s advice is useful then agents will reach
a correlated equilibrium, but if the mediator’s ad-
vice is not useful, then agents are not harmed by
using our test, and can fall back to their original
learning algorithm. We then generalize our al-
gorithm and show that in the limit it always cor-
rectly verifies the mediator’s advice.

1 Introduction

In settings where agents repeatedly interact with each other
(for example, through a repeated game), there are great op-
portunities for learning since agents are able to adapt their
strategies given the history of play. This problem has gar-
nished a lot of attention from several research communities,
including the AI community and the game theory commu-
nity. While many criteria have been proposed for measur-
ing the success of learning approaches, one commonly used
measure is whether the agents learn how to best-respond to
the strategies being played by the others. That is, does the
learning process converge to an equilibrium.

In this paper we study the problem of agents interacting
with each other in a repeated game setting, but we intro-
duce a third party mediator or advisor who makes strategy
suggestions to the agents. Ideally, by following the sug-
gestions of the mediator, agents will be able to learn how
to play against each other, possibly even reaching mutually
beneficial outcomes which would not have been possible
without the mediation. That is, our goal is for the agents
to learn and adapt so that they find a correlated equilib-
rium [1].

However, a mediator is only useful if it can make good sug-

gestions. Even if a mediator tries to make good suggestions
it may be prevented by coding errors, memory limitations,
etc. For an agent to accept a mediator’s suggestions, there
must be some way for the agent to verify that the sugges-
tions are reasonable. A mediator might not be willing to
share its code with the agents, or be aware of its own lim-
itations. Therefore, for a truly robust system, the agents
themselves must have a way of checking the mediator’s
suggestions.

Thus, this paper introduces a statistical test based on hy-
pothesis testing that, with high probability, can verify the
mediator’s suggestions. While hypothesis testing has been
proposed in the multiagent learning literature as a tool that
agents might use to learn how to play Nash equilibria [5], to
the best of our knowledge it has never been applied for val-
idating a mediator’s advice. Based on our test, we propose
an algorithm that allows agents to converge to the medi-
ator’s suggestion if it is a correlated equilibrium and oth-
erwise, in the limit, be no worse off for having used our
algorithm. We then generalize this algorithm to a more the-
oretical setting where we show that with probability one, in
the limit, our test will always be able to correctly verify the
mediator’s suggestions. This provides a method for achiev-
ing convergence to a specific correlated equilibrium.

2 Background

In this section we introduce the key concepts and assump-
tions used in this paper.

A n-agent stage game is a tuple G = 〈N, A = A1 ×
. . . × An, u1, . . . , un〉, where N = {1, . . . , n} is the set
of agents, Ai is the set of possible actions for agent i and
A is the set of possible joint actions, and ui : A → R is
the utility function for agent i. Without loss of generality,
we assume that all utilities are greater than or equal to 0. A
specific action for agent i is ai ∈ Ai, and a joint action is
a = (a1, . . . , an). We assume that A is public knowledge
but the agents’ utility functions are private.

Each agent chooses its actions according to some strategy.
A strategy for agent i, σi, is a probability distribution over
Ai, stating with what probability the agent will play each



possible action. The set of all possible strategies for agent
i is Σi. The vector σ = (σ1, . . . ,σn) is a strategy pro-
file which specifies a strategy for each agent and Σ is the
set of all possible strategy profiles. We use σ−i to denote
(σ1, . . . ,σi−1,σi+1, . . . ,σn).

Given a strategy profile σ, we define the expected utility for
agent i as

ui(σ) =
∑

a=(a1,...,an)∈A

ui(a)Πn
j=1σj(aj). (1)

Each agent’s utility is dependent not just on its own actions,
but also on the actions taken by all other agents. We assume
agents are rational, i.e., given σ−i, agent i will choose a
strategy which maximizes its expected utility.

In our model we introduce a third-party mediator, M. The
mediator knows the utility functions for all agents, but is
not affected by the game’s outcome. Instead M makes
suggestions to each agent as to what action it should take,
where these suggestions are instantiations of a correlated
strategy.
Definition 1. A correlated strategy, σA, is a probability
distribution over A. We let s ∈ A denote an instantiation
of σA. The conditional correlated strategy σA−i

(s−i|si)
is the conditional probability of the joint signal (si, s−i)
given the signal si, and σA−i

(si) is the set of all condi-
tional probabilities given si.

Note that σi is a probability distribution over Ai while σA

is a probability distribution over A.

We assume that M’s correlated strategy is public knowl-
edge, but the actual instantiation, s, is not. In particular
we assume that M sends each agent i a private signal, si,
based on s.

The agents are under no obligation to follow the media-
tor’s signals. It is up to the mediator to pick a correlated
strategy that a rational agent would be willing to follow.
Note that our type of a mediator is different than Monderer
and Tennenholtz’s, where agents must agree to follow the
mediator’s suggested actions before knowing what they are
[11].
Definition 2. A correlated strategy σ∗A = {σA(a)|a ∈ A}
is a correlated equilibrium if for every agent i and every
si ∈ Ai,

∑

s−i∈A−i

σ∗A−i
(s−i|si)ui(si, s−i) (2)

≥
∑

s−i∈A−i

σ∗A−i
(s−i|si)ui(a

′
i, s−i),

for all a′
i ∈ Ai [1]. The set of all correlated equilibria in

G is C(G).

If all of agent i’s opponents are following a correlated equi-
librium σ∗A, it is rational for agent i to also follow σ∗A.
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Figure 1: A graphical representation of our setting
with 2 agents at time t.

In this paper, we are interested in a setting where agents
have the ability to learn and adapt to the actions taken
by others. Thus, we study repeated games. A repeated
game Gr = (G1, G2, . . .) is an infinite sequence of the
stage game G played repeatedly. Agent i’s action at time
t is at

i and the joint action at time t is at. The history of
joint actions, hist(t) = {a1, . . . , at−1}, is a record of the
joint action taken at each iteration until time t. The em-
pirical, or observed, percentage of play of joint actions,
σhist(t)

A , is the percentage of time each joint action has
been played as of time t. Agents may learn from previ-
ous iterations of the game to try and improve their strategy.
Specifically, we assume that agent i has a learning algo-
rithm Li : hist(t) → Σi, that helps agent i select a strategy
for time t.

Let σt
A be the actual correlated strategy at time t, i.e.

the one agents are actually using and not necessarily the
one based on M’s suggestions. We say that σt

A con-
verges to a correlated equilibrium if for some σ∗A ∈ C(G),
limt→∞ σt

A = σ∗A. Thus, our algorithm is differentiated
from algorithms that achieve convergence to the set of cor-
related equilibrium, for example [4, 8].

3 Setup

The setting for our paper is a repeated game Gr with a me-
diator, M. As illustrated for the two agent case in Figure
1, time t will begin with the mediator giving each agent
a suggested action, st

i. Agents will then simultaneously
choose their action, at

i, which may or may not be st
i. If

agent i chooses not to follow M’s signal, it can instead use
a learning algorithm, Li, which we assume is independent
of M’s signals, to select an action. Based on the actual
joint action, each agent will then receive some utility and
the process repeats. The mediator’s signal to each agent is
private information, known only to that agent and the me-
diator, as is the agent’s utility function. However, the ac-
tion set for each agent is public knowledge, as is the action
taken by each agent during a turn.

The mediator’s signals are based on a selected correlated
strategy, σMA , which is constant throughout the repeated
game. Although ideally the mediator will suggest a cor-
related strategy that is also a correlated equilibrium, each



agent still needs to verify that the mediator has actually
done so.

Our aim is to design an algorithm that achieves the follow-
ing goals.

First goal: If σMA is a correlated equilibrium then σt
A,

the actual correlated strategy which is not necessarily
σMA , will converge to σMA .

Second goal: If σMA is not a correlated equilibrium,
agents should be no worse off, in the limit, for hav-
ing used our algorithm.

In Section 4, we present an algorithm, Λ, that achieves
these goals with high probability. In Section 5, we gen-
eralize Λ so that, with probability one, in the limit, it will
achieve both goals. Since each agent will be using Λ inde-
pendently, we refer to Λi as the instance of the algorithm
being run by agent i and Λ as the joint algorithm.

The algorithm is based on the concept of givingM the ben-
efit of the doubt; until there is reason to believe otherwise,
agents assume that σMA is a correlated equilibrium and fol-
low M’s signals. Specifically, agents will assume that the
following conditions hold.

Condition 1: The correlated strategy σMA is a correlated
equilibrium.

Condition 2: All other agents are following the signals
based on σMA .

Agents test whether these conditions hold during an ini-
tial period of play called a sampling test which has a fixed
length of lT . If, at the beginning of the sampling test, agent
i decides that one of the conditions does not hold, it will
not follow M’s signals and instead will use an individual
“fall-back” strategy, γi, chosen uniformly at random. At
the end of the sampling test, all agents who still believe
that both conditions hold will continue to follow M’s sig-
nals. All other agents will start using their original learning
algorithm. The algorithm Λi is correct if and only if, at the
end of the sampling test, it correctly determines whether
both conditions hold. The joint algorithm, Λ, is correct if
and only if Λi is correct for all i.

4 The Initial Algorithm

In this section, we describe how our initial algorithm
works. As a first step in Λi, agent i will check to see if
Equation 2 holds for all si ∈ Ai. If Equation 2 does not
hold, agent i will know that Condition 1 cannot be true. In
this case, agent i will use a “fall-back” strategy, γi ∈ Σi,
picked uniformly at random, for the rest of the sampling
test. If Equation 2 does hold, agent i must check to see if
Condition 2 is true and will continue to follow M’s signals
throughout the sampling test.

Since the utilities for each agent, as well as the signals they
receive each turn, are private, there may be no way to prove
or disprove Condition 2 with absolute certainty at any finite
point during the game. The best Λi can do is reach a prob-
abilistic conclusion. Since joint actions are public knowl-
edge, Λi can compare the empirical percentages of play
for the duration of the sampling test against the percent-
ages predicted by σMA . If the difference between these two
values is statistically significant, there is a high probability
that at least one agent has stopped following the mediator’s
signals.

To test if there is a difference, agent i assumes there is some
fixed but unknown correlated strategy σ̃A that all agents
were actually using for the sampling test, where σ̃A may or
may not be σMA . We are now able to use hypothesis testing,
where our null hypothesis is that σMA is equal to σ̃A, i.e.,

H0 : σMA = σ̃A, (3)

and our alternative hypothesis is that σMA is not equal to
σ̃A, i.e.,

H1 : σMA '= σ̃A. (4)
The test statistic used is Pearson’s χ2 test,

T =
∑

a∈A′

(X(a) − E(a))2

E(a)
, (5)

where A′ is any subset of A such that |A′| = |A| − 1,
X(a) = lTσ

hist(lT )
A (a) is the actual frequency of play of

a ∈ A′ during the sampling test, E(a) = lTσMA (a) is the
expected frequency of play according to σMA , and where
lT is the length of the sampling period [12]. Note that
σhist(lT )

A is based on a sampling from σ̃A of size lT . For
now we assume that σMA (a) > 0 for all a ∈ A. We re-
lax this assumption later. The Pearson’s χ2 test has (in the
limit) a probability distribution function of

χ2
df + χ2

NCP,1, (6)

where the first distribution has df = |A|−2 degrees of free-
dom, and the second distribution has 1 degree of freedom
and a non-centrality parameter of NCP [9].

If H0 is true, NCP = 0. Assuming that H0 is true, we
choose a significance level for rejection of the null hypoth-
esis of α < 1 and a corresponding critical value of c(α),
i.e., we reject the null hypothesis when T ≥ c(α). In this
case, the probability of incorrectly rejecting H0 (known as
a Type 1 error) is p1 = α. If H1 is actually true, we err
when T < c(α) and we do not reject H0 (a Type 2 error).
When H1 is true, NCP > 0. Since the non-centrality pa-
rameter determines how much the probability distribution
in Equation 6 gets adjusted, determining NCP helps de-
termine the probability of a Type 2 error.

The equation for NCP is NCP = t ∗ δ, where δ, the sen-
sitivity parameter, is a measure of the difference between
σMA and σ̃A given by

δ(σMA , σ̃A) =
∑

a∈A

(σ̃A(a) − σMA (a))2

σMA (a)
. (7)



For a given value of δ, say δ̂, if

δ(σMA , σ̃A) ≥ δ̂, (8)

then the probability of a Type 2 error is bounded by some
value β(δ̂) < 1, whose value is normally found via numer-
ical computation [9]. Since β is also a function of lT and
α, we refer to it as β(lT ,α, δ).

Since agents do not know whether their opponents are fol-
lowing the mediator’s suggestions, agents do not know the
exact value for σ̃A, and therefore, it is impossible to choose
an appropriate value for δ̂ so that Equation 8 is guaranteed
to hold. Instead, agents can consider a different question:
what is the worst case situation under which Equation 8
does not hold? To answer this question, consider the set of
all agents for whom Equation 2 does not hold, NB ⊆ N .
Let (σMA−NB

, γNB
) be the actual correlated strategy for the

duration of the sampling test, i.e., a combination of those
agents who will follow M’s signals and those who will rely
on their fall-back strategy. Let ΣNB

be the set of all possi-
ble joint strategies for agents in NB , and

ΣNB
(σMA , δ)

= {γNB
∈ ΣNB

|δ(σMA , (σMA−NB
, γNB

)) < δ} (9)

be the set of all possible joint strategies for agents in NB

which would result in Equation 8 not holding. Let µ(ΣNB
)

and µ(ΣNB
(σMA , δ)) be the Lebesgue measures of ΣNB

and ΣNB
(σMA , δ), respectively. Then, since γi is cho-

sen uniformly at random, the probability of σNB
being in

ΣNB
(σMA , δ) is

ψ(ΣNB
) =

µ(ΣNB
(σMA , δ))

µ(ΣNB
)

. (10)

Since agents do not know NB , they consider the worst case
scenario,

ψ = max
N ′⊆N

ψ(ΣN ′). (11)

If we assume that whenever Equation 8 does not hold and
σ̃A '= σMA , a Type 2 error is always made, then the proba-
bility of a Type 2 error is at most

p2 ≤ (1 − ψ) · β(δ̂) + ψ. (12)

That is, Equation 8 holds with at least a probability of ψ
and when it does, the probability of a Type 2 error is at
most β(δ̂) and with a probability of at most ψ, Equation 8
does not hold.

If we do not assume that σMA (a) > 0 for all a ∈ A, then
Equations 5 and 7 may contain division by zero. To deal
with this, we ignore all a ∈ A such that σM(a) = 0. If
ζ = {a ∈ A|σM(a) = 0}, then the summations in Equa-
tions 5 and 7 need to exclude all a ∈ ζ, and df in Equation
6 now equals |A| − 2 − |ζ|. If the null hypothesis is cor-
rect then σMA (a) = 0 implies that σhist(lT )

A (a) = 0 for
all a ∈ ζ. Alternatively, if there exists a′ ∈ A such that

σhist(lT )
A (a′) > 0 while σMA (a′) = 0, the alternative hy-

pothesis must be correct. Hence, both of these cases do not
present problems.

The only other case is if for all a ∈ A such that σMA (a) = 0,
σhist(lT )

A (a) = 0 but, unknown to the agents, the alterna-
tive hypothesis is correct. In this case, a Type 2 error may
occur. To find the probability of this case happening, we
first determine the probability of at ∈ ζ. Since any agent
who rejects M’s suggested strategy chooses its new strat-
egy uniformly at random, the probability, P , that at ∈ ζ
for t ≤ lT is

P ≥
∑

a∈ζ

min
N ′⊆N

σA
−N′

(a−N ′)
1

|AN ′ |
, (13)

where minN ′⊆N is considered since agents do not know
NB . Therefore, the probability that at '∈ ζ for all t ≤ lT is
at most (1 − P)lT and the overall probability of a Type 2
error is at most

p2 ≤ (1 − P)lT [(1 − ψ) · β + ψ] . (14)

To accommodate the worst case, we assume equality holds
in Equation 14. Note that p1 has not changed. For sim-
plicity, we assume that p1 = p2 = p, and refer to p as the
overall probability of error.

It is possible to rearrange β(lT ,α, δ) to express lT as a
function of α, β and δ, i.e lT (α,β, δ). As a result, lT is
the sample size needed to perform the test with at most a
probability of error (of either Type 1 or Type 2) of p.

If all agents are to use the same value for lT , they must also
have the same value for β. This in turn requires them to
have the same value for ψ. To achieve this, in Equations
11 and 13, agent i will consider all possible N ′, including
those containing agent i.

4.1 Examples

In this section we provide two examples to illustrate how
our test would work.

Example 1: Consider the game in Figure 2.

Agent 1

Agent 2
a2,1 a2,2

a1,1 0,1 2,5
a1,2 5,2 1,0

Figure 2: A simple game

Let A = {(a1,1, a2,1), (a1,1, a2,2), (a2,1, a2,1), (a1,2, a2,2)}.
Suppose that M announces a correlated strategy,
σMA = {1/18, 5/18, 2/18, 10/18}. Note that σMA is a
correlated equilibrium.

Suppose the agents choose p = 0.1 and δ = 0.01. Agents
must now determine the critical value for rejection, c(α),



and the length of the sampling test, lT . Since p1 = α,
α = 0.1. For 3 degrees of freedom, c(α) = 6.25. Since
σMA (a) > 0 for all a, we can calculate β by Equation
12. We calculate Equation 11 by numerical computation
to find ψ ≈ 0.09429. Therefore, β = 0.0063. In practice,
lT (α,β, δ) would now be solved by some method of nu-
merical computation [9]. For simplicity, we used the tables
in Cohen to obtain a value of lT = 2100 [2].

Suppose that after 2100 iterations, we have ob-
tained an empirical frequency of play θhist(2101)

A =
{96, 601, 224, 1179}. Using Equation 5, we obtain a test
statistic value of 4.678. Since this is lower than the criti-
cal value, both agents do not reject the null hypothesis and
continue to use M’s signals.

Example 2: Consider a different example based on the
same game where M announces a correlated strategy of
σMA = {2/18, 10/18, 1/18, 5/18}. In this case, σMA is
not a correlated equilibrium. Specifically, while Equation
2 is satisfied for Agent 1, it is not satisfied for Agent 2.
Hence, Agent 2 will use a random fall-back strategy. Sup-
pose γ2 = (3/4, 1/4).

For this example, the length of the test has not changed.
Suppose we find an empirical frequency of θhist(2101)

A =
{1050, 350, 525, 175} after 2100 turns. Since Agent 2 al-
ready knows that σMA is not a correlated equilibrium, it will
not perform the test. Agent 1 will obtain a test statistic
value of 5953.3. This is well above the critical value and
so Agent 1 will reject the null hypothesis, i.e., it will stop
following the signals of the mediator.

Note that, as we have stated our algorithm, Agent 1 will
only know that there is a probability of at most 0.1 of incor-
rectly rejecting the null hypothesis. We have not accounted
for the fact that the test statistic value is much higher than
the critical value. An additional test that could be run af-
ter the null hypothesis is rejected is the calculation of the
p-value. The p-value is the smallest α value that would
still allow us to reject the hypothesis [12]. In the case of
the above example, the p-value would be very small, and
Agent 1 could be very certain that σMA is not a correlated
equilibrium.

5 Repeated Testing

The limitation of our basic test is that there is always some
positive probability of error. This is due to the need to pick
values for 1−p and δ that are both greater than 0. Since we
can pick any such values for 1 − p and δ, this is not much
of a practical limitation, however we may wish to achieve
a stronger theoretical result. Our goal is to have agents
converge to playing σMA if it is a correlated equilibrium. If
σMA is not a correlated equilibrium, then the agents’ utility
should be no worse off for having used our algorithm. This
leads to the idea of repeated testing, where throughout the
repeated game, agents will use multiple iterations of Λi.

The set of repeated sampling tests is R = {R1, R2, . . .},

1 2 3 4 5 6 7

R1 R2

Figure 3: An example of repeated testing.

where Rj = {bRj
, lRj

}, bRj
is the first time period in Rj ,

and lRj
is the length of Rj . The instance of Λi during test

Rj is denoted by Λ
Rj

i . The repeated tests are not contigu-
ous. A simple example is shown in Figure 3, where the
timeline represents a repeated game up to 7 iterations. The
grey areas represent sampling test iterations. For example,
R2 = {bR2 , lR2} = {4, 2}, meaning that the second test
iteration begins at time period 4 and lasts for 2 iterations of
the repeated game.

The parameters, δ and p, can be set to depend on the test
iteration, i.e. δ(Rj) and p(Rj). Each test period must be
identical for each agent, i.e. Rj must be the same for all
agents. This means that δ(Rj) and p(Rj) must be the same
for all agents. The parameters are chosen such that

lim
j→∞

δ(Rj) = 0, (15)
∞
∑

j=1

p(Rj) < ∞. (16)

For example, we can let δ(Rj) = 1/j and p(Rj) = 1/2j.
Finally, we assume that each agent’s fall-back strategy is
fixed. That is γRj

i = γ
Rj′

i , for all j, j′.

Our first result is that an agent will not draw the wrong
conclusion about the mediator too often.
Theorem 1. In the limit, with probability one, there will
only be a finite number of tests where ΛRj is incorrect.

Proof. Let σMA be the correlated strategy suggested by M.
Consider the following two cases:

σMA is a correlated equilibrium: For test Rj , the prob-
ability of Λ

Rj

i making a Type 1 error, p1(Rj), is equal to
p(Rj). By the Borel-Cantelli lemma, with probability one,
there will only be a finite number of times Λ

Rj

i is incorrect,
i.e. makes a Type 1 error. 1 This reasoning can be applied
to all agents, and therefore with probability one there will
only be a finite number of times ΛRj is incorrect.

σMA is not a correlated equilibrium: If σMA is not a cor-
related equilibrium, then some subset of agents, N ′ ⊆ N ,
will use their fall-back strategies instead of following the
mediator’s signals. The resulting correlated strategy for ev-
ery test iteration will be (σMA

−N′
, γN ′).

Since γN ′ is fixed, by Equation 15, there exists a finite j∗

1Borel-Cantelli Lemma: Let {Et}∞0 be a sequence of in-
dependent events and P (Et) be the probability of the event Et

occurring. If
P

∞

t=0
P (Et) < ∞, then with probability one, only

a finite number of the events will occur.



such that for all j ≥ j∗,

δ(σMA , (σMA
−N′

, γN ′)) ≥ δ(Rj). (17)

Let ψ(Rj) be the value of ψ, according to Equation 11,
during the sampling test Rj . Starting at Rj∗ , we know
that, with probability one, Equation 8 holds and therefore,
since ψ(Rj) is the probability of Equation 8 not holding,
ψ(Rj) = 0, for all j ≥ j∗. Therefore, the probability of a
Type 2 error starting at Rj∗ is

p2 =
∞
∑

j=j∗

(1 − P)lT β. (18)

Note that P , lT and β are all functions Rj , however we
omit the notation (Rj) for clarity. Since β is less than 1,

p2 ≤
∞
∑

j=j∗

(1 − P)lT [(1 − ψ) · β + ψ] (19)

=
∞
∑

j=j∗

p(Rj), (20)

where ψ, as calculated by Equation 11, is also a function
of Rj . Therefore, by Equation 16 and the Borel-Cantelli
lemma, with probability one, there will only be a finite
number of times Λ

Rj

i is incorrect, i.e. makes a Type 2 error.
Again, this reasoning can be generalized to all agents and
therefore, there will only be a finite number of times ΛRj

is incorrect.

We now examine the behaviour of agents between sampling
tests. The periods between test iterations are called free
periods. The set of free periods is F = {F1, . . .} where
Fj = {bFj

, lFj
}. Thus Gr = {R1, F1, R2, F2, . . .}. For

example, in Figure 3, the first free period, F1, would be
{bF1 , lF1} = {2, 2}. If Λ

Rj

i did not reject the null hypoth-
esis, agent i continues to follow M’s signals for all of Fj .
If Λ

Rj

i did reject the null hypothesis, agent i relies on its
learning algorithm Li for Fj . We assume that Li is flexible
at the beginning of each free period [3].
Definition 3. The learning algorithm Li is flexible if at the
beginning of every free period Fj ,

Li(hist(bFj
)) = Li(hist(1)). (21)

Therefore, during each free period, Li does not base its
actions on what has happened before time bFj

.

For example, Li may be a trigger strategy, but that trigger
may not be based on anything that has happened in a pre-
vious sampling test or free period.

We require that

lim
j→∞

∑j
j′=1 lRj

∑j
j′=1 lFj

= 0, (22)

for example lFj
= l2Rj

. This means that, in the limit, the
length of the sampling periods is negligible compared to
the length of the free periods. We also require that

lim
j→∞

lRj

j
= ∞. (23)

This means that the length of the sampling tests grows at
faster than a linear rate. The specific values for lRj

and lFj

would have to be agreed upon by all agents.
Definition 4. Let θexp(t1,t2)

A be the expected frequency of
play from time t1 to t2, i.e., the expected number of times
each joint action a ∈ A gets played between times t1 and
t2 inclusive. If t1 is not given, we assume t1 = 1. Similarly,
let θexp(Fj ,...,Fj′ )

A be the expected frequency of play during
the free periods Fj through Fj′ , inclusive.

Since the frequency of play depends on the algorithms the
agents are using, let θexp(t)

A (L) be the expected frequency
of play from time 1 to t assuming that agents use the joint
learning algorithm L for the whole period.

For simplicity in all of the following proofs, we assume
that t always corresponds to the beginning of a sampling
period. Let j(t) be the index of the last free period before
t.

The first step is to show that if M suggests a correlated
equilibrium, agents will converge to it.
Theorem 2. If the correlated strategy suggested by M,
σMA , is a correlated equilibrium, then with probability one,

lim
t→∞

σt
A = σMA . (24)

Proof. If σMA is a correlated equilibrium then by Theorem
1, with probability one, after some finite point Λ will al-
ways correctly determine that σMA is a correlated equilib-
rium. As a result, with probability one, after some finite
point, all agents will choose to follow the mediator’s sig-
nals during the free periods.

Our next result is a technical lemma which shows that in
the limit, agents are not harmed by taking time out to do
the sampling tests.
Lemma 1. In the limit, there is no difference between the
average utility from agents using L for the whole repeated
game and just for the free periods, i.e.,

lim
t→∞

[

ui

(

θexp(t)
A (L)

t

)

− ui

(

θ
exp(F1,...,Fj(t))
A (L)

t

)]

= 0.

(25)

Furthermore, this is true even when excluding the first
j∗ − 1 free periods, for some j∗ > 1, i.e.,

lim
t→∞

[

ui

(

θexp(t)
A (L)

t

)

− ui

(

θ
exp(Fj∗ ,...,Fj(t))
A (L)

t

)]

= 0.

(26)



The proof is given in the Appendix.

Finally, we need to show that if σMA is not a correlated equi-
librium, agents are no worse off, on average, for having
used Λ.
Theorem 3. If the correlated strategy suggested by M,
σMA , is not a correlated equilibrium, then with probability
one,

lim
t→∞

[

ui

(

θexp(t)
A (Λ)

t

)

− ui

(

θexp(t)
A (L)

t

)]

≥ 0. (27)

Therefore, in the limit, agent i will be no worse off for using
Λ instead of Li.

Proof. If σMA is not a correlated equilibrium, by Theorem
1, with probability one, starting at some sampling test, say
Rj∗ , Λ will always correctly determine that σMA is not a
correlated equilibrium.

Consider θA with respect to some arbitary a ∈ A, de-
noted by θa. We start by breaking the game down into
the sequence of sampling tests and free periods. That is,
θexp(t)

a (Λ) = θexp(R1,F1,...,F (t))
a (Λ). For t ≥ t(j∗), the

utility can be split up into the utility for the sampling tests
and free periods before Rj∗ and for those starting at Rj∗

i.e.,

lim
t→∞

[

ui

(

θ
exp(R1,F1,...,Rj∗−1,Fj∗−1)
a (Λ)

t

)

+ ui

(

θ
exp(Rj∗ ,Fj∗ ,...,F (t))
a (Λ)

t

)]

Since θ
exp(R1,F1,...,Rj∗−1,Fj∗−1)
A (Λ) is constant, in the

limit, the first term is 0, and so we are interested in

lim
t→∞

ui

(

θ
(Rj∗ ,Fj∗ ,...,F (t))
a (Λ)

t

)

The expected frequency can be split up into the expected
frequency for the sampling periods and for the free peri-
ods. Since Λ always determines that σMA is not a correlated
equilibrium, during all the free periods agents will always
use L, and so we are interested in

lim
t→∞

[

ui

(

θ
(Rj∗ ,...,R(t))
a (Λ)

t

)

+ ui

(

θ
(Fj∗ ,...,F (t))
a (L)

t

)]

Since we assumed that all utilities are nonnegative, we may
discard the first term, and thus have

lim
t→∞

ui

(

θ
(Fj∗ ,...,F (t)
a (L))

t

)

Therefore, by Lemma 1, the theorem follows.

Together, Theorems 2 and 3 show that, with probability
one, if σMA is a correlated equilibrium, agents will converge
to it and if σMA is not a correlated equilibrium, agents will
be no worse off in the long run for using Λ.

6 Conclusion

The setting for this paper was a repeated game with a me-
diator. The mediator makes suggestions to the agents as to
what actions to take. We presented a test that agents could
use so that, with high probability, they could determine if
the mediator’s suggestion was a correlated equilibrium. We
then generalized our algorithm to incorporate repeated test-
ing so that in the limit, with probability one, the test will al-
ways correctly determine whether the mediator’s suggested
strategy is a correlated equilibrium. As a result, if the me-
diator suggests a correlated equilibrium, then agents will
converge to it, and otherwise, be no worse off in the long
run for having used our algorithm.

We envision several directions for future research. First, it
might be possible to extend our algorithm to work in radi-
cally uncoupled environments, where agents are not aware
of the existence of others. This would significantly de-
crease the knowledge requirements of our test. Second,
we would like to extend our approach so that the media-
tor receives feedback from the agents themselves, which
can be used to help select appropriate correlated strategies.
We believe that the incentive issues in such an approach
will be challenging. It may also be interesting to apply our
approach to other solution concepts such as mediated equi-
libria [11].

In a more applied direction, it might be possible to general-
ize our approach so it can be used in a stochastic game set-
ting. Thus, our approach could be combined with methods
such as Q-learning [7]. Correlated equilibria have also been
used in graphical games, which can be used to model many
different settings [10]. Hence, applying our technique to
graphical games may yield some interesting results. For
example, network games use graphical games to help rep-
resent a variety of problems, from public good provision
and trade to information collection [6]. These models can
be hindered by a “fundamental theoretical problem: even
the simplest games played on networks have multiple equi-
librium[sic] which display a bewildering range of possible
outcomes” [6]. Our model may help integrate correlated
equilibria as a possible solution to this problem.
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A Proof of Lemma 1

Proof. Consider θ with respect to a ∈ A, denoted by θa.
Since j∗ is fixed, θF1,...,Fj∗−1

a (L) is constant, and therefore,

lim
t→∞

θ
exp(F1,...,Fj∗−1)
a (L)

t
= 0, (28)

and therefore, Equations 25 and 26 are equivalent.

Since the utility functions are linear transformations, prov-
ing the following is sufficient, although not necessary, to
prove that Equation 25 holds,

lim
t→∞

θexp(t)
a (L) − θ

exp(F1,...,Fj(t))
a (L)

t
= 0. (29)

Since L is flexible, it will, in expectation, always behave
the same way during each free period. Specifically,

θ
exp(bFj

,bFj
+lFj

)
a (L) = θ

exp(bF
j′

,bF
j′

+lFj
)

a (L), (30)

F1

F2

F3
...

θw(1)
a

θw(1)
a

θw(1)
a

θw(2)
a

θw(2)
a θw(3)

a

t = bFj
bFj

+ lF1 bFj
+ lF2 bFj

+ lF3

Figure 4: A graphical representation of how the ex-
pected frequency of play will be repeated each free
period.

for all j′ such that lFj′
≥ lFj

. This relationship can be rep-
resented graphically, as shown in Figure 4, where for sim-
plicity, we let w(j) = exp(bFj

+ lFj−1 , bFj
+ lFj

), where
lF0 = 0. Therefore,

θ
exp(F1,...,Fj(t))
a (L) =

j(t)
∑

j=1

(j(t) − j + 1)θw(j)
a (L).

Note that θw(j)
a will be “represented” more than θw(j′)

a for
j < j′ and any finite t. In order for Equation 29 to hold, in
the limit, all θw(j)

a be must represented equally, i.e.

lim
t→∞

j(t) − j + 1

t
= lim

t→∞

j(t) − j′ + 1

t
, (31)

for all j, j′. Consider t(j) = j−1(t), i.e. the first time index
after the jth free period has ended:

t(j) =
j

∑

j′=1

(lRj
+ lFj

) ≥
j

∑

j′=1

lRj
. (32)

By Equation 23, limj→∞
t(j)

j
= ∞, and therefore,

lim
t→∞

j(t) − j + 1

t
≤ lim

t→∞

j(t)

t
= 0. (33)

Therefore, in the limit, all θw(j′)
a will be represented

equally. However, since
∑j(t)

j=1 lFj
< t, each θw(j)

a will
be “underrepresented” compared to θt

a(L) for any finite t.
However, in the limit, this is not the case since,

lim
t→∞

∑j(t)
j=1 lFj

t
= lim

t→∞

∑j(t)
j=1 lFj

∑j(t)
j=1(lRj

+ lFj
)

= lim
t→∞

1
Pj(t)

j=1 lRj
Pj(t)

j=1 lFj

+ 1

= 1 (by Equation 22). (34)

Therefore, in the limit θw(j)
a will be represented equally

compared to θt
a(L).


