Revisiting Bayesian Network Learning with Small Vertex Cover

Juha Harviainen

Mikko Koivisto

UNIVERSITY OF HELSINKI
UAI 2023

Overview

(1) Introduction
(2) Learning
(3) Sampling
(4) Concluding Remarks

Introduction

Score-based Structure Learning

- Each parent set G_{v} of v is assigned a weight $f_{v}\left(G_{v}\right)$
- The score of a DAG G is the product of vertex-wise scores:

$$
f(G):=\prod_{v \in V} f_{v}\left(G_{v}\right)
$$

Bayesian Network Structure Learning (BNSL)

Objective: Compute $\max _{G} f(G)$

- NP-hard in general ${ }^{1}$
- Often sum of log-scores optimized instead

[^0]
Sampling and Counting?

- A single DAG might not be enough
- Model averaging and prevalence of features

Bayesian Network Structure Counting (BNSC)

Objective: Compute $\sum_{G} f(G)$

Bayesian Network Structure Sampling (BNSS)

Objective: Sample G with $\operatorname{Pr}(G) \propto f(G)$

- Counting is \#P-hard [this work]

Parameterization

How much do we need to restrict the set of valid structures to obtain faster algorithms?

- Parameterized complexity: What happens if we limit some aspect of the graphs
- For example, the size of the minimum vertex cover (VC)
- Set S is a VC if every edge has at least one endpoint in S

Vertex Cover of Moralized Graph

- Moralization: v and w are connected if
- either $v \rightarrow w$ or $v \leftarrow w$, or
- there is u with $v \rightarrow u \leftarrow w$
- Consider only DAGs with VC of size at most k after moralization
- Still hard but polynomial in n if k is fixed ${ }^{2}$

[^1]
Our Contributions

Nearly a quadratic speedup for parameterized structure learning
[this talk]

Novel parameterized algorithms for counting and sampling structures
[this talk]

Complexity-theoretical hardness results for counting in general and parameterized cases

Learning

Core and Periphery

- Distribute vertices into core and periphery
- Core $N_{1} \cup N_{2}$: VC N_{1} of the moralized graph and their parents N_{2}
- Periphery P: other vertices (without children)
- Core and periphery can be optimized independently

Optimization

- Previous work searches over $n^{2 k} /(k!)^{2}$ unordered sets N_{1} and N_{2}
- Core optimized in roughly $2^{2 k}$ operations

Faster Learning

Outline:

- Brute forcing over n^{k} ordered sets N_{1} is sufficient
- Distribute vertices between N_{2} and P with dynamic programming
- Maintain information about vertices in N_{1} with parents

Faster Learning

- Fix N_{1} and index remaining vertices arbitrarily
- Assume we know best DAG for N_{1} and the first $i-1$ of the remaining vertices such that $S \subseteq N_{1}$ has parents outside N_{1}
- For each $T \subseteq N_{1} \backslash S$ find best DAG with vertex i being a parent of T
- Takes $3^{k} n^{k+O(1)}$ time (or $2^{k} n^{k+O(1)}$ is certain cases)

Sampling

Canonical Form?

- How to avoid multiple ways of representing a DAG?

- Canonical form hard to establish

Parent Decompositions

- We settle for limiting the number of duplicates

Definition

A DAG and a partition of V into sets N_{1}, N_{2}, and P are called a parent decomposition if all vertices in N_{1} and N_{2} have a child.

- At most $2 k$ vertices in the core
- By naïve analysis, each DAG has at most $2^{2 k}$ parent decompositions
- More careful analysis gives an upper bound 2^{k}

Sampling with Decompositions

Outline:

- Iterate over sets N_{1}, N_{2}, and P
- Compute total weight of each parent decomposition
- Sample a DAG together with a parent decomposition
- Determine a canonical parent decomposition for each DAG
- Accept only that decomposition, reject the sample otherwise

Weights of Decomposition

- Fix sets N_{1}, N_{2}, and P
- As well as the set $S \subseteq N_{1}$ of sinks in the core
- To be a parent decomposition, they must have children in P !
- Sum the cores and peripheries independently and take their product
- Covering product for peripheries, root-layerings ${ }^{3}$ for cores

[^2]
Approximating the Total Weight

- Each DAG satisfying constraints has at most 2^{k} parent decompositions
- Sum over all N_{1}, N_{2}, P, and S gives an 2^{k}-approximation U
- How to use this for sampling?

Biased Sampling

- Stochastic backtracking
- Pick N_{1}, N_{2}, P, and S at random proportionally to their total weight
- Sample edge structure independently for the core and the periphery
- Issue: Same DAG can come from multiple parent decompositions

Rejection Sampling

- Issue: Same DAG can come from multiple parent decompositions
- Solution: Accept the DAG iff parent decomposition has lexicographically smallest N_{2}, otherwise reject

Acceptance Probability

- Let $W\left(N_{1}, N_{2}, P, S\right)$ be the total weight of DAGs with that parent decomposition and set of core sinks
- Further, let G be a DAG with such decomposition
- Probability of sampling G with that decomposition is

$$
\frac{W\left(N_{1}, N_{2}, P, S\right)}{U} \cdot \frac{f(G)}{W\left(N_{1}, N_{2}, P, S\right)}=\frac{f(G)}{U}
$$

- With par G being the number of parent decompositions of G,
- sampling probability $\operatorname{par} G \cdot f(G) / U$
- acceptance probability $f(G) / U$
- expected acceptance rate $\sum_{G} f(G) / U$

Better Approximation

- Expected acceptance rate $\sum_{G} f(G) / U \geq 2^{-k}$
- Each sample a Bernoulli random variable (reject 0, accept 1)
- Multiply empirical acceptance rate by U
- Mean of Bernoulli has good concentration bounds
- Enables approximation at arbitrary precision

Concluding Remarks

Concluding Remarks

- New algorithms for parameterized learning, counting, and sampling
- What is known now:

Problem		Complexity	Class
Optimization		$3^{k} n^{k+O(1)}$	$\mathrm{W}[2]$-hard ${ }^{4}$
Sampling	Preprocessing Sampling	$(4 \mathrm{e} n / k)^{2 k} n^{O(1)}$ $4^{k} n^{O(1)}$	$\mathrm{W}[2]$-hard*
Counting		$2^{\binom{2 k}{2}} 12^{k} n^{2 k+O(1)}$	$\# \mathrm{~W}[1]$-hard

- What about other parameters?
- Are the results there best possible?
- How much restriction needed for FPT sampling or counting?

[^3]
Thank you!

[^0]: ${ }^{1}$ David M. Chickering. Learning Bayesian networks is NP-complete. AISTATS'95.

[^1]: 2 Janne H. Korhonen and Pekka Parviainen. Tractable Bayesian Network Structure Learning with Bounded Vertex Cover Number. NIPS'15.

[^2]: 3 Topi Talvitie, Aleksis Vuoksenmaa, and Mikko Koivisto. Exact Sampling of Directed Acyclic Graphs from Modular Distributions. UAI'19.

[^3]: 4 Niels Grüttemeier and Christian Komusiewicz. Learning Bayesian Networks Under Sparsity Constraints: A Parameterized Complexity Analysis. J. Artif. Intell. Res. 74. 2022.

 * Sampling enables existence testing

