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Introduction
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Score-based Structure Learning

Each parent set Gv of v is assigned a weight fv(Gv)

The score of a DAG G is the product of vertex-wise scores:

f(G) :=
∏
v∈V

fv(Gv)

Bayesian Network Structure Learning (BNSL)
Objective: Compute maxG f(G)

[]
NP-hard in general1

Often sum of log-scores optimized instead

1 David M. Chickering. Learning Bayesian networks is NP-complete. AISTATS’95.
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Sampling and Counting?

A single DAG might not be enough
Model averaging and prevalence of features

Bayesian Network Structure Counting (BNSC)
Objective: Compute

∑
G f(G)

Bayesian Network Structure Sampling (BNSS)
Objective: Sample G with Pr(G) ∝ f(G)

[]
Counting is #P-hard [this work]

Harviainen and Koivisto BNSL with Small Vertex Cover UAI 2023 5 / 26



Parameterization

How much do we need to restrict the set of valid structures
to obtain faster algorithms?

Parameterized complexity: What happens if we limit some aspect
of the graphs
For example, the size of the minimum vertex cover (VC)
Set S is a VC if every edge has at least one endpoint in S

Harviainen and Koivisto BNSL with Small Vertex Cover UAI 2023 6 / 26



Vertex Cover of Moralized Graph

Moralization: v and w are connected if
▶ either v → w or v ← w, or
▶ there is u with v→u←w

Consider only DAGs with VC of size at most k after moralization
Still hard but polynomial in n if k is fixed2

2 Janne H. Korhonen and Pekka Parviainen. Tractable Bayesian Network Structure Learning with Bounded Vertex
Cover Number. NIPS’15.
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Our Contributions

Nearly a quadratic speedup for parameterized
structure learning [this talk]

Novel parameterized algorithms for counting
and sampling structures [this talk]

Complexity-theoretical hardness results for counting in
general and parameterized cases
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Learning
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Core and Periphery

Distribute vertices into core and periphery
Core N1 ∪N2: VC N1 of the moralized graph and their parents N2

Periphery P : other vertices (without children)
Core and periphery can be optimized independently

N1N2 P
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Optimization

Previous work searches over n2k/(k!)2 unordered sets N1 and N2

Core optimized in roughly 22k operations

N1N2 P
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Faster Learning

Outline:
Brute forcing over nk ordered sets N1 is sufficient
Distribute vertices between N2 and P with dynamic programming
Maintain information about vertices in N1 with parents
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Faster Learning
Fix N1 and index remaining vertices arbitrarily
Assume we know best DAG for N1 and the first i− 1 of the remaining
vertices such that S ⊆ N1 has parents outside N1

For each T ⊆ N1 \ S find best DAG with vertex i being a parent of T
Takes 3knk+O(1) time (or 2knk+O(1) is certain cases)

N1N2 P

7−→

i

N1N2 P
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Sampling
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Canonical Form?

How to avoid multiple ways of representing a DAG?

1 2

34

N1N2 P

2 1

34

N1N2 P

[]

1 2

3 4

N1N2 P

2 1

3 4

N1N2 P

Canonical form hard to establish
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Parent Decompositions

We settle for limiting the number of duplicates

Definition
A DAG and a partition of V into sets N1, N2, and P are called a parent
decomposition if all vertices in N1 and N2 have a child.

At most 2k vertices in the core
By naïve analysis, each DAG has at most 22k parent decompositions
More careful analysis gives an upper bound 2k
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Sampling with Decompositions

Outline:
Iterate over sets N1, N2, and P

▶ Compute total weight of each parent decomposition

Sample a DAG together with a parent decomposition
Determine a canonical parent decomposition for each DAG
Accept only that decomposition, reject the sample otherwise
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Weights of Decomposition
Fix sets N1, N2, and P

As well as the set S ⊆ N1 of sinks in the core
▶ To be a parent decomposition, they must have children in P !

Sum the cores and peripheries independently and take their product
Covering product for peripheries, root-layerings3 for cores

N1N1N2 P

3 Topi Talvitie, Aleksis Vuoksenmaa, and Mikko Koivisto. Exact Sampling of Directed Acyclic Graphs from Modular
Distributions. UAI’19.
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Approximating the Total Weight

Each DAG satisfying constraints has at most 2k parent decompositions
Sum over all N1, N2, P , and S gives an 2k-approximation U

How to use this for sampling?

N1N2 P
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Biased Sampling

Stochastic backtracking
Pick N1, N2, P , and S at random proportionally to their total weight
Sample edge structure independently for the core and the periphery
Issue: Same DAG can come from multiple parent decompositions

N1N2 P
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Rejection Sampling

Issue: Same DAG can come from multiple parent decompositions
Solution: Accept the DAG iff parent decomposition has
lexicographically smallest N2, otherwise reject

1

2

3

4

5

6

7

N1N2 P
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Acceptance Probability

Let W (N1, N2, P, S) be the total weight of DAGs with that parent
decomposition and set of core sinks
Further, let G be a DAG with such decomposition
Probability of sampling G with that decomposition is

W (N1, N2, P, S)

U
· f(G)

W (N1, N2, P, S)
=

f(G)

U

With parG being the number of parent decompositions of G,
▶ sampling probability parG · f(G)/U
▶ acceptance probability f(G)/U
▶ expected acceptance rate

∑
G f(G)/U
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Better Approximation

Expected acceptance rate
∑

G f(G)/U ≥ 2−k

Each sample a Bernoulli random variable (reject 0, accept 1)
Multiply empirical acceptance rate by U

Mean of Bernoulli has good concentration bounds
Enables approximation at arbitrary precision
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Concluding Remarks
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Concluding Remarks

New algorithms for parameterized learning, counting, and sampling
What is known now:

Problem Complexity Class
Optimization 3knk+O(1) W[2]-hard4

Sampling
Preprocessing (4en/k)2knO(1)

W[2]-hard∗
Sampling 4knO(1)

Counting 2(
2k
2 )12kn2k+O(1) #W[1]-hard

What about other parameters?
▶ Are the results there best possible?
▶ How much restriction needed for FPT sampling or counting?

4 Niels Grüttemeier and Christian Komusiewicz. Learning Bayesian Networks Under Sparsity Constraints: A Param-
eterized Complexity Analysis. J. Artif. Intell. Res. 74. 2022.
∗ Sampling enables existence testing
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Thank you!
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