
APPENDIX: SUPPLEMENTARY MATERIAL
Bethe and Related Pairwise Entropy Approximations

In this Appendix, we provide:

• Proofs of Theorems 6 and 7, and Lemma 8 from the main text.

• Background on the loop series method (Chertkov and Chernyak, 2006; Sudderth et al., 2007).

Second Derivatives of FA

Theorem 6. (Hij =
∂2FA

∂qi∂qj
second derivatives of FA(q1, . . . , qn), assuming optimum pairwise marginals ξij)

Hij =

{

qiqj−ξij
ρijTij

if (i, j) ∈ E

0 if (i, j) /∈ E
, Hii =

ci
qi(1− qi)

+
∑

j∈N (i)

(

qj(1 − qj)

ρijTij

−
ρij

qi(1− qi)

)

,

whereξij takes its optimum value from Theorem 2, andTij = qiqj(1 − qi)(1 − qj)− (ξij − qiqj)
2 ≥ 0, with equality iff

qi or qj ∈ {0, 1}.

Proof. The proof of this result for arbitrary counting numbers extends the earlier approaches of Weller and Jebara (2013)
and Korc̆ et al. (2012), which examined only the restricted case of the Bethe approximation. Consider the equation for the
free energy approximationFA (7). Note that we shall always assume optimum pairwise marginal ξij terms to be given
implicitly by Theorem 2. We first consider pairwise terms ofFA, then singleton terms, which will be added together to
give the result.Tij > 0 unlessqi or qj ∈ {0, 1} follows from (Weller and Jebara, 2013, Lemma 12).

Pairwise terms. Consider an edge(i, j) ∈ E and collect its pairwise terms together fromFA (7), defining

f(qi, qj) = −Wijξij(qi, qj)− ρijSij(qi, qj). (12)

Let y = (y1, y2, y3) be one of four possible vectors with componentsy1 = a, y2 = b andy3 = 1, wherea, b ∈ B = {0, 1}.
Note that a third ‘dimension’ restricted to the value1 has been added for notational convenience. Letπ(y) = µij(a, b), that
is the(a, b) element from theµij matrix (2), given the values ofqi andqj . Let φ(y) = Wij if y = (1, 1, 1), or φ(y) = 0
otherwise. Letr = (qi, qj , 1). Define functionh used in entropy calculations ash(z) = −z log z.

Consider (12) and instead of solving forξij (or equivalently forπ) explicitly, expressf as an optimization problem, min-
imizing the approximate free energy subject to local consistency and normalization constraints in order to use techniques
from convex optimization. We havef(qi, qj) = g(r) where

g(r) =min
π

∑

y

[−φ(y)π(y)− ρijh(π(y))]

s.t.
∑

y:yk=1

π(y) = rk k = 1, 2, 3. (13)

Introducing dual variablesλ, the Lagrangian can be written as

Lr(π,λ) =
∑

y

[(−φ(y)− 〈y,λ〉)π(y)− ρijh(π(y))] + 〈r,λ〉,

with derivative

∂Lr(π,λ)

∂π
= −φ(y)− 〈y,λ〉+ ρij(1 + log π),

which yields a minimum at

π∗
λ(y) = exp

(

φ(y) + 〈y,λ〉
ρij

− 1

)

. (14)



Since the minimization problem in (13) is convex and satisfies the weak Slater’s condition (the constraints are affine),
strong duality applies andg(r) = maxλ G(r,λ) = G(r,λ∗(r)) where the dual is

G(r,λ) = min
π

Lr(π,λ) = −ρij
∑

y

π∗
λ
(y) + 〈r,λ〉. (15)

Hence, ∂g
∂rk

= ∂G
∂rk

∣

∣

∣

λ∗

= λ∗
k. Our aim is to obtain second derivatives off via ∂2g

∂rl∂rk
=

∂λ∗

k

∂rl
, which we shall derive in terms

of a3× 3 matrixC, where we define

Ckl :=
∂2G

∂λl∂λk

=
∂Dk

∂λl

, k, l = 1, 2, 3

with

Dk(r,λ) :=
∂G(r,λ)

∂λk

= −
∑

y

ykπ
∗
λ(y) + rk, using (15). (16)

NowDk(r,λ
∗) = 0 for k = 1, 2, 3. Differentiating this with respect torl,

0 =
dDk(r,λ

∗)

drl
=

∂Dk

∂rl
+

3
∑

p=1

∂Dk

∂λp

∂λ∗
p

∂rl
, k, l = 1, 2, 3

= δkl+
∑

p

Ckp

∂2g

∂rl∂rp
, using (16) and definition ofC.

Hence, ∂2g
∂rl∂rk

= −[C−1]kl. Using its definition and (16), we have

Ckl =
∂2G

∂λl∂λk

=
∂

∂λl

(

−
∑

y

ykπ
∗
λ(y) + rk

)

= −
1

ρij

∑

y

ykylπ
∗
λ
(y) = −

1

ρij

∑

y:yk=yl=1

π∗
λ
(y).

Thus, using shorthandµab = µij(a, b),

C = −
1

ρij





µ10 + µ11 µ11 µ10 + µ11

µ11 µ01 + µ11 µ01 + µ11

µ10 + µ11 µ01 + µ11 1



 . (17)

Recall constraintsµ00 + µ01 + µ10 + µ11 = 1, µ01 + µ11 = qj , µ10 + µ11 = qi.

Applying the result above and Cramer’s rule,

∂2f

∂q2i
=

∂2g

∂r21
= −

1

ρ2ij detC
(µ01 + µ11)(µ00 + µ10) =

qj(1− qj)

−ρ2ij detC

∂2f

∂qi∂qj
=

∂2f

∂qj∂qi
=

∂2g

∂r1∂r2
=

(µ01µ10 − µ00µ11)

−ρ2ij detC

∂2f

∂q2j
=

∂2g

∂r22
= −

1

ρ2ij detC
(µ10 + µ11)(µ00 + µ01) =

qi(1− qi)

−ρ2ij detC
.

From (17), after simplifying,−ρij detC = µ00µ10µ11 + µ10µ11µ01 + µ11µ10µ00 + µ01µ00µ10 ≥ 0 (all products
of three terms of the pairwise pseudomarginal matrix (2)). Substituting in terms from (2) and simplifying establishes
−ρij detC = Tij from the statement of the theorem, andµ01µ10 − µ00µ11 = qiqj − ξij .

Hence,
∂2f

∂q2i
=

qj(1 − qj)

ρijTij

,
∂2f

∂qi∂qj
=

qiqj − ξij
ρijTij

,
∂2f

∂q2j
=

qi(1 − qi)

ρijTij

. (18)



Singleton terms. Let fi(qi) be the singleton terms from (7) forXi. The only non-zero derivatives are with respect toqi.

fi(qi) = −θiqi + Si(qi)
(

− ci +
∑

j∈N (i)

ρij

)

,

∂fi
∂qi

= −θi − [log qi − log(1− qi)]
(

− ci +
∑

j∈N (i)

ρij

)

,

∂2fi
∂q2i

=
ci −

∑

j∈N (i) ρij

qi(1− qi)
.

Adding pairwise and singleton terms gives the result.

Submodularity of FA

Here we considerFA(q1, . . . , qn) with pairwise marginals given by Theorem 2, and show that forany discrete mesh
M =

∏n
i=1 Mi, whereMi is a finite set of points forqi in [0, 1], and for any counting numbers (provided allρij 6= 0),

then the discrete optimization to find the point inM with lowestFA is submodular for any attractive model (hence can be
solved efficiently). We follow the same reasoning used by Weller and Jebara (2013) for the Bethe approximation.

Regarding the expression forHij from Theorem 6 together with Lemma 3, observe that providedρij 6= 0 and

qi, qj ∈ (0, 1), Wij ≥ 0 ⇔ ∂2FA

∂qi∂qj
≤ 0 (whatever the sign ofρij).

We first show that third derivatives ofFA exist and are finite. Recall that by definition,αij = exp(Wij/ρij) − 1 > −1,
with the same sign asWij/ρij .

Lemma 9 (Finite 3rd derivatives). If qi, qj ∈ (0, 1) andρij 6= 0 ∀(i, j) ∈ E , then all third derivatives exist and are finite.

Proof. Using Theorem 6 and notingTij > 0 strictly given our conditions, it is sufficient to show that any ∂ξij
∂qk

is finite. We

may assumek ∈ {i, j} else the derivative is0 and by symmetry need only check∂ξij
∂qi

. Differentiating (8),

∂ξij
∂qi

=
αij(qj − ξij) + qj

1 + αij(qi − ξij + qj − ξij)
.

Recalling (2),qi − ξij andqj − ξij are elements of the edge pseudomarginal and hence are nonnegative. Forαij > 0,
it is clear that the denominator is positive. Ifαij < 0 then note thatαij ∈ (−1, 0), hence it is sufficient to show that
(qi − ξij + qj − ξij) ≤ 1. This follows immediately from other constraints ensuringthat elements of the pseudomarginal
are valid, i.e.ξij ≥ 0 and1 + ξij − qi − qj ≥ 0.

Next we show a stronger version of Lemma 3. This will simplifythe subsequent proof of Theorem 7.

Lemma 10 (Better lower bound forξij , Lemma 14 in Weller and Jebara, 2013). If αij > 0, thenξij ≥ qiqj +αijqiqj(1−
qi)(1− qj)/[1 + αij(qi + qj − 2qiqj)], equality only possible at an edge, i.e. one or both ofqi, qj ∈ {0, 1}.

Proof. Write ξij = qiqj + y and substitute into (8) to give

αijy
2 − y[1 + αij(qi + qj − 2qiqj)] + αijqiqj(1− qi)(1− qj) = 0.

This is a convex parabola which aty = 0 is above the abscissa (unlessqi or qj ∈ {0, 1}), with negative gradient.7 Hence,
all roots are aty ≥ 0, and given convexity we can bound below using the tangent aty = 0, which yields the result.

Now we prove the main result of this Section.

Theorem 7 For any counting numbers withρij 6= 0 ∀(i, j) ∈ E , and any discretization, an attractive model yields a
submodular discrete optimization problem to estimatelogZA.

7Observe thatqi + qj − 2qiqj = 1

2
− 2(qi −

1

2
)(qj −

1

2
), hence∈ (0, 1) for qi, qj ∈ (0, 1).



Proof. For any edge(i, j), letf be the pairwise terms fromFA given in (12), and note the submodularity requirement from
§2.3. Letx = (x1, x2), y = (y1, y2) be any points in[0, 1]2. Defines(x, y) = (s1, s2) = (min(x1, y1),min(x2, y2)), and
t(x, y) = (t1, t2) = (max(x1, y1),max(x2, y2)). Let g(x, y) = f(s1, s2) + f(t1, t2)− f(s1, t2)− f(s2, t1), and call this
the submodularity of the rectangle defined byx, y. We must showg(x, y) ≤ 0. Notef is continuous in[0, 1]2, hence so
also isg. We shall show that∀(x, y) ∈ (0, 1)2, g(x, y) < 0 then the result follows by continuity.

Assumex, y ∈ (0, 1)2. Consider derivatives off in the compact setR = [s1, t1] × [s2, t2]. Using (9) and bounded
pseudomarginal entries (see Weller and Jebara, 2013 for details), first derivatives exist and are bounded. By Theorem 6
and Lemma 9, the same holds for second and third derivatives.Further, Theorem 6 and Lemma 10 show that∂2f

∂qi∂qj
=

∂2f
∂qj∂qi

< 0.

If a rectangle is sliced fully along each dimension so as to besubdivided into sub-rectangles then summing the submodu-
larities of all the sub-rectangles, internal terms cancel and we obtain the submodularity of the original rectangle.

Hence there exists anǫ such that if we subdivide the rectangle defined byx, y into sufficiently small sub-rectangles with
sides< ǫ and apply Taylor’s theorem up to second order with the remainder expressed in terms of the third derivative
evaluated in the interval, then the second order terms dominate and the submodularity of each small sub-rectangle< 0.
Summing over all sub-rectangles yields the result.

Effect of Approximate Entropy on Marginals

Lemma 8. For a symmetric homogeneous d-regular model onn vertices, letH be the Hessian of the approximate free
energy atqi = 1

2 ∀i ∈ V , using uniform counting numbersci = c ∀i ∈ V , ρij = ρ ∀(i, j) ∈ E , then1TH1 =

n
[

4(c− dρ) + d
ρξ

]

, whereξ = 1
2σ
(

W
2ρ

)

is the uniform optimum edge marginal term, andσ(u) = 1
1+e−u is the standard

sigmoid function.

Proof. Using (9), it is straightforward to show that there is a stationary point atqi = 1
2 ∀i. By Theorem 2, all optimum

pairwise marginal terms areξij = ξ = 1
2σ
(

W
2ρij

)

, whereσ(u) = 1
1+e−u is the standard sigmoid function. Now using

Theorem 6, allTij = T = 1
16 −

(

ξ − 1
4

)2
= ξ

(

1
2 − ξ

)

, and

1
TH1 = n

[

4c+ d

(

1

4ρT
− 4ρ

)

+
d

ρT

(

1

4
− ξ

)]

= n

[

4(c− dρ) +
d

ρT

(

1

2
− ξ

)]

= n

[

4(c− dρ) +
d

ρξ

]

Background on the Loop Series Method

The loop series expansion of Chertkov and Chernyak (2006) provides an expression for the ratio of the true partition
functionZ to the Bethe approximationZB. Here we provide brief background, following the presentation in Sudderth et al.
(2007).

At any stationary point̂µ of the Bethe free energyFB, specified by our usual singleton{qi : i ∈ V} and edge{ξij : (i, j) ∈
E} marginal terms,

Z

ZB(µ̂)
= 1 +

∑

∅6=F⊆E

βF

∏

i∈V

Eqi

[

(Xi − qi)
di(F )

]

, (19)

whereβF =
∏

(i,j)∈F

βij , βij =
ξij − qiqj

qi(1 − qi)qj(1− qj)
, anddi(F ) is the degree ofi in the subgraph induced byF.

We writeZB(µ̂) to meanexp [−FB(µ̂)]. Note thatZB = maxµ̂ ZB(µ̂) and that bothZ,ZB ≥ 0.



Observe that (19) is a sum over (the potentially large set of)all non-empty edge subsets. However, for any subsetF such
thatdi(F ) = 1 for any i ∈ V , thenEqi

[

(Xi − qi)
di(F )

]

= 0, hence the term for this subset is zero and all such subsets
may be ignored. This leaves all subsetsF such thatdi(F ) 6= 1 ∀i ∈ V . These remaining subsets are calledgeneralized
loops. Examples include a single cycle, two disjoint cycles, or two cycles connected by a path between them.

A related concept is thecoreof a graph, which is defined as the (unique) graph which remains after repeatedly removing
any nodes with degree 1. It is easy to see that no generalized loop can exist outside the core.

Regarding (19), Sudderth et al. (2007) sought sufficient conditions such that all terms in the sum were nonnegative, in
which case clearlyZB ≤ Z. One case is if (i) allβF ≥ 0, and (ii) allEqi

[

(Xi − qi)
di(F )

]

≥ 0. The first condition holds
for an attractive model since by Lemma 3, eachβij takes the sign ofWij (all ρij = 1 for the Bethe approximation). The
second condition clearly holds for anyi with di(F ) even (since then we have the expectation of a non-negative quantity), or
di(F ) = 1 (in which case it is 0 as noted above). Hence, we must worry only about generalized loops containing variables
with odd degree> 1.

Using a standard result for moments of Bernoulli random variables,

Eqi

[

(Xi − qi)
d
]

= qi(1− qi)
[

(1− qi)
d−1 + (−1)dqd−1

i

]

.

For d odd, this is nonnegative provided(1 − qi) ≥ qi ⇔ qi ≤
1
2 . Hence, if this is true for all variables in the core with

degree≥ 3, then this is sufficient to show thatZB ≤ Z. Using a slight variant of the same argument, Sudderth et al.(2007)
show that it is also sufficient if instead all such variables haveqi ≥ 1

2 .

Our new observations. For our first result in§6.3, we apply the same analysis and observe that if a model contains
exactly one cycle with edge setC and it is frustrated, then there is only one generalized loopF = C: this hasβF ≤ 0 and
all di(F ) = 2, hence by (19),Z/ZB(µ̂) ≤ 1 ∀µ̂, and thus in particular,ZB ≥ Z.8

Similarly, we can conclude more generally thatZB ≥ Z for any model such that every generalized loop contains an
odd number of repulsive edges (this is a sort of generalized frustrated cycle), and the Bethe optimum marginals for every
variable that has an odd degree≥ 3 in any generalized loop, are either all≤ 1

2 or all ≥ 1
2 .

8In fact, for models with exactly one cycle, it is known that the Bethe free energy is convex (Pakzad and Anantharam, 2002),hence
there is only one stationary point.


