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A Derivation of Expected Gaussian Kernels

Let MV (x; , X) denote the Gaussian density function

(2m) P oxp (<50 ) B k- ).

where D is the dimensionality of the random variable x.

We can verify that the integral of the product of two Gaus-
sians is in the form of another Gaussian:
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where pt = p; — p; and X =3, +3;.

Note that () can be expressed in several equivalent ways
N(ui;ﬂjvz) = N(Nﬁﬂmz) = N(lj’i - Nj5072)'
Applying (O) twice with the rearrangement above, we have
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=N(p; — pj;0,3%; + 35 + 3).
This double integral is actually Ey, , N (x;;x;, X) given
that x; and x; are independently Gaussian distributed.

Therefore, the expected Gaussian kernel can be computed
as following:
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whereﬁ,:ui—ujandf):E,-+Ej+2.

B Derivation of Random Fourier Features
for Expected Gaussian Kernels

Due to the independence assumption, the expected Gaus-
sian kernel can be approximated as the follows
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in which the ith entry of Exz(x) is 1/ 2 Ex cos(w; x+b;).
Consider the following expectation
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In the second step, we use the analytic form of the charac-
teristic function for Gaussian random vectors.

Since

E[e/ 00| —E [cos(wx + ) + isin(wx + )],
we know that E [cos(w x+b)| is the real part of
E [@i(WT"*b)} . Therefore, from (T0) we have

1
E [cos(w "x +b)] = exp (—2WTEW) cos(w ' +b).

C Proof of Theorem [T

To analyze the concentration of the kernel approximation,
we apply the Hermitian matrix Bernstein inequality [Tropp),
2012]. Note that ||-|| denotes the spectral norm when taking
on a matrix, and the L? norm when taking on a vector.
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Theorem 2. (Matrix Bernstein: Hermitian Case [Tropp,
2012|]). Consider a finite sequence {Xy} of independent
random Hermitian matrices with dimension d. Assume that
EX) = 0 and Apax(Xy) < Rforall k. Let Y =), X;.
Define the variance parameter 0 = ||[E(Y?)||. Then

Amax(Y) < /202 logd + Rlogd

Proof of Theorem[I] We follow the derivation of [Lopez-
Paz et al.[[2014]] with refinement to obtain a tighter bound.
Let the n-dimensional random vector zx, = [2x1, - - -, Zkn] |
denote the collection of the kth random feature (sharing the
same random projection parameters, W, by, ) of each of the
n examples. Let Sy, = zkz;r /m. The approximate kernel
can be expressed as the sum of m independent matrices

K =32, Sk

According to [Rahimi and Recht| [2007|], the random
Fourier feature is unbiased. Specifically, for z(x) =
V2 cos(w " x + b) where w draws from the distribution in-
duced by the kernel and b ~ uniform(0, 27), we have

Ko(xi,x;) = By plz(xi) " 2(x;)]. (11

As a result, the random feature for the expected Gaussian
kernel is also unbiased as shown below. Therefore, when
m random features are used, we have ES;, = K/m and
EK = K.
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with its absolute value bounded by \/2/m. As a result,
there exists a constant B such that ||z, |> < B < 2n/m.

The error matrix K — K can then be expressed as the sum
of m independent zero-mean matrices:

zm: Sk —ESg).
k=1

Since K — K is symmetric, the singular values are the ab-
solute values of its eigenvalues. Therefore,

IK — K| = max {)\max(f{ “K), ~Amin(K — K)}

— max {)\max(f{ K, A (K — f{)} :

In order to apply matrix Bernstein inequality, we need to
bound both A\pax (S — ESk) and Apax(ESk — Si).
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The first relation holds because both Si and ES;, are sym-
metric and positive semideﬁniteﬂ Similarly,
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where we bound ||K|| using Jensen’s inequality:

K| = [Elzz"]|| < Ellzz" || = E[||z] < B.

To compute the variance parameter o2, we start with the
expectation E[(K K)?|:
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in which the expression A < B means that B — A is posi-
tive semidefinite. Therefore,
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The last step holds due to K? = 0. Since both K and
E[(K — K)2] are symmetric and positive semidefinite, we
have BIK|

P 2
= |E[K -K)Tl < ———.

Given that Apax(Sk — ESk) and Apax(ESy, — Syi) are
both bounded by B/m, we obtain the same bound for
EAmax (K — K) and EApax (K — K) when plugging R <
B/m and 02 < B|K]||/m into the matrix Bernstein in-
equality in Theorem 2] This leads to the bound on the ex-
pected norm:
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With || K|| < B < 2n/m, we attain
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5 Given Hermitian positive semidefinite matrices A and B,
let u = argmax = v (B — A)v, then A\nax(B — A) =

u'(B—A)u <u'Bu < Apax(B) = |BJ.
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