# Appendix for Classification of Sparse and Irregularly Sampled Time Series with Mixtures of Expected Gaussian Kernels and Random Features 

Steven Cheng-Xian Li Benjamin Marlin<br>University of Massachusetts Amherst<br>Amherst, MA 01003<br>\{cxl,marlin\}@cs.umass.edu

## A Derivation of Expected Gaussian Kernels

Let $\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ denote the Gaussian density function

$$
(2 \pi)^{-D / 2}|\boldsymbol{\Sigma}|^{-1 / 2} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

where $D$ is the dimensionality of the random variable $\mathbf{x}$.
We can verify that the integral of the product of two Gaussians is in the form of another Gaussian:

$$
\begin{align*}
& \int \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right) \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right) \mathrm{d} \mathbf{x} \\
& \quad=(2 \pi)^{-D / 2}|\widetilde{\boldsymbol{\Sigma}}|^{-1 / 2} \exp \left(-\frac{1}{2} \widetilde{\boldsymbol{\mu}}^{\top} \widetilde{\boldsymbol{\Sigma}}^{-1} \widetilde{\boldsymbol{\mu}}\right) \tag{9}
\end{align*}
$$

where $\widetilde{\boldsymbol{\mu}}=\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}$ and $\widetilde{\boldsymbol{\Sigma}}=\boldsymbol{\Sigma}_{i}+\boldsymbol{\Sigma}_{j}$.
Note that (9) can be expressed in several equivalent ways

$$
\mathcal{N}\left(\boldsymbol{\mu}_{i} ; \boldsymbol{\mu}_{j}, \widetilde{\boldsymbol{\Sigma}}\right)=\mathcal{N}\left(\boldsymbol{\mu}_{j} ; \boldsymbol{\mu}_{i}, \widetilde{\boldsymbol{\Sigma}}\right)=\mathcal{N}\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j} ; \mathbf{0}, \widetilde{\boldsymbol{\Sigma}}\right)
$$

Applying (9) twice with the rearrangement above, we have

$$
\begin{aligned}
& \iint \mathcal{N}\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right) \mathcal{N}\left(\mathbf{x}_{j} ; \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right) \mathcal{N}\left(\mathbf{x}_{i} ; \mathbf{x}_{j}, \boldsymbol{\Sigma}\right) \mathrm{d} \mathbf{x}_{i} \mathrm{~d} \mathbf{x}_{j} \\
& \quad=\mathcal{N}\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j} ; \mathbf{0}, \boldsymbol{\Sigma}_{i}+\boldsymbol{\Sigma}_{j}+\boldsymbol{\Sigma}\right)
\end{aligned}
$$

This double integral is actually $\mathbb{E}_{\mathbf{x}_{i} \mathbf{x}_{j}} \mathcal{N}\left(\mathbf{x}_{i} ; \mathbf{x}_{j}, \boldsymbol{\Sigma}\right)$ given that $\mathbf{x}_{i}$ and $\mathbf{x}_{j}$ are independently Gaussian distributed. Therefore, the expected Gaussian kernel can be computed as following:

$$
\begin{aligned}
\mathbb{E}_{\mathbf{x}_{i} \mathbf{x}_{j}} & {\left[\exp \left(-\frac{1}{2}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)\right)\right] } \\
& =\mathbb{E}_{\mathbf{x}_{i} \mathbf{x}_{j}}\left[(2 \pi)^{D / 2}|\boldsymbol{\Sigma}|^{1 / 2} \mathcal{N}\left(\mathbf{x}_{i} ; \mathbf{x}_{j}, \boldsymbol{\Sigma}\right)\right] \\
& =(2 \pi)^{D / 2}|\boldsymbol{\Sigma}|^{1 / 2} \mathcal{N}\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j} ; \mathbf{0}, \boldsymbol{\Sigma}_{i}+\boldsymbol{\Sigma}_{j}+\boldsymbol{\Sigma}\right) \\
& =\sqrt{\frac{|\boldsymbol{\Sigma}|}{|\widetilde{\boldsymbol{\Sigma}}|}} \exp \left(-\frac{1}{2} \widetilde{\boldsymbol{\mu}}^{\top} \widetilde{\boldsymbol{\Sigma}}^{-1} \widetilde{\boldsymbol{\mu}}\right)
\end{aligned}
$$

where $\widetilde{\boldsymbol{\mu}}=\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}$ and $\widetilde{\boldsymbol{\Sigma}}=\boldsymbol{\Sigma}_{i}+\boldsymbol{\Sigma}_{j}+\boldsymbol{\Sigma}$.

## B Derivation of Random Fourier Features for Expected Gaussian Kernels

Due to the independence assumption, the expected Gaussian kernel can be approximated as the follows

$$
\begin{aligned}
\mathbb{E}_{\mathbf{x}_{i} \mathbf{x}_{j}} \mathcal{K}_{\mathrm{G}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & \approx \mathbb{E}_{\mathbf{x}_{i} \mathbf{x}_{j}}\left[\mathbf{z}\left(\mathbf{x}_{i}\right)^{\top} \mathbf{z}\left(\mathbf{x}_{j}\right)\right] \\
& =\mathbb{E}_{\mathbf{x}_{i}}\left[\mathbf{z}\left(\mathbf{x}_{i}\right)\right]^{\top} \mathbb{E}_{\mathbf{x}_{j}}\left[\mathbf{z}\left(\mathbf{x}_{j}\right)\right]
\end{aligned}
$$

in which the $i$ th entry of $\mathbb{E}_{\mathbf{x}} \mathbf{z}(\mathbf{x})$ is $\sqrt{\frac{2}{m}} \mathbb{E}_{\mathbf{x}} \cos \left(\mathbf{w}_{i}^{\top} \mathbf{x}+b_{i}\right)$.
Consider the following expectation

$$
\begin{align*}
& \mathbb{E}_{\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})}\left[e^{i\left(\mathbf{w}^{\top} \mathbf{x}+b\right)}\right] \\
& =e^{i b} \mathbb{E}_{\mathbf{x}}\left[e^{i \mathbf{w}^{\top} \mathbf{x}}\right] \\
& =e^{i b} e^{i \mathbf{w}^{\top} \boldsymbol{\mu}-\frac{1}{2} \mathbf{w}^{\top} \boldsymbol{\Sigma} \mathbf{w}} \\
& =e^{-\frac{1}{2} \mathbf{w}^{\top} \boldsymbol{\Sigma} \mathbf{w}+i\left(\mathbf{w}^{\top} \boldsymbol{\mu}+b\right)} \\
& =e^{-\frac{1}{2} \mathbf{w}^{\top} \boldsymbol{\Sigma} \mathbf{w}}\left(\cos \left(\mathbf{w}^{\top} \boldsymbol{\mu}+b\right)+i \sin \left(\mathbf{w}^{\top} \boldsymbol{\mu}+b\right)\right) . \tag{10}
\end{align*}
$$

In the second step, we use the analytic form of the characteristic function for Gaussian random vectors.

Since

$$
\mathbb{E}\left[e^{i\left(\mathbf{w}^{\top} \mathbf{x}+b\right)}\right]=\mathbb{E}\left[\cos \left(\mathbf{w}^{\top} \mathbf{x}+b\right)+i \sin \left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right]
$$

we know that $\mathbb{E}\left[\cos \left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right]$ is the real part of $\mathbb{E}\left[e^{i\left(\mathbf{w}^{\top} \mathbf{x}+b\right)}\right]$. Therefore, from 10 we have
$\mathbb{E}\left[\cos \left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right]=\exp \left(-\frac{1}{2} \mathbf{w}^{\top} \boldsymbol{\Sigma} \mathbf{w}\right) \cos \left(\mathbf{w}^{\top} \boldsymbol{\mu}+b\right)$.

## C Proof of Theorem 1

To analyze the concentration of the kernel approximation, we apply the Hermitian matrix Bernstein inequality [Tropp, 2012]. Note that $\|\cdot\|$ denotes the spectral norm when taking on a matrix, and the $L^{2}$ norm when taking on a vector.

Theorem 2. (Matrix Bernstein: Hermitian Case Tropp. 2012]). Consider a finite sequence $\left\{\mathbf{X}_{k}\right\}$ of independent random Hermitian matrices with dimension d. Assume that $\mathbb{E} \mathbf{X}_{k}=\mathbf{0}$ and $\lambda_{\max }\left(\mathbf{X}_{k}\right) \leq R$ for all $k$. Let $\mathbf{Y}=\sum_{k} \mathbf{X}_{k}$. Define the variance parameter $\sigma^{2}=\left\|\mathbb{E}\left(\mathbf{Y}^{2}\right)\right\|$. Then

$$
\mathbb{E} \lambda_{\max }(\mathbf{Y}) \leq \sqrt{2 \sigma^{2} \log d}+\frac{1}{3} R \log d
$$

Proof of Theorem 1 We follow the derivation of LopezPaz et al. [2014] with refinement to obtain a tighter bound.

Let the $n$-dimensional random vector $\mathbf{z}_{k}=\left[z_{k 1}, \ldots, z_{k n}\right]^{\top}$ denote the collection of the $k$ th random feature (sharing the same random projection parameters, $\mathbf{w}_{k}, b_{k}$ ) of each of the $n$ examples. Let $\mathbf{S}_{k}=\mathbf{z}_{k} \mathbf{z}_{k}^{\top} / m$. The approximate kernel can be expressed as the sum of $m$ independent matrices $\widehat{\mathbf{K}}=\sum_{k=1}^{m} \mathbf{S}_{k}$.
According to Rahimi and Recht 2007], the random Fourier feature is unbiased. Specifically, for $z(\mathbf{x})=$ $\sqrt{2} \cos \left(\mathbf{w}^{\top} \mathbf{x}+b\right)$ where $\mathbf{w}$ draws from the distribution induced by the kernel and $b \sim$ uniform $(0,2 \pi)$, we have

$$
\begin{equation*}
\mathcal{K}_{\mathbf{G}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbb{E}_{\mathbf{w}, b}\left[z\left(\mathbf{x}_{i}\right)^{\top} z\left(\mathbf{x}_{j}\right)\right] . \tag{11}
\end{equation*}
$$

As a result, the random feature for the expected Gaussian kernel is also unbiased as shown below. Therefore, when $m$ random features are used, we have $\mathbb{E} \mathbf{S}_{k}=\mathbf{K} / m$ and $\mathbb{E} \widehat{\mathbf{K}}=\mathbf{K}$.

$$
\begin{aligned}
\mathcal{K}_{\mathrm{EG}}\left(\mathcal{N}_{i}, \mathcal{N}_{j}\right) & =\mathbb{E}_{\mathbf{x}_{i} \sim \mathcal{N}_{i}, \mathbf{x}_{j} \sim \mathcal{N}_{j}} \mathbb{E}_{\mathbf{w}, b}\left[z\left(\mathbf{x}_{i}\right)^{\top} z\left(\mathbf{x}_{j}\right)\right] \\
& =\mathbb{E}_{\mathbf{w}, b}\left[\mathbb{E}_{\mathbf{x}_{i} \sim \mathcal{N}_{i}}\left[z\left(\mathbf{x}_{i}\right)\right]^{\top} \mathbb{E}_{\mathbf{x}_{j} \sim \mathcal{N}_{j}}\left[z\left(\mathbf{x}_{j}\right)\right]\right]
\end{aligned}
$$

where $\mathbb{E}_{\mathbf{x}}[z(\mathbf{x})]$ is in the form of $\sqrt{2 / m} \mathbb{E}_{\mathbf{x}}\left[\cos \left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right]$ with its absolute value bounded by $\sqrt{2 / m}$. As a result, there exists a constant $B$ such that $\left\|\mathbf{z}_{k}\right\|^{2} \leq B \leq 2 n / m$.

The error matrix $\widehat{\mathbf{K}}-\mathbf{K}$ can then be expressed as the sum of $m$ independent zero-mean matrices:

$$
\widehat{\mathbf{K}}-\mathbf{K}=\sum_{k=1}^{m}\left(\mathbf{S}_{k}-\mathbb{E} \mathbf{S}_{k}\right)
$$

Since $\widehat{\mathbf{K}}-\mathbf{K}$ is symmetric, the singular values are the absolute values of its eigenvalues. Therefore,

$$
\begin{aligned}
\|\widehat{\mathbf{K}}-\mathbf{K}\| & =\max \left\{\lambda_{\max }(\widehat{\mathbf{K}}-\mathbf{K}),-\lambda_{\min }(\widehat{\mathbf{K}}-\mathbf{K})\right\} \\
& =\max \left\{\lambda_{\max }(\widehat{\mathbf{K}}-\mathbf{K}), \lambda_{\max }(\mathbf{K}-\widehat{\mathbf{K}})\right\} .
\end{aligned}
$$

In order to apply matrix Bernstein inequality, we need to bound both $\lambda_{\max }\left(\mathbf{S}_{k}-\mathbb{E} \mathbf{S}_{k}\right)$ and $\lambda_{\max }\left(\mathbb{E} \mathbf{S}_{k}-\mathbf{S}_{k}\right)$.

$$
\lambda_{\max }\left(\mathbf{S}_{k}-\mathbb{E} \mathbf{S}_{k}\right) \leq \lambda_{\max }\left(\mathbf{S}_{k}\right)=\left\|\mathbf{S}_{k}\right\|=\frac{1}{m}\left\|\mathbf{z}_{k}\right\|^{2} \leq \frac{B}{m}
$$

The first relation holds because both $\mathbf{S}_{k}$ and $\mathbb{E} \mathbf{S}_{k}$ are symmetric and positive semidefinit $\int^{5}$ Similarly,

$$
\lambda_{\max }\left(\mathbb{E} \mathbf{S}_{k}-\mathbf{S}_{k}\right) \leq \lambda_{\max }\left(\mathbb{E} \mathbf{S}_{k}\right)=\frac{1}{m}\|\mathbf{K}\| \leq \frac{B}{m}
$$

where we bound $\|\mathbf{K}\|$ using Jensen's inequality:

$$
\|\mathbf{K}\|=\left\|\mathbb{E}\left[\mathbf{z} \mathbf{z}^{\top}\right]\right\| \leq \mathbb{E}\left\|\mathbf{z z}^{\top}\right\|=\mathbb{E}\left[\|\mathbf{z}\|^{2}\right] \leq B
$$

To compute the variance parameter $\sigma^{2}$, we start with the expectation $\mathbb{E}\left[(\widehat{\mathbf{K}}-\mathbf{K})^{2}\right]$ :

$$
\begin{aligned}
\mathbb{E}\left[(\widehat{\mathbf{K}}-\mathbf{K})^{2}\right] & =\mathbb{E}\left[\widehat{\mathbf{K}}^{2}\right]-\mathbf{K}^{2} \\
& =\mathbb{E}\left[\left(\sum_{k=1}^{m} \mathbf{S}_{k}\right)^{2}\right]-\mathbf{K}^{2} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{m} \mathbb{E}\left[\mathbf{S}_{i} \mathbf{S}_{j}\right]-\mathbf{K}^{2} \\
& =\left(\sum_{k=1}^{m} \mathbb{E}\left[\mathbf{S}_{k}^{2}\right]\right)+\frac{m^{2}-m}{m^{2}} \mathbf{K}^{2}-\mathbf{K}^{2} \\
& =\left(\sum_{k=1}^{m} \mathbb{E}\left[\mathbf{S}_{k}^{2}\right]\right)-\frac{1}{m} \mathbf{K}^{2}
\end{aligned}
$$

where

$$
\mathbb{E}\left[\mathbf{S}_{k}^{2}\right]=\mathbb{E}\left[\left(\frac{1}{m} \mathbf{z}_{k} \mathbf{z}_{k}^{\top}\right)^{2}\right]=\frac{1}{m^{2}} \mathbb{E}\left[\left\|\mathbf{z}_{k}\right\|^{2} \mathbf{z}_{k} \mathbf{z}_{k}^{\top}\right] \preccurlyeq \frac{B \mathbf{K}}{m^{2}}
$$

in which the expression $\mathbf{A} \preccurlyeq \mathbf{B}$ means that $\mathbf{B}-\mathbf{A}$ is positive semidefinite. Therefore,
$\mathbb{E}\left[(\widehat{\mathbf{K}}-\mathbf{K})^{2}\right] \preccurlyeq\left(\sum_{k=1}^{m} \frac{B \mathbf{K}}{m^{2}}\right)-\frac{\mathbf{K}^{2}}{m}=\frac{B \mathbf{K}}{m}-\frac{\mathbf{K}^{2}}{m} \preccurlyeq \frac{B \mathbf{K}}{m}$.
The last step holds due to $\mathbf{K}^{2} \succcurlyeq \mathbf{0}$. Since both $\mathbf{K}$ and $\mathbb{E}\left[(\widehat{\mathbf{K}}-\mathbf{K})^{2}\right]$ are symmetric and positive semidefinite, we have

$$
\sigma^{2}=\left\|\mathbb{E}\left[(\widehat{\mathbf{K}}-\mathbf{K})^{2}\right]\right\| \leq \frac{B\|\mathbf{K}\|}{m}
$$

Given that $\lambda_{\max }\left(\mathbf{S}_{k}-\mathbb{E} \mathbf{S}_{k}\right)$ and $\lambda_{\max }\left(\mathbb{E} \mathbf{S}_{k}-\mathbf{S}_{k}\right)$ are both bounded by $B / m$, we obtain the same bound for $\mathbb{E} \lambda_{\max }(\widehat{\mathbf{K}}-\mathbf{K})$ and $\mathbb{E} \lambda_{\max }(\mathbf{K}-\widehat{\mathbf{K}})$ when plugging $R \leq$ $B / m$ and $\sigma^{2} \leq B\|\mathbf{K}\| / m$ into the matrix Bernstein inequality in Theorem 2. This leads to the bound on the expected norm:

$$
\mathbb{E}\|\widehat{\mathbf{K}}-\mathbf{K}\| \leq \sqrt{\frac{2 B\|\mathbf{K}\| \log n}{m}}+\frac{B \log n}{3 m} .
$$

With $\|\mathbf{K}\| \leq B \leq 2 n / m$, we attain

$$
\mathbb{E}\|\widehat{\mathbf{K}}-\mathbf{K}\| \leq \frac{2 n}{m} \sqrt{\frac{2 \log n}{m}}+\frac{2 n \log n}{3 m^{2}} .
$$

[^0]
## References

Lopez-Paz, D., Sra, S., Smola, A. J., Ghahramani, Z., and Schölkopf, B. (2014). Randomized nonlinear component analysis. In ICML.
Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. In Advances in neural information processing systems, pages 1177-1184.
Tropp, J. A. (2012). User-friendly tools for random matrices: An introduction. Technical report, DTIC Document.


[^0]:    ${ }^{5}$ Given Hermitian positive semidefinite matrices $\mathbf{A}$ and $\mathbf{B}$, let $\mathbf{u}=\operatorname{argmax}_{\|\mathbf{v}\|=1} \mathbf{v}^{\top}(\mathbf{B}-\mathbf{A}) \mathbf{v}$, then $\lambda_{\max }(\mathbf{B}-\mathbf{A})=$ $\mathbf{u}^{\top}(\mathbf{B}-\mathbf{A}) \mathbf{u} \leq \mathbf{u}^{\top} \mathbf{B} \mathbf{u} \leq \lambda_{\max }(\mathbf{B})=\|\mathbf{B}\|$.

