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A Derivation of Expected Gaussian Kernels

Let N (x;µ,Σ) denote the Gaussian density function

(2π)−D/2|Σ|−1/2 exp
(
−1

2
(x− µ)>Σ−1(x− µ)

)
,

where D is the dimensionality of the random variable x.

We can verify that the integral of the product of two Gaus-
sians is in the form of another Gaussian:∫

N (x;µi,Σi)N (x;µj ,Σj) dx

= (2π)−D/2|Σ̃|−1/2 exp
(
−1

2
µ̃>Σ̃

−1
µ̃

)
(9)

where µ̃ = µi − µj and Σ̃ = Σi + Σj .

Note that (9) can be expressed in several equivalent ways

N (µi;µj , Σ̃) = N (µj ;µi, Σ̃) = N (µi − µj ;0, Σ̃).

Applying (9) twice with the rearrangement above, we have∫∫
N (xi;µi,Σi)N (xj ;µj ,Σj)N (xi;xj ,Σ) dxi dxj

= N (µi − µj ;0,Σi + Σj + Σ).

This double integral is actually Exixj
N (xi;xj ,Σ) given

that xi and xj are independently Gaussian distributed.
Therefore, the expected Gaussian kernel can be computed
as following:

Exixj

[
exp

(
− 1

2
(xi − xj)

>Σ−1(xi − xj)
)]

= Exixj

[
(2π)D/2|Σ|1/2N (xi;xj ,Σ)

]
= (2π)D/2|Σ|1/2N (µi − µj ;0,Σi + Σj + Σ)

=

√
|Σ|
|Σ̃|

exp

(
−1

2
µ̃>Σ̃

−1
µ̃

)
where µ̃ = µi − µj and Σ̃ = Σi + Σj + Σ.

B Derivation of Random Fourier Features
for Expected Gaussian Kernels

Due to the independence assumption, the expected Gaus-
sian kernel can be approximated as the follows

ExixjKG(xi,xj) ≈ Exixj

[
z(xi)

>z(xj)
]

= Exi
[z(xi)]

> Exj
[z(xj)] ,

in which the ith entry of Exz(x) is
√

2
m Ex cos(w>i x+bi).

Consider the following expectation

Ex∼N (µ,Σ)

[
ei(w

>x+b)
]

= eib Ex

[
eiw

>x
]

= eibeiw
>µ− 1

2w>Σw

= e−
1
2w>Σw+i(w>µ+b)

= e−
1
2w>Σw

(
cos(w>µ+ b) + i sin(w>µ+ b)

)
. (10)

In the second step, we use the analytic form of the charac-
teristic function for Gaussian random vectors.

Since

E
[
ei(w

>x+b)
]
= E

[
cos(w>x + b) + i sin(w>x + b)

]
,

we know that E
[
cos(w>x + b)

]
is the real part of

E
[
ei(w

>x+b)
]
. Therefore, from (10) we have

E
[
cos(w>x + b)

]
= exp

(
−1

2
w>Σw

)
cos(w>µ+ b).

C Proof of Theorem 1

To analyze the concentration of the kernel approximation,
we apply the Hermitian matrix Bernstein inequality [Tropp,
2012]. Note that ‖·‖ denotes the spectral norm when taking
on a matrix, and the L2 norm when taking on a vector.
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Theorem 2. (Matrix Bernstein: Hermitian Case [Tropp,
2012]). Consider a finite sequence {Xk} of independent
random Hermitian matrices with dimension d. Assume that
EXk = 0 and λmax(Xk) ≤ R for all k. Let Y =

∑
k Xk.

Define the variance parameter σ2 = ‖E(Y2)‖. Then

Eλmax(Y) ≤
√
2σ2 log d+

1

3
R log d.

Proof of Theorem 1. We follow the derivation of Lopez-
Paz et al. [2014] with refinement to obtain a tighter bound.

Let the n-dimensional random vector zk = [zk1, . . . , zkn]
>

denote the collection of the kth random feature (sharing the
same random projection parameters, wk, bk) of each of the
n examples. Let Sk = zkz>k /m. The approximate kernel
can be expressed as the sum of m independent matrices
K̂ =

∑m
k=1 Sk.

According to Rahimi and Recht [2007], the random
Fourier feature is unbiased. Specifically, for z(x) =√
2 cos(w>x+ b) where w draws from the distribution in-

duced by the kernel and b ∼ uniform(0, 2π), we have

KG(xi,xj) = Ew,b[z(xi)
>z(xj)]. (11)

As a result, the random feature for the expected Gaussian
kernel is also unbiased as shown below. Therefore, when
m random features are used, we have ESk = K/m and
EK̂ = K.

KEG(Ni,Nj) = Exi∼Ni,xj∼Nj
Ew,b[z(xi)

>z(xj)]

= Ew,b

[
Exi∼Ni

[z(xi)]
>Exj∼Nj

[z(xj)]
]
,

where Ex[z(x)] is in the form of
√
2/mEx[cos(w

>x+b)]

with its absolute value bounded by
√

2/m. As a result,
there exists a constant B such that ‖zk‖2 ≤ B ≤ 2n/m.

The error matrix K̂−K can then be expressed as the sum
of m independent zero-mean matrices:

K̂−K =

m∑
k=1

(Sk − ESk).

Since K̂−K is symmetric, the singular values are the ab-
solute values of its eigenvalues. Therefore,

‖K̂−K‖ = max
{
λmax(K̂−K),−λmin(K̂−K)

}
= max

{
λmax(K̂−K), λmax(K− K̂)

}
.

In order to apply matrix Bernstein inequality, we need to
bound both λmax(Sk − ESk) and λmax(ESk − Sk).

λmax(Sk − ESk) ≤ λmax(Sk) = ‖Sk‖ =
1

m
‖zk‖2 ≤

B

m
.

The first relation holds because both Sk and ESk are sym-
metric and positive semidefinite5. Similarly,

λmax(ESk − Sk) ≤ λmax(ESk) =
1

m
‖K‖ ≤ B

m

where we bound ‖K‖ using Jensen’s inequality:

‖K‖ = ‖E[zz>]‖ ≤ E‖zz>‖ = E[‖z‖2] ≤ B.

To compute the variance parameter σ2, we start with the
expectation E[(K̂−K)2]:

E[(K̂−K)2] = E[K̂2]−K2

= E

( m∑
k=1

Sk

)2
−K2

=

m∑
i=1

m∑
j=1

E [SiSj ]−K2

=

(
m∑

k=1

E
[
S2
k

])
+
m2 −m
m2

K2 −K2

=

(
m∑

k=1

E
[
S2
k

])
− 1

m
K2

where

E[S2
k] = E

[(
1

m
zkz>k

)2
]
=

1

m2
E
[
‖zk‖2zkz>k

]
4
BK

m2

in which the expression A 4 B means that B−A is posi-
tive semidefinite. Therefore,

E[(K̂−K)2] 4

(
m∑

k=1

BK

m2

)
−K2

m
=
BK

m
−K2

m
4
BK

m
.

The last step holds due to K2 < 0. Since both K and
E[(K̂ −K)2] are symmetric and positive semidefinite, we
have

σ2 = ‖E[(K̂−K)2]‖ ≤ B‖K‖
m

.

Given that λmax(Sk − ESk) and λmax(ESk − Sk) are
both bounded by B/m, we obtain the same bound for
Eλmax(K̂−K) and Eλmax(K− K̂) when plugging R ≤
B/m and σ2 ≤ B‖K‖/m into the matrix Bernstein in-
equality in Theorem 2. This leads to the bound on the ex-
pected norm:

E‖K̂−K‖ ≤
√

2B‖K‖ log n
m

+
B log n

3m
.

With ‖K‖ ≤ B ≤ 2n/m, we attain

E‖K̂−K‖ ≤ 2n

m

√
2 log n

m
+

2n log n

3m2
.

5 Given Hermitian positive semidefinite matrices A and B,
let u = argmax‖v‖=1 v

>(B − A)v, then λmax(B − A) =

u>(B−A)u ≤ u>Bu ≤ λmax(B) = ‖B‖.
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