
A PROOF OF LEMMA 2

Proof. From the boundedness of the features (by L) and
the rewards (by R
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The second inequality is obtained by the consistent in-
equality of matrix norm, the third inequality comes from
the triangular norm inequality, and the fourth inequal-
ity comes from the vector norm inequality ||�(s)||
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in a similar way as follows.
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It completes the proof.

B PROOF OF PROPOSITION 3

Proof. The proof of Proposition 3 mainly relies on Propo-
sition 3.2 in Nemirovski et al. [2009]. We just need to
map our convex-concave stochastic saddle-point problem
in Eq. 14, i.e.,
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to the one in Section 3 of Nemirovski et al. [2009] and
show that it satisfies all the conditions necessary for their
Proposition 3.2. Assumption 2 guarantees that our fea-
sible sets ⇥ and Y satisfy the conditions in Nemirovski
et al. [2009], as they are non-empty bounded closed con-
vex subsets of Rd. We also see that our objective func-
tion L(✓, y) is convex in ✓ 2 ⇥ and concave in y 2 Y ,
and also Lipschitz continuous on ⇥ ⇥ Y . It is known
that in the above setting, our saddle-point problem in
Eq. 14 is solvable, i.e., the corresponding primal and dual
optimization problems: min
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are solvable with equal opti-
mal values, denoted L⇤, and pairs (✓⇤, y⇤) of optimal so-
lutions to the respective problems from the set of saddle
points of L(✓, y) on ⇥⇥ Y .

For our problem, the stochastic sub-gradient vector G is
defined as
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This guarantees that the deterministic sub-gradient vector
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We also consider the Euclidean stochastic approximation
(E-SA) setting in Nemirovski et al. [2009] in which the
distance generating functions !
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pp. 1581 and 1582 in Nemirovski et al. 2009). This allows
us to equip the set Z = ⇥⇥Y with the distance generating
function
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defined in Assumption 2.

Now that we consider the Euclidean case and set the norms
to `

2

-norm, we can compute upper-bounds on the expecta-
tion of the dual norm of the stochastic sub-gradients
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where || · ||⇤,✓ and || · ||⇤,y are the dual norms in ⇥ and Y ,
respectively. Since we are in the Euclidean setting and use
the `
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-norm, the dual norms are also `
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-norm, and thus, to
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To bound these two quantities, we use the following equal-
ity that holds for any random variable x:
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where the first inequality is from the definition of �
3

in
Eq. 20 and the consistent inequality of the matrix norm,
and the second inequality comes from the boundedness of
the feasible sets in Assumption 2. Similarly we bound
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where these inequalities come from the definition of �
1

in Eq. 20 and the boundedness of the feasible sets in As-
sumption 2. This means that in our case we can compute
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and as a result
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where the inequality comes from the fact that 8a, b, c �
0, a2 + b2 + c2  (a+ b+ c)2. Thus, we may write M⇤ as
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Now we have all the pieces ready to apply Proposition 3.2
in Nemirovski et al. [2009] and obtain a high-probability
bound on Err(
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the outputs of the revised GTD algorithm in Algorithm 1.
From Proposition 3.2 in Nemirovski et al. [2009], if we set
the step-size in Algorithm 1 (our revised GTD algorithm)
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Note that we obtain Eq. 40 by setting c = 1 and the “light-
tail” assumption in Eq. 22 guarantees that we satisfy the
condition in Eq. 3.16 in Nemirovski et al. [2009], which is
necessary for the high-probability bound in their Proposi-
tion 3.2 to hold. The proof is complete by replacing ||A||
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and ||b||
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from Lemma 2.

C PROOF OF PROPOSITION 4

Proof. From Lemma 3, we have
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Since P is the kernel matrix of the target policy ⇡ and ⇧ is
the orthogonal projection w.r.t. ⇠, the stationary distribution

of ⇡, we may write
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where the third inequality is the result of upper-bounding
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eigenvalue of the covariance matrix C).

D PROOF OF PROPOSITION 5

Proof. Using the triangle inequality, we may write

||V � v̄
n

|||
⇠

 ||v̄
n

� �✓⇤||
⇠

+ ||V � �✓⇤||
⇠

. (42)

The second term on the right-hand side of Eq. 42 can be
upper-bounded by Lemma 4. Now we upper-bound the first
term as follows:
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C, and �

min

(A>M�1A) is the smallest singular value of
A>M�1A. Using the result of Theorem 1, with probability
at least 1� �, we have
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From Eqs. 42, 32, and 44, the result of Eq. 33 can be de-
rived, which completes the proof.


