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Abstract

Probabilistic latent-variable models are a funda-
mental tool in statistics and machine learning.
Despite their widespread use, identifying the pa-
rameters of basic latent variable models contin-
ues to be an extremely challenging problem. Tra-
ditional maximum likelihood-based learning al-
gorithms find valid parameters, but suffer from
high computational cost, slow convergence, and
local optima. In contrast, recently developed
spectral algorithms are computationally efficient
and provide strong statistical guarantees, but are
not guaranteed to find valid parameters. In this
work, we introduce a two-stage learning algo-
rithm for latent variable models. We first use a
spectral method of moments algorithm to find a
solution that is close to the optimal solution but
not necessarily in the valid set of model param-
eters. We then incrementally refine the solution
via an exterior point method until a local optima
that is arbitrarily near the valid set of parame-
ters is found. We perform several experiments on
synthetic and real-world data and show that our
approach is more accurate than previous work,
especially when training data is limited.

1 INTRODUCTION & RELATED WORK

Probabilistic latent variable models are a fundamental tool
in statistics and machine learning that have successfully
been deployed in a wide range of applied domains includ-
ing robotics, bioinformatics, speech recognition, document
analysis, social network modeling, and economics. De-
spite their widespread use, identifying the parameters of
basic latent variable models like multi-view models and
hidden Markov models (HMMs) continues to be an ex-
tremely challenging problem. Researchers often resort to
local search heuristics such as expectation maximization
(EM) (Dempster et al., 1977) that attempt to find parame-

ters that maximize the likelihood of the observed data. Un-
fortunately, EM has a number of well-documented draw-
backs, including high computational cost, slow conver-
gence, and local optima.

In the past 5 years, several techniques based on method of
moments (Pearson, 1894) have been proposed as an alter-
native to maximum likelihood for learning latent variable
models (Hsu et al., 2009; Siddiqi et al., 2010; Song et al.,
2010; Parikh et al., 2011, 2012; Hsu and Kakade, 2012;
Anandkumar et al., 2012a,c,b; Balle et al., 2012; Cohen
et al., 2013; Song et al., 2014). These algorithms first es-
timate low-order moments of observations, such as means
and covariances, and then apply a sequence of linear alge-
bra to recover the model parameters. Moment estimation is
linear in the number of training data samples, and parame-
ter estimation, which relies on techniques like the singular
value decomposition (SVD) is typically fast and numeri-
cally robust.

For example, moment-based algorithms have been pro-
posed for learning observable representations of HMMs,
which explicitly avoid recovering HMM transition and ob-
servation matrices (Hsu et al., 2009; Siddiqi et al., 2010;
Song et al., 2010). These spectral algorithms first perform
a SVD of second-order moments of adjacent observations,
and then use this result, along with additional low-order
moments, to recover parameters for filtering, predicting,
and simulating from the system. Unlike previous maximum
likelihood-based approaches, spectral algorithms are fast,
statistically consistent, and do not resort to local search.

Spectral algorithms were recently extended to the more dif-
ficult problem of estimating the parameters of latent vari-
able models including the stochastic transition and obser-
vation matrices of HMMs (Anandkumar et al., 2012c).1

Again, the estimators are based on SVD and a sequence of
linear operations, applied to low-order moments of obser-
vations and come with learning guarantees under mild rank

1In contrast to the observable representation identified by the
previous spectral learning algorithms (Hsu et al., 2009; Siddiqi
et al., 2010; Song et al., 2010).



conditions. This work has been further extended to learning
parameters of parametric and nonparametric multi-view
latent variable models (Anandkumar et al., 2012b; Song
et al., 2014) by introducing a symmetric tensor decom-
position algorithm that unifies several previous method of
moments-based approaches.

One of the benefits of method of moments over EM and
other local search heuristics is that moment-based algo-
rithms come with theoretical guarantees such as statistical
consistency and finite sample bounds. In other words, un-
der mild assumptions, method of moments can guarantee
that as the amount of training data increases, the learned
parameters are converging to the true parameters of the
model that generated the data (Hsu et al., 2009; Anandku-
mar et al., 2012b). This is especially promising because
the resulting parameters can be used to initialize EM in
a two-stage learning algorithm (Zhang et al., 2014; Balle
et al., 2014), resulting in the best of both worlds: param-
eters found by method of moments provide a good initial-
ization for a maximum likelihood approach.

Unfortunately, spectral method of moments algorithms and
two-stage learning algorithms have worked less well in
practice. With finite samples, method of moments estima-
tors are not guaranteed to find a valid set of parameters. Al-
though error in the estimated parameters are bounded, the
parameters themselves may lie outside the class of valid
models. For example, the learned transition matrix of a
HMM may have small negative entries. A consequence is
that the learned model cannot be used or even serve as an
initialization for EM.

To fix these problems, the method of moments solution is
typically projected onto the space of valid model parame-
ters: e.g. by flipping the sign of negative parameters and
renormalizing the model (Cohen et al., 2013), or projecting
the parameters onto the `1-ball (Duchi et al., 2008). While
these heuristics produce a useable model, it invalidates any
theoretical guarantees: the resulting model may no longer
be close to the true parameters. As demonstrated in Balle
et al., models that are learned by method of moments and
then “corrected” in this way, do not necessarily serve as a
good initialization to EM (Balle et al., 2014).

1.1 EXTERIOR POINT METHODS

Consider the problem of minimizing objective function
r(v) : Rn → R+, subject to the constraint v ∈ A . Gen-
erally, a series of unconstrained optimization problem are
solved to achieve a local optima in the limit. The optimiza-
tion problem in the kth step can be written as:

minimize r(v) + lk(v)

with the local optima v(k). By defining the function lk(v)
appropriately, one can then show that v∗ = limk→∞ v

(k)

is a local optima of the original constrained optimization

XX*

Figure 1: Exterior point methods versus projection fol-
lowed by interior point methods. The dashed line shows the
feasible set and the optimal solution is labeled X∗. Start-
ing from the method of moments solution X , the exterior
point method (green arrows) converges to a point arbitrar-
ily close to the feasible set. Current optimization methods
for learning latent variable models first project the method
of moments solution into the feasible set (blue arrow) and
then use an interior point method (red arrows show interior
point method trajectory). Assuming that the initial solution
is near to the optimal solution, as in this example, the pro-
jection step may change the convergence point to a point
far from the optimal solutionX∗.

problem (Bloom, 2014). In Interior point methods every
intermediate solution v(k) is in the feasible set, however,
in exterior point methods, only the convergence point of
the sequence needs to be feasible (Byrne, 2008). Exam-
ples of interior and exterior point methods are Barrier func-
tion methods (Boyd and Vandenberghe, 2004), and exact
penalty function methods (Fletcher, 2013) respectively. In
exterior point methods, the function lk(v) usually has a
positive value for solutions outside the feasible set to dis-
courage these solutions and a value of zero for feasible in-
puts. In interior point methods, the function lk(v) → ∞
when v approaches to the boundary of the constraint set.
Polyak (2008), and Yamashita and Tanabe (2010) propose
primal-dual exterior point methods for convex and non-
convex optimization problems respectively. In Section 3,
we show that by defining lk(v) appropriately, the algo-
rithm converges to a local optima arbitrarily close to the
feasible set by doing simple forward-backward splitting
steps (Combettes and Pesquet, 2011).

An important advantage of exterior point methods is that
they are likely to achieve a better local minimum than in-
terior point methods when the feasible set is narrow by al-
lowing solutions to exist outside the feasible set during the
intermediate steps of the optimization (Yamashita and Tan-
abe, 2010).

1.2 THE PROPOSED METHOD

One of the primary drawbacks of using method of moments
for learning latent variable models, is that the estimated pa-



rameters can lie outside the class of valid models (Balle
et al., 2014). To combat this problem, we propose a two-
stage algorithm for learning the parameters of latent vari-
able models.

In the first stage, the parameters are estimated via a spec-
tral method of moments algorithm (similar to Anandkumar
et al. (2012c)). Like previous method of moments-based
learning algorithms, if the estimated moments are inaccu-
rate, then the estimated parameters of this model may lie
outside of the model class.

In the second stage, the estimate is refined by an iterative
optimization scheme. Unlike previous work that projects
method of moments onto the feasible space of model pa-
rameters and then uses the projected parameters to initial-
ize EM (Zhang et al., 2014; Balle et al., 2014), we use ex-
terior point methods for non-convex optimization directly
initialized with the result of method of moments without
modification. The exterior point method iteratively refines
the solution until a local optima that is arbitrarily close to
the valid set of model parameters is found. A comparison
between the two approaches is illustrated in Figure 1.

1.3 BASICS AND NOTATION

We use following notation to distinguish scalars, vectors,
matrices, and third-order tensors: scalars are denoted by
either lowercase or uppercase letters, vectors are written as
boldface lowercase letters, matrices correspond to boldface
uppercase letters, and third-order tensors are represented by
calligraphic letters. In this paper, (A)ij means the entry in
the ith row and jth column of the matrixA, we use similar
notation to index entries of vectors and third-order tensors.
Furthermore, the ith column of the matrix A is denoted as
(A)i, i.e.,A = [(A)1, (A)2, . . . , (A)n]. We show a n×m
matrix with entries one by 1n×m, n×n identity matrices by
In, and n×n×n identity tensors by In. We use Rn×m+ to
show the set of n by m matrices with non-negative entries,
and ∆n is the set of all n + 1-dimensional vector on the
n-dimensional simplex.

We also define the following functions for ease of notation:
sum(X) = X>1 computes column sum of the matrix X ,
and the function diag(v), which returns a diagonal matrix
where its diagonal elements are a vector v. For matrices
or 3-way tensors, diag(·) returns diagonal elements of the
given input in vector form.

1.3.1 n-mode product (Lathauwer et al., 2000)

The n-mode product of a tensor A ∈ RI1×I2×I3 by a ma-
trix B ∈ RJn×In for 1 ≤ n ≤ 3, shown as A×n B, is an
K1 × K2 × K3 tensor, for which Ki = Ii for all dimen-
sions except the n-th one which is Kn = Jn. The entries

are given by:

(A×n B)i1...jn...i3 =
∑
in

(A)i1...in...i3(B)jnin . (1)

We benefit from following properties of n-mode product in
future sections:

• Given a tensor A ∈ RI1×I2×I3 and a matrix C ∈
RJn×In of the same size asB, one can show that:

(A×n B)×n C = A×n (CB). (2)

• For a matrixD ∈ RJm×Im(n 6= m):

(A×n B)×mD = (A×mD)×n B.

• For matricesA,B, and C with appropriate sizes:

A×1 B ×2 C = BAC>.

2 PARAMETER ESTIMATION VIA
METHOD OF MOMENTS

In this section we derive two method of moments algo-
rithms for estimating the parameters of latent variable mod-
els, one for multi-view models and one for HMMs. If the
estimated parameters lie outside the feasible set of solu-
tions, they are used to initiate an exterior point method
(Section 3).

2.1 MULTI-VIEW MODELS

In a multi-view model, observation variables o1, o2, . . . , ol
are conditionally independent given a latent variable h
(Figure 2a). Assume each observation variable can take one
of no different values. The observation vector xt ∈ Rno is
defined as follows:

xt = ej iff ot = j for 0 < j ≤ no, (3)

where ej is the jth canonical basis. In this paper, we con-
sider the case where l = 3, however, the techniques can be
easily extended to cases where l > 3. Let h ∈ {1, . . . , ns}
be a discrete random variable and Pr {h = j} = (w)j ,
wherew ∈ ∆ns−1, then the conditional expectation of ob-
servation vector xt for t ∈ {1, 2, 3} is:

E[xt | h = i] = uti, (4)

where uti ∈ ∆no−1. We define the observation matrix as
U t = [ut1, . . . ,u

t
ns

] for t ∈ {1, 2, 3}, and the diagonal
ns×ns×ns tensor H, where diag (H) = w for ease of
notation. The following proposition relates U ts and w to
the moments of xts.

Proposition 1. (Anandkumar et al., 2012b) Assume that
columns of U t are linearly independent for each t =
{1, 2, 3}. Define

M = E(x1 ⊗ x2 ⊗ x3)

Then
M = H×1 U

1 ×2 U
2 ×3 U

3 (5)
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Figure 2: The two latent variable models discussed in the text.

In the next proposition, the moments of xts are related to a
specific U t:
Proposition 2. (Anandkumar et al., 2012b) Assume that
columns of Ut are linearly independent for each t =
{1, 2, 3}. Let (a, b, c) be a permutation of {1, 2, 3}. De-
fine

x′a = E(xc ⊗ xb)E(xa ⊗ xb)−1xa

x′b = E(xc ⊗ xa)E(xb ⊗ xa)−1xb

Mc = E(x′a ⊗ x′b)
Mc = E(x′a ⊗ x′b ⊗ xc)

Then
Mc = U c diag(w)U c>

Mc = H×1 U
c ×2 U

c ×3 U
c (6)

Also, define mc = E(xc) = U cw. Anandkumar et al.
(2012b) transform Mc to a orthogonally decomposable
tensor and recover the matrices U ts and w from it. Our
approach here is slightly different and is more similar to
Anandkumar et al. (2012c): we reduce the problem into the
orthogonal decomposition of a matrix derived fromMc.

First, let S = V Σ−1/2, where columns of V are or-
thonormal eigenvectors of Mc and Σ is a diagonal ma-
trix whose elements are corresponding eigenvalues of V .
The columns of Ũ c = S>U c diag(w)1/2 are orthonormal
vectors (Anandkumar et al., 2012b). Using this and Equa-
tion (6) we have:

Mη =Mc ×1 S
> ×2 S

> ×3 η
>

=H×1 (S>U c)×2 (S>U c)×3 (η>U c)

=Ins
×1 Ũ

c ×2 Ũ
c ×3 (η>U c)

=Ũ c diag(η>U c)(Ũ c)>

(7)

where η is a random vector sampled from the no dimen-
sional normal distribution. For the first equality we used
property in Equation (2), in the second equality we used
the fact that H = Ins

×1 diag(w)1/2 ×2 diag(w)1/2,
and finally in the last equality we used equality Ins

×3

(η>U c) = diag(η>U c). In Anandkumar et al. (2012c)
it is shown that η>U c has distinct values with a high
probability. Thus, Ũ c can be recovered by a SVD de-
composition of Mη . Then w = ((Ũ c)+S>mc) ∧ 2,

Algorithm 1 Moment-based parameter estimation

Input: Estimated third order moment M̂c for c =
{1, 2, 3}
Output: Estimated parameters Û1, Û2, Û3, ŵ
——————————————————————-
for each t ∈ {1, 2, 3} do
M̂t ← M̂t ×3 1 (compute second-order moment)
m̂t ← M̂t ×2 1×3 1 (compute first-order moment)
S ← V Σ−1/2 (V ΣV > is M̂t’s eigenvalue decomposi-
tion)
η ← drawn randomly from Normal distribution
Mη ← M̂t ×1 S

> ×2 S
> ×3 η

> (Eq. 7)
Ũ t ←K (columns of K are Mη’s eigenvectors)
ŵt ← ((Ũ t)+S>m̂t) ∧ 2

Û t ← S+>Ũ t diag (ŵt)
−1/2

end for
ŵ ← ŵ1+ŵ2+ŵ3

3

where ∧ is element-wise power operator. Having com-
puted w, one can recover U c via the equation U c =

S+>Ũ c diag (w)
−1/2. Finally, we take the average of 3

copies of w which are computed for different values of
c. The overall moment-based approach is shown in Algo-
rithm 1.

2.2 HIDDEN MARKOV MODELS

Hidden Markov models generate sequences of observa-
tions x1,x2, . . . ∈ Rno . Each xt is independent of all
other observations given the corresponding hidden state
qt ∈ {1, 2, . . . , ns} (Figure 2b). Similar to multi-view
models, ns and no are the number of hidden states and
number of observations respectively. Note that observa-
tions are represented as indicator vectors xt, which are
all zero except for exactly one element which is set to 1.
The conditional probability distribution of xt given qt is
defined via an observation matrix O ∈ Rno×ns according
to Pr {xt = ei|qt = j} = (O)ij . The stochastic transition
matrix T ∈ Rns×ns is defined as Pr {qt+1 = i|qt = j} =
(T )ij for all t > 1 and the initial state probability distribu-



tion is π ∈ ∆ns−1. If X = (x1,x2, . . . ,xT ) is a sequence
of observations, then we define forward and backward vari-
ables as

Pr {x1, . . . ,xt, qt = j} = αt(j)

Pr {xt+1, . . . ,xT , qt = j} = βt(j)
(8)

These will help computing the probability of observations.
For example,

f(X; [O,T ,π]) =

ns∑
i=1

ns∑
j=1

αt(i)(T )ij(O)>j xtβt+1(j) (9)

for all 1 ≤ t ≤ T (Levinson et al., 1983). Note that the val-
ues of function αt(.) and βt(.) can be computed efficiently
using dynamic programming.

Under mild conditions, HMM parameter estimation re-
duces to estimating multi-view model parameters, using
considering triple of observation (x1,x2,x3).

Proposition 3. (Anandkumar et al., 2012b) let h = q2

then:

• x1,x2,x3 are conditionally independent given h.

• The distribution of h is w = Tπ.

• For all j ∈ {1, 2, . . . , ns}

E[x1|h = j] = O diag (π)T> diag (w)
−1/2

ej
E[x2|h = j] = Oej
E[x3|h = j] = OTej

under mild conditions.

Thus, provided that O and T both have full column rank,
the parameters of HMM can be recovered as O = U2,
T = O+U3, and π = T−1w.

It is also important to note that, using the above proposition
and Equation (9) we can alternatively write each entries of
tensorM = E(x1 ⊗ x2 ⊗ x3) as:

(M)ijk = f((ei, ej , ek); [O,T ,π]). (10)

3 EXTERIOR POINT METHODS

While exact parameters can be recovered from the popula-
tion moments, in practice we work with empirical moments
M̂ , and M̂ which are computed using a finite set of train-
ing data. Thus, the estimated parameters are not necessarily
exact and do not necessarily minimize the estimation error
||M̂ − H ×1 U

1 ×2 U
2 ×3 U

3||F .

In this section, we show that estimated parameters from
Section 2 can directly initialize an iterative exterior point
method that minimizes the above error while obeying con-
straints on model parameters. Although this initial seed
may violate these constraints, we show that under mild con-
ditions the parameters satisfy the model constraints once

the algorithm converges. First, we prove the convergence
of the algorithm for multi-view models and then show how
the algorithm can be applied to HMMs.

3.1 MULTI-VIEW MODELS

Let v ∈ Rns(3no+1) be a vector comprised of the parame-
ters of the multi-view model {U1,U2,U3,diag(H)}, and
R(v) = (M̂−H×1U

1×2U
2×3U

3) be the residual esti-
mation tensor. For ease of notation, we also define function
s(·) : Rns(3no+1) → R3ns+1 that computes column sum of
U1, U2, U3, and diag(H). As discussed above, the esti-
mated parameters in the previous section do not necessarily
minimize the estimation error ||R(v)||F and also may vi-
olate the constraints for the model parameters. With these
limitations in mind, we rewrite the factorization in Equa-
tion (6) in the form of an optimization problem:

minimize
1

2
||R(v)||2F .

s.t. v ∈Rns(3no+1)
+ , s(v) = 1

(11)

Defining optimization problem in this form has two ad-
vantages over maximum likelihood optimization schemes.
First, since M̂ is computed in the previous stage, the opti-
mization cost is asymptotically independent of the number
of training samples which makes the proposed optimiza-
tion algorithm faster than EM for large training sets. Sec-
ond, the value of this objective function ||R(v)||F is also
defined outside of the feasible set. We use this property to
extend the optimization problem for a simple exterior point
method in Section 3.1.1, below.

3.1.1 The Optimization Algorithm

Instead of solving constrained optimization problem in
Equation (11), we solve the following unconstrained op-
timization problem:

minimize
1

2
||R(v)||2F+

λ1

2
||s(v)− 1||2p

+λ2|v|−,
(12)

where |v|− is the absolute sum of all negative elements in
the vector v, i.e., |v|− =

∑
i |(v)i|−. We set p = 2 in our

method. For p = 1, there exists a λ1 and a λ2 such that
the solution to this unconstrained optimization is also the
solution to the objective in Equation (11). A thorough sur-
vey on solving non-differentiable exact penalty functions
can be found in (Fletcher, 2013). Our approach, however,
is different in the sense that for p = 2 the solution of our
optimization algorithm is not guaranteed to satisfy the con-
straints in Equation (11), however, we show in Theorem
7 that the solution will be arbitrarily close to the simplex.
In return for this relaxation, the above optimization prob-
lem can be easily solved by a standard forward-backward
splitting algorithm (Combettes and Pesquet, 2011). In this



Algorithm 2 The exterior point algorithm

Input: Estimated third order moment M̂, initial point
(obtained from Algorithm 1) v(0) is comprised of
{Û1, Û2, Û3,diag(Ĥ)}, parameters λ1, and λ2, se-
quence {βk}, and constant c > 0
Output: Convergence point v∗

——————————————————————-
k ← 0
while not converged do
k ← k + 1
if |v(k−1)|− > 0 then
αk ← max{c, βk}

else
αk ← βk

end if
ṽ(k) ← v(k−1) − αk∇g(v(k−1))
v(k) ← prox(ṽ(k)) (see Equation (15))

end while

method, the function is split into a smooth part:

g(v) =
1

2
||R(v)||2F +

λ1

2
||s(v)− 1||22 (13)

and a non-smooth part λ2|v|−. We then minimize the
objective function by alternating between a gradient step
on the smooth part ∇g(v) (forward) and proximal step of
the non-smooth part (backward). The overall algorithm is
shown in Algorithm 2 where prox(ṽ(k)) function is defined
as

v(k) = argmin
y

(αkλ2|y|− +
1

2
||ṽ(k) − y||2F ). (14)

and optimized by following transformation (Shalev-
Shwartz and Zhang, 2013):

(v(k))i =

(ṽ(k))i + αkλ2 (ṽ(k))i < −αkλ2

0 −αkλ2 ≤ (ṽ(k))i < 0

(ṽ(k))i 0 ≤ (ṽ(k))i

(15)

We only need to find the gradient of function g(v) for the
given model parameter v. Following lemma shows the gra-
dient of g(v) can be computed efficiently.

Lemma 4. Let r(v) = 1
2 ||R(v)||2F . The following are true

for all 0 < i ≤ ns:

a. ∂r(v)
∂Hiii

= −R(v)×1 u
1
i ×2 u

2
i ×3 u

3
i

b. ∇u1
i
r(v) = −Hiii ×R(v)×2 u

2
i ×3 u

3
i

c. ∇u2
i
r(v) = −Hiii ×R(v)×1 u

1
i ×3 u

3
i

d. ∇u3
i
r(v) = −Hiii ×R(v)×1 u

1
i ×2 u

2
i

Next we show that by using the forward-backward splitting
steps in Algorithm 2 there are lower bounds for λ1 and λ2

in which the iterative algorithm converges to a local opti-
mum arbitrarily close to the simplex. For this purpose, we

assume that estimated parameters remain in a compact set
during the optimization, then we use the following corol-
lary to bound the gradient of function r(v).
Corollary 5. For every v which is comprised of the
multi-view parameters and is in the compact set F =
{v | ∀i, 0 < i ≤ ns, 1 < t ≤ 3 : ||(U t)i||2 ≤
L, ||diag(H)||2 ≤ L}, every element of the gradient of the
function r(v) is bounded as:

|∂r(v)

∂(v)i
| ≤ L3||R(v)||F (16)

Although, the norm of the residual error can also be
bounded by L in Equation (16), since we initiate the al-
gorithm with method of moments estimation, its value
remains considerably smaller than its upper bound dur-
ing the iterative procedure in Algorithm 2. Let Υ >
supk ||R(v(k))||F ; the next lemma shows that for a large
enough λ2 and after a fixed number of iterations, all of the
elements in v(k) become non-negative.
Lemma 6. Assuming that sequence {v(k)} produced by
Algorithm 2 is in the set F , and λ2 is selected such that:

λ2 > L3Υ + λ1(
√
noL+ 1), (17)

there is a constant K such that for k > K we have
|v(k)|− = 0. Also, for k > K the proximal operator in
Algorithm 2 reduces to the orthogonal projection operator
into the convex set C = Rns(3no+1)

+ :

∀k > K : prox(ṽ(k)) = projC (ṽ(k)) (18)

The proof is provided in the Appendix. According to the
above lemma, afterK iterations of forward-backward split-
ting steps, all entries of v(k) have non-negative values and
the optimization algorithm reduces to gradient projection
steps (Bertsekas, 1999) into the set Rns(3no+1) for opti-
mizing non-convex function g(v). There is a lot of research
on the convergence guarantees of gradient projection meth-
ods for non-convex optimization with different line search
algorithms (Bertsekas, 1999), which also can be used in
Algorithm 2. The only requirement of our method is that
stepsize αk should be strictly bounded away from zero for
k ≤ K which is guaranteed in Algorithm 2 by taking the
max{c, βk} for k ≤ K for an arbitrary constant c > 0. Fi-
nally, the following theorem shows that by choosing large
enough λ1 and λ2, the algorithm ends up with a solution
arbitrarily close to the simplex.

Theorem 7. For every ε1 > 0, set λ1 > L3Υ
ε1

and
λ2 > L3Υ + λ1(

√
noL + 1), in Equation (12). For the

convergence point of the sequence {v(k)} ⊂ F which is
generated by Algorithm 2 we have:

|v∗|− = 0, ||s(v∗)− 1||2 ≤ ε1

The proof of Theorem 7 is provided in the Appendix.

To summarize, we initiate our exterior point method with
the result of the method of moments estimator in Sec-



tion 2.1. By choosing large enough λ1, and λ2, the conver-
gence point of the exterior point method will be at a local
optimum of g(v) with the constraint v ∈ Rns(3no+1)

+ in
which the column sum of parameters set is arbitrarily close
to 1. It is important to note that the proven lower bounds
for λ1, and λ2 are sufficient condition for the convergence.
In practice, cross-validation can find the best parameter to
balance the speed of mapping to the simplex with optimiz-
ing the residual function.

3.2 HIDDEN MARKOV MODELS

In Section 2.2 we showed that method of moments param-
eter estimation for HMMs essentially reduces to parameter
estimation of of multi-view models. After finding param-
eters from the method of moments algorithm, Algorithm 2
can be used to further refine the solution. In order to use
this algorithm, we just need to define the residual estima-
tion term for HMMs, define the function g(·), and compute
its gradient. Assuming the parameters of the HMM T , O,
and π are as defined in Section 2.2, let vector z be com-
prised of these parameters. Similar to the multi-view case
when the estimated moments are not exact, the equality in
Equation (10) does not hold, and we define the residual
prediction error of the model for the triples (ei, ej , ek) as
(R(z))ijk = (M̂)ijk − f((ei, ej , ek); [O,T ,π]). Thus,
the optimization problem is:

minimize g(z) + λ2|z|−, (19)

where g(z) is defined as:

g(z) =
1

2
||R(z)||2F +

λ1

2
||s(z)− 1||22. (20)

The following lemma shows that the gradient of the first
term in above equation can be represented by forward and
backward variables in Equation (8) efficiently.

Lemma 8. Let r(z) = 1
2 ||R(z)||2F , for all 0 < a, b ≤ ns

and 0 < c ≤ no following holds:

a. ∂r(z)
∂(π)a

=
∑

(R(z))ijk(O)>a x1β1(a)

b. ∂r(z)
∂(T )ab

=
∑

(R(z))ijk
∑2
t=1 αt(a)(O)>b xt+1βt+1(b)

c. ∂r(z)
∂(O)cb

= 1
(O)cb

∑
(R(z))ijk

∑
t:xt=ec

αt(b)βt(b)

where the outer sums are over 0 < i, j, k < no and x1 =
ei, x2 = ej , and x3 = ek (ei is the ith canonical basis).

To summarize: to estimate the parameters of a HMM, we
initialize Algorithm 2 with the method of moments esti-
mate of the parameters. Then, using lemma 8, we compute
∇g(z) at each iteration to solve the optimization (Equa-
tion (19)).

4 EXPERIMENTAL RESULTS

We evaluate the performance of our proposed method
(EX&SVD) on both synthetic and real world datasets. We
compare our approach to several state-of-the-art alterna-
tives including EM initialized with 10 random seeds (EM),
EM initialized with the method of moments result de-
scribed in Section 2 after projecting the estimated parame-
ters into simplex (EM&SVD), and the recently published
symmetric tensor decomposition method (STD) (Anand-
kumar et al., 2012b). To evaluate the performance gain
due to exterior point algorithm, we also included results
from method of moments without the additional optimiza-
tion (SVD) Section 2.

To ensure a fair time comparison, all of the methods were
implemented in Matlab. In all methods, the iteration was
stopped whenever the change in obj(t−1)−obj(t)

|avg(obj(t),obj(t−1))| was
less than δ. We set parameter δ in EM-based approaches,
and exterior point algorithm to 10−4 (Murphy; Parikh et al.,
2012), and 10−3 respectively.

Parameters λ1, and λ2 controls the speed of mapping pa-
rameters into the simplex while estimation error term is op-
timized simultaneously. We find the best parameters using
cross-validation. In our experiments, we sampleN training
and M testing points from each model. For the evaluation
we use M = 2000 test samples and calculate normalized
`1 error = 1

M

∑M
i=1

|P(Xi)−P̂(Xi)|
P(Xi)

.

We found that, empirically, spectral methods and exterior
point algorithm outperform EM for small sample sizes. In
these situations, we believe that EM is overfitting, result-
ing in poor performance on the test dataset. Similar results
are also reported in (Parikh et al., 2012). As the number
of training data points increases, EM begins to outperform
the spectral methods. However, our experiments show that
EX&SVD constantly outperforms other methods in terms
of estimation error while remaining an order of magnitude
faster than EM.

It is important to note that the gap between estimation error
of EX&SVD and EM&SVD is considerably larger in the
situations where the number of training data points is rela-
tively small compared to the number of model parameters.
In these situations, estimation error in the SVD method is
not accurate and the error of projection into the simplex is
relatively high in EM&SVD method. However, when the
SVD parameter estimates are used to initialize our exterior
point algorithm we get considerably better parameter esti-
mates. When the SVD estimate of the parameters is accu-
rate (due to the large training set and small number of pa-
rameters) EM&SVD and EX&SVD estimations are close
to each other. We believe that this observation strongly sup-
ports our approach to use exterior point method to find a set
of parameters in the valid set of models (rather than a naive
projection).



4.1 MULTI-VIEW MODEL EXPERIMENTS

To test the performance of the proposed method on learning
multi-view models in different settings, we generate obser-
vations from randomly sampled models. The first set of
models has 5 hidden states and 10 discrete observations per
view, and the second set of models has 10 hidden states and
20 observations per view.

Figure 3 shows the average error of the implemented al-
gorithms run on 10 different datasets generated by i.i.d
sampled models. Each dataset consisted of up to 100,000
triples of observations sampled from each model. We used
log-log scale for better demonstration of results. In these
experiments, EM is initialized with 10 different random
seeds and the best model is reported. Both EM&SVD
and EX&SVD are initialized with 1 sample from our SVD
decomposition method. As discussed earlier, EM outper-
forms SVD and the tensor decomposition method with re-
spect to estimation error as the number of training samples
increases. However, both EX&SVD and EM&SVD out-
perform EM, which shows the effectiveness of using the
method of moments result as an initial seed for optimiza-
tion. The performance of the EX&SVD method is sig-
nificantly better especially in the small sample size region
where the method of moments result is far from the simplex
and projection step in EM&SVD method change the value
of initial seed a lot. As the number of training samples in-
creases, the error induced by the projection decreases and
the results of the two methods converge.

Comparing the results from the two model classes, we see
that the difference between the performance of EX&SVD
and other methods is more pronounced as the number of
parameters increases. This is due to the fact that the error
of SVD increases as the number of parameters increases;
which, in turn, is due to poor population estimates of the
moments. The error of projecting the SVD result into
the simplex is also high in the EM&SVD method. As il-
lustrated in Figure 3, the result of SVD is comparable to
STD while SVD is orders of magnitude faster. Consider-
ing the large number of parameters in this experiment, it is
not strange that both method of moments algorithms (STD
and SVD) do not show a good performance, however, both
EM&SVD and EX&SVD outperform EM which shows the
method of moments estimation are a better initialization
point than a random selection.

To study the performance of different methods under dif-
ferent parameter set sizes in more detail, we investigate the
performance of the different algorithms in estimating pa-
rameters of models with different numbers of hidden states.
To this end, we sample N = 4000 training points from
models with different numbers of hidden states and evalu-
ate the performance of different method in estimating these
models parameters. The average error of 10 independent
runs is reported in figure 4 for different values of ns. In
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Figure 3: Error vs. #training (first column), and Time vs.
#training (second column) for multi-view models. ns = 5,
no = 10 in the first row, and ns = 10, no = 20 in the
second row.

each case we set no to twice the value of ns. As ns in-
creases, the number of model parameters also increases
while the number of training points remains fixed. This
results in the estimation error increasing as the models get
larger for all of the methods. However, the difference be-
tween the performance of EX&SVD and other methods be-
comes more pronounced with ns, which shows the effec-
tiveness of our method in learning models with large state
spaces and relatively smaller datasets.
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Figure 4: Error vs. ns (left), time vs. ns (right) for multi-
view model for #training = 4000.

4.2 HIDDEN MARKOV MODEL EXPERIMENTS

We also evaluate the performance of our algorithm by es-
timating the parameters of HMMs on synthetic and real-
world datasets. Similar to the multi-view case, we ran-
domly sample parameters from two different classes of
models to generate synthetic datasets. The first set of mod-
els again has 5 hidden states and 10 discrete observations,
and the second set of models has 10 hidden states and 20
observations. Figure 5 shows the average error of the im-
plemented algorithms run on 10 different datasets gener-
ated by i.i.d sampled models. Each dataset consisted of
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Figure 5: Error vs. #training (first column), and time vs.
#training (second column) for HMM models. ns = 5,
no = 10 (first row), and ns = 10, no = 20 (second row).

up to 100,000 triples of observations sampled from each
model. Although, estimated parameters in the SVD method
do not have good performance in terms of normalized l1
error, using them to initiate an iterative optimization pro-
cedure improves performance as demonstrated by both the
EM&SVD and the EX&SVD methods. On the other hand,
our algorithm can also outperform EM&SVD, especially
in the low and medium sample size regions when the er-
ror of projection step is relatively high. For medium and
large training set sizes, EM&SVD and EX&SVD are al-
most the same speed, and both are considerably faster than
EM alone.

4.2.1 Splice Dataset

In this experiment we consider the task of recognizing
splice sites on a DNA sequence (Bache and Lichman,
2013). The dataset consist of 3190 examples. Each exam-
ple is a sequence of 60 fields in which every field is filled
by either A,T,C, or G. The label of each example could be
Intron/Exon site, Exon/Intron site, or neither. For train-
ing, we train a HMM with ns = 4 for each class using
different methods and use the rest of examples for test-
ing. For each test example we compute the probability
of the sequence for each model, and choose the label cor-
responding to the model with the highest test probability.
For each test example in our method, we compute the his-
togram of triples in the test sequence, and choose the label
corresponding to the model whose probability distribution
over different triples has the lowest `1 distance to the com-
puted histogram. This method of classification is a natu-
ral fit for our method, since our optimization method finds
model parameters such that its probability distribution over
different triples has minimum distance to the empirically
estimated distribution of tripes M̂. Figure 6 shows the av-
erage classification error of each method for 10 randomly
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Figure 6: Error vs. #training (left), time vs. #training
(right) for splice dataset.

chosen training set with several different sized training sets.
The results are consistent with the experiments on the syn-
thetic datasets in terms of speed and accuracy, despite EM
outperforms EM&SVD in real world dataset. However, our
method performs considerably better than EM.

5 CONCLUSION

We present a new approach to learning latent variable mod-
els such as multi-view models and HMMs. Recent work on
learning such models by method of moments has produced
exciting theoretical results that explicitly bound the error in
the learned model parameters. Unfortunately, these results
have failed to translate into accurate and numerically robust
algorithms in practice. In particular, the parameters learned
by method of moments may lie outside of the feasible set
of models. This is especially likely to happen when the
population moments are estimated inaccurately from small
quantities of training data. To overcome this problem, we
propose a two-stage algorithm for learning the parameters
of latent variable models. In the first stage, we learn an ini-
tial estimate of the parameters by method of moments. In
the second stage, we use an exterior point algorithm that in-
crementally refines the solution until the parameters are at
a local optima and arbitrarily close to valid model parame-
ters. We prove convergence of the method and perform sev-
eral experiments to compare our method to previous work.
An empirical evaluation on both synthetic and real-world
datasets demonstrates that our algorithm learns models that
are generally more accurate than method of moments or
EM alone. By elegantly contending with parameters that
may be outside of the model class, we are able to learn
models that are much more accurate than EM initialized
with method of moments when only a limited amount of
training data is available.
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5.1 Appendix

For ease of notation we define another operator on the vector v. Vector v is comprised of 3no + 1 different probability
distributions of the multi-view model (each of U t columns and diag(H)). v[l] shows the lth probability vector of the
model. Using this definition for function h(v) = 1

2 ||s(v)− 1||22, one can show:

(∇h(v))i = (sum(v[l])− 1), (21)

where v[l] is the probability distribution vector that vi belongs to it. We use these definitions in the proof of following
theorems.

Lemma 6. Assuming that sequence {v(k)} produced by Algorithm 2 is in the set F , and λ2 is selected such that:

λ2 > L3Υ + λ1(
√
noL+ 1), (22)

there is a constant K such that for k > K we have |v(k)|− = 0. Also, for k > K the proximal operator in Algorithm 2
reduces to the orthogonal projection operator into the convex set C = Rns×(3no+1)

+ :

∀k > K : prox(ṽ(k)) = projC (ṽ(k)) (23)

Proof. For each entry of v(k−1) one of these situations will happen:

if (v(k−1))i ≥ 0 then |(v(k))i|− = 0, else (24)

either (v(k−1))i < 0 and |(v(k))i|− = 0, or (25)

(v(k−1))i < 0 and |(v(k))i|− < |(v(k−1))i|− − cε (26)

To show the above predicates we first need to bound entries of∇g(v) by λ2. Using Corollary 5 :

∀k > 0 : |∂g(v(k))

∂(v(k))i
|

≤ |∂r(v
(k))

∂(v(k))i
|+ λ1

2
|∂(||sum(v(k))− 1||22)

∂(v(k))i
|

≤ L3||R(v(k))||F + λ1(
√
noL+ 1),

where in the last step we used Equation (16) to bound the first term, and following to bound the second term:

|∂(||s(v(k))− 1||22)

∂(v(k))i
| = 2|sum(v[l])− 1|

≤ 2(|sum(v[l])|+ 1) ≤ 2(
√
noL+ 1),

Thus, having the lower bound for λ2 in Equation (22) we have:

λ2 − sup
k
|(∇g(v(k)))i| > ε (27)

Now, we will show statement (24) is correct. First, assuming (v(k−1))i ≥ 0 we show (v(k))i is also non-negative:

According to Equation (27) we have αkλ2 − αk ∂g(v
(k−1))

∂(v(k−1))i
≥ 0 for any αk ≥ 0. Thus, since (v(k−1))i ≥ 0:

(ṽ(k))i = (v(k−1))i − αk
∂g(v(k−1))

∂(v(k−1))i
≥ −αkλ2 (28)

Thus, only the second and the third rules of proximal updates in Equation (15) can occur for (ṽ(k))i. Either way, (v(k))i ≥
0 and thus |(v(k))i|− = 0.

Next, we proceed to prove predicates (25) and (26) which means that for the negative entry (v(k−1))i doing one step
of forward-backward splitting algorithm will either makes it non-negative (25) or its value shrinks at least by cε (26).
If (v(k))i ≥ 0, then we are done with (25) since this means |(v(k))i|− = 0. Otherwise, we will prove correctness of



Equation (26). Since (v(k))i < 0 we have

|(v(k−1))i|− − |(v(k))i|− = −(v(k−1))i + (v(k))i

= −(v(k−1))i + (v(k−1))i − αk
∂g(v(k−1))

∂(v(k−1))i
+ αkλ2

= αk

(
λ2 −

∂g(v(k−1))

∂(v(k−1))i

)
> cε

where ε and αk are defined in Equation (27) and Algorithm 2 respectively. Thus, Equation (26) has been proved.

Now we interpret the results in Equations (24), (25), and (26). Equation (24) tells us that if (v(k))i becomes positive it
remains positive forever. If it is negative, then at the next step either it becomes positive or becomes closer to 0 by cε. Thus,
since

L ≥ max
{
|(v(0))i| : (v(0))i < 0

}
(29)

then after at most K = L
cε steps we have (v(k))i ≥ 0 for all i.

Furthermore, Equation (24) tells us after k > K all the proximal updates maintain the non-negativity condition, which
means that the first rule in (15) will not happen for these ks. Therefore, proximal updates reduce to the orthogonal
projection into the set C .

Theorem 7. For every ε1 > 0, set λ1 >
L3Υ
ε1

and λ2 > L3Υ + λ1(
√
noL + 1), in Equation (12). For the convergence

point of the sequence {v(k)} ⊂ F which is generated by Algorithm 2 we have:

|v∗|− = 0

||s(v∗)− 1||2 ≤ ε1 (30)

Proof. As we discussed earlier, according to Lemma 6, if we set λ2 > L3Υ + λ1(
√
noL + 1), then we will eventually

arrive to the region where |v∗|− = 0, and after that the algorithm will behave similarly to gradient projection method
which is guaranteed to converge with an appropriate sequence of step sizes {βk}. Next, by setting ε1 ≥ 0 we will prove
that the condition ||s(v∗)− 1||2 ≤ ε1 holds when the algorithm converges. For a local optimum of function g(v) with the
constraint v ∈ Rns(3no+1) we have:

∀y ∈ Rns(3no+1), γ > 0 :
(
v∗ + γy ∈ Rns(3no+1)

+ =⇒ 〈y,∇g(v∗)〉 ≥ 0
)

(31)

We proceed by a proof by contradiction. For the sake of contradiction, assume that when the algorithm converges ||s(v∗)−
1||2 > ε1. If we show for this v∗ there are y and γ such that v∗ + γy ∈ Rns(3no+1)

+ but 〈y,∇g(v∗)〉 < 0 will result in a
contradiction.

We can show function g(.) as the summation of defined residual function r(·) and function h(·):

g(v) = r(v) + λ1h(v). (32)

y is initially set to −∇h(v∗). Equation (21) shows that for every i that belongs to the lth part of the vector v, vector
y has equal entries. For parts that the entries of y are positive, we randomly keep one element unchanged and set all
others element in that part to 0. For parts in which all the elements are negative, there must be a positive element in the
corresponding part of v∗ since the sum of that part in v∗ have to become positive to a get positive gradient in Equation (21).
We keep the corresponding element of that positive element unchanged in y and set all other elements of that part to 0.
With the above definition of y if we set γ = min {|yi| : yi 6= 0}, we have v∗ + γy ∈ Rns(3no+1)

+ .

Before proceed let us briefly state two useful facts about y. Since in each part of y we only leave one element unchanged
and absolute value of the these entries are equal to absolute value of the corresponding entries of∇h(v∗) we have:

||y||2 = ||s(v∗)− 1||2 (33)

Also, we will further use the property:

〈y,∇h(y∗)〉 = −||y||22 (34)

Now, for chosen y and γ we evaluate 〈y,∇g(v∗)〉:
0 ≤ 〈y,∇g(v∗)〉 = 〈y,∇r(v∗)〉+ λ1〈y,∇h(v∗)〉



Using Cauchy-Schwarz inequality and Equation (34):

0 ≤ ||∇r(v∗)||2||y||2 − λ1||y||22
= ||y||2 (||∇r(v∗)||2 − λ1||y||2)

By using Equation (16) and Equation (33) and the fact that ||y||2 > 0 we get:

L3Υ− λ1||s(v∗)− 1||2 ≥ 0, (35)

which by using the assumption that ||s(v∗) − 1||2 > ε1 it reduces to λ1 ≤ L3Υ
ε1

which is contradicting with the way we
chose λ1.


