Supplement to the article:
 Averaging of Decomposable Graphs by Dynamic Programming and Sampling

Kustaa Kangas Teppo Niinimäki Mikko Koivisto
University of Helsinki, Department of Computer Science,
Helsinki Institute for Information Technology HIIT, Finland
\{jwkangas,tzniinim,mkhkoivi\}@helsinki.fi

A FAST TRANSFORM FOR DISJOINT PAIRS

Let α be a function that associates each pair of disjoint subsets of $V=\{1, \ldots, n\}$ with a real number. Define the function $\hat{\alpha}$ by letting

$$
\hat{\alpha}(S, R)=\sum_{S \subseteq C \subseteq S \cup R} \alpha(C, R \backslash C)
$$

for all disjoint subsets S and R of V. Furthermore, define $\alpha_{0}=\alpha$ and for $i=1, \ldots, n$, recursively
$\alpha_{i}(S, R)=\alpha_{i-1}(S, R)+[i \in R] \cdot \alpha_{i-1}(S \cup\{i\}, R \backslash\{i\})$.
This recurrence gives us a way to compute the transform:
Lemma 8. It holds that $\alpha_{n}=\hat{\alpha}$.

Proof. For a subset $X \subseteq V$ and element $i \in V$, we write X_{i} for the set $X \cap\{1, \ldots, i\}$ and X^{i} for the set $X \cap\{i+$ $1, \ldots, n\}=X \backslash X_{i}$.
We will show by induction on i that
$\alpha_{i}(S, R)=\sum_{S_{i} \subseteq C \subseteq(S \cup R)_{i}} \alpha\left(C \cup S^{i},\left(R_{i} \backslash C\right) \cup R^{i}\right)$.
This clearly holds for $i=0$, as then the only term in the sum is $\alpha\left(\varnothing \cup S^{0},\left(R_{0} \backslash \varnothing\right) \cup R^{0}\right)=\alpha(S, R)=\alpha_{0}(S, R)$.
Suppose then that $i>0$. Consider first the case that $i \notin R$. Then, by the definition and the induction hypothesis,
$\alpha_{i}(S, R)=\sum_{S_{i-1} \subseteq C \subseteq(S \cup R)_{i-1}} \alpha\left(C \cup S^{i-1},\left(R_{i-1} \backslash C\right) \cup R^{i-1}\right)$.
Writing C^{\prime} for the set $C \cup(S \cap\{i\})$ we now obtain
$\alpha_{i}(S, R)=\sum_{S_{i} \subseteq C^{\prime} \subseteq(S \cup R)_{i}} \alpha\left(C^{\prime} \cup S^{i},\left(R_{i} \backslash C^{\prime}\right) \cup R^{i}\right)$,
which matches the induction hypothesis (5).

Consider then the case that $i \in R$. Observe that $i \notin S$, since S is disjoint from R. As above, expand $\alpha_{i-1}(S, R)$ using the induction hypothesis into
$\sum_{S_{i-1} \subseteq C \subseteq(S \cup R)_{i-1}} \alpha\left(C \cup S^{i-1},\left(R_{i-1} \backslash C\right) \cup R^{i-1}\right)$,
which equals

$$
\sum_{\substack{S_{i} \subseteq C^{\prime} \subseteq(S \cup R)_{i} \\ i \notin C^{\prime}}} \alpha\left(C^{\prime} \cup S^{i},\left(R_{i} \backslash C^{\prime}\right) \cup R^{i}\right)
$$

Likewise, expand $\alpha_{i-1}(S \cup\{i\}, R \backslash\{i\})$ using the induction hypothesis into

$$
\sum_{S_{i-1} \subseteq C \subseteq(S \cup R)_{i-1}} \alpha\left(C^{\prime} \cup S^{i-1},\left(R_{i-1} \backslash C^{\prime}\right) \cup(R \backslash\{i\})^{i-1}\right)
$$

where we write C^{\prime} for $C \cup\{i\}$. Observe that this sum equals

$$
\sum_{\substack{s_{i} \leq C^{\prime} \in(S G U)^{\prime} \\ i \in C^{\prime}}} \alpha\left(C^{\prime} \cup S^{i},\left(R_{i} \backslash C^{\prime}\right) \cup R^{i}\right),
$$

because $i \notin S$ and $i \in R$. Adding up the obtained two sums over C^{\prime} yields
$\alpha_{i}(S, R)=\sum_{S_{i} \subseteq C^{\prime} \subseteq(S \cup R)_{i}} \alpha\left(C^{\prime} \cup S^{i},\left(R_{i} \backslash C^{\prime}\right) \cup R^{i}\right)$,
which matches the induction hypothesis (5).

B PROOF OF LEMMA 4

In order to prove Lemma 4, we first prove the following lemma:
Lemma 9. Backtracking starting from $g(C, U)$ makes at most $|U|$ recursive nonterminating visits to g (including the visit to $g(C, U)$).

Proof. We show the claim by induction over $|U|$. The case $|U|=0$ is trivial as it terminates. Suppose that $|U| \geq 1$ and
the claim holds for smaller U. The visit to $g(C, U)$ is followed by recursive visits to (i) $g(C, U \backslash R)$ and (ii) $h(C, R)$. By the induction assumption (i) amounts to at most $|U|-|R|$ recursive nonterminating visits to g. Visit (ii) is followed by a visit to f succeeded by a visit to $g\left(C^{\prime}, R \backslash C^{\prime}\right)$ for some C^{\prime} with $R \cap C^{\prime} \neq \varnothing$. Thus, by the induction assumption, (ii) amounts to at most $|R|-1$ recursive nonterminating visits to g. The total, including the visit to $g(C, U)$, is thus at most $(|U|-|R|)+(|R|-1)+1=|U|$.

Now we can prove Lemma 4:

Proof of Lemma 4. Observe that the first two visits are to $f(\varnothing, V)$ and to $g(C, U)$ where $|U| \leq|V|-1$. By Lemma 9 , there are thus at most $n-1$ nonterminating visits to g. Also note that a visit to h is always from a nonterminating visit to g and a visit to f always from a visit to h (except the first visit). The result follows.

C PROOF OF LEMMA 5

In order to prove Lemma 5, we first prove the following lemma:

Lemma 10. Consider backtracking from $g(C, U)$ onwards. Let $\left\{\left(C_{1}, U_{1}\right),\left(C_{2}, U_{2}\right), \ldots,\left(C_{d}, U_{d}\right)\right\}$ be the set pairs of the recursive nonterminating visits to g, including (C, U). Then there exists an ordering of the d set pairs such that

$$
\left|C_{i}\right|+\left|U_{i}\right| \leq|C|+|U|-i+1 \text { for all } i=1, \ldots, d
$$

Proof. We show the claim by induction over $|U|$. The case $|U|=0$ is trivial as there are no recursive visits. Suppose that $|U| \geq 1$ and the claim holds for smaller U. The visit to $g(C, U)$ is followed by recursive visits to (i) $g(C, U \backslash R)$ and (ii) $h(C, R)$.
First, let $\left(C_{1}, U_{1}\right)=(C, U)$. Clearly then the claim holds for $i=1$.
Let then $\left\{\left(C_{2}, U_{2}\right), \ldots,\left(C_{d^{\prime}+1}, U_{d^{\prime}+1}\right)\right\}$ be the d^{\prime} set pairs of g visited in branch (i). By the induction assumption and the fact that $U \cap R \neq \varnothing$, there exists an ordering over these set pairs such that for all $i=2, \ldots, d^{\prime}+1$,

$$
\begin{aligned}
\left|C_{i}\right|+\left|U_{i}\right| & \leq|C|+|U \backslash R|-(i-1)+1 \\
& \leq|C|+|U|-i+1
\end{aligned}
$$

Thus the claim holds for $i=2, \ldots, d^{\prime}+1$.
Finally, branch (ii) makes, via h and f, a recursive visit to $g\left(C^{\prime}, R \backslash C^{\prime}\right)$ for some C^{\prime} with $R \cap C^{\prime} \neq \varnothing$. Let $\left(C_{d^{\prime}+2}, U_{d^{\prime}+2}\right), \ldots,\left(C_{d^{\prime}+d^{\prime \prime}+1}, U_{d^{\prime}+d^{\prime \prime}+1}\right)$ be the $d^{\prime \prime}$ set pairs of g visited in branch (ii). By the induction assumption, there exists an ordering over these set pairs such that
for all $i=d^{\prime}+2, \ldots, d^{\prime}+d^{\prime \prime}+1$,

$$
\begin{aligned}
\left|C_{i}\right|+\left|U_{i}\right| & \leq\left|C^{\prime}\right|+\left|R \backslash C^{\prime}\right|-\left(i-d^{\prime}-1\right)+1 \\
& \leq(|C|+|R|-1)-i+(|U|-|R|)+2 \\
& =|C|+|U|-i+1
\end{aligned}
$$

The second inequality uses the fact that $C^{\prime} \cup R=S \cup R \subset$ $C \cup R$, where S is selected during the visit to h, and the fact that by Lemma $9, d^{\prime} \leq|U \backslash R|=|U|-|R|$. As $d^{\prime}+d^{\prime \prime}+1=d$, the claim thus holds for $i=d^{\prime}+1, \ldots, d$, which completes the proof.

Now we can prove Lemma 5:
Proof of Lemma 5. For g the claim directly follows by applying Lemma 10. As a visit to $h(C, R)$ is always from a nonterminating visit to $g(C, U)$ with some U such that $C \cup R \subseteq C \cup U$, the claim follows for h. Finally, except the first visit, any other visit to $f(S, R)$ is always from a visit to $h(C, R)$ with some C such that $|S \cup R| \leq|C \cup R|-1$. Thus we can index the remaining set pairs from 2 to d_{f} such that the claim holds for them. Then $\left(S_{1}, R_{1}\right)$ must be set to (\varnothing, V) so that $\left|S_{1}\right|+\left|R_{1}\right| \leq n$ and the claim follows also for $i=1$.

