A Some Useful Lemmas

Lemma 8. Let $V \in \mathbb{S}^{+}(m)$ be positive definite, $\left(M_{t}\right)_{t=1,2, \ldots} \subset \mathbb{S}^{+}(m)$ be positive semidefinite matrices and define $V_{t}=V+\sum_{k=1}^{t-1} M_{s}, t=1,2, \ldots$ If trace $\left(M_{t}\right) \leq L^{2}$ for all t, then

$$
\begin{aligned}
\sum_{t=1}^{T} \min \left(1,\left\|V_{t}^{-1 / 2}\right\|_{M_{t}}^{2}\right) & \leq 2\left\{\log \operatorname{det}\left(V_{T+1}\right)-\log \operatorname{det} V\right\} \\
& \leq 2\left\{m \log \left(\frac{\operatorname{trace}(V)+T L^{2}}{m}\right)-\log \operatorname{det} V\right\}
\end{aligned}
$$

Proof. On the one hand, we have

$$
\begin{aligned}
\operatorname{det}\left(V_{T}\right) & =\operatorname{det}\left(V_{T-1}+M_{T-1}\right)=\operatorname{det}\left(V_{T-1}\left(I+V_{T-1}^{-\frac{1}{2}} M_{T-1} V_{T-1}^{-\frac{1}{2}}\right)\right) \\
& =\operatorname{det}\left(V_{T-1}\right) \operatorname{det}\left(I+V_{T-1}^{-\frac{1}{2}} M_{T-1} V_{T-1}^{-\frac{1}{2}}\right) \\
& \vdots \\
& =\operatorname{det}(V) \prod_{t=1}^{T-1} \operatorname{det}\left(I+V_{t}^{-\frac{1}{2}} M_{t} V_{t}^{-\frac{1}{2}}\right) .
\end{aligned}
$$

One the other hand, thanks to $x \leq 2 \log (1+x)$, which holds for all $x \in[0,1]$,

$$
\begin{aligned}
\sum_{t=1}^{T} \min \left(1,\left\|V_{t}^{-\frac{1}{2}} M_{t} V_{t}^{-\frac{1}{2}}\right\|_{2}\right) & \leq 2 \sum_{t=1}^{T} \log \left(1+\left\|V_{t}^{-\frac{1}{2}} M_{t} V_{t}^{-\frac{1}{2}}\right\|_{2}\right) \\
& \leq 2 \sum_{t=1}^{T} \log \left(\operatorname{det}\left(I+V_{t}^{-\frac{1}{2}} M_{t} V_{t}^{-\frac{1}{2}}\right)\right) \\
& =2\left(\log \left(\operatorname{det} V_{T+1}\right)-\log (\operatorname{det} V)\right)
\end{aligned}
$$

where the second inequality follows since $V_{t}^{-\frac{1}{2}} M_{t} V_{t}^{-\frac{1}{2}}$ is positive semidefinite, hence all eigenvalues of $I+V_{t}^{-\frac{1}{2}} M_{t} V_{t}^{-\frac{1}{2}}$ are above one and the largest eigenvalue of $I+V_{t}^{-\frac{1}{2}} M_{t} V_{t}^{-\frac{1}{2}}$ is $1+\left\|V_{t}^{-\frac{1}{2}} M_{t} V_{t}^{-\frac{1}{2}}\right\|_{2}$, proving the first inequality. For the second inequality, note that for any positive definite matrix $S \in \mathbb{S}^{+}(m)$, $\log \operatorname{det} S \leq m \log (\operatorname{trace}(S) / m)$. Applying this to V_{T} and using the condition that $\operatorname{trace}\left(M_{t}\right) \leq L^{2}$, we get $\log \operatorname{det} V_{T} \leq m \log \left(\left(\operatorname{trace}(V)+T L^{2}\right) / m\right)$. Plugging this into the previous upper bound, we get the second part of the statement.

Lemma 9 (Lemma 11 of Abbasi-Yadkori and Szepesvári (2011)). Let $A \in \mathbb{R}^{m \times m}$ and $B \in \mathbb{R}^{m \times m}$ be positive semidefinite matrices such that $A \succ B$. Then, we have

$$
\sup _{X \neq 0} \frac{\left\|X^{\top} A X\right\|_{2}}{\left\|X^{\top} B X\right\|_{2}} \leq \frac{\operatorname{det}(A)}{\operatorname{det}(B)} .
$$

B Proofs

Proof of Proposition 1. Note that if ACOE (1) holds for h, then for any constant C, it also holds that

$$
J(\Theta)+(h(x, \Theta)+C)=\min _{a \in \mathcal{A}}\left\{\ell(x, a)+\int(h(y, \Theta)+C) p(d y \mid x, a, \Theta)\right\} .
$$

As by our assumption, the value function is bounded from below, we can choose C such that the $h^{\prime}(\cdot, \Theta)=h(\cdot, \Theta)+C$ is nonnegative valued. In fact, if h assumes a minimizer x_{0}, by this reasoning, without loss of generality, we can assume that $h\left(x_{0}\right)=0$ and so for any $x \in \mathcal{X}, 0 \leq h(x)=h(x)-h\left(x_{0}\right) \leq B\left\|x-x_{0}\right\| \leq B X$. The argument trivially extends to the general case when h may fail to have a minimizer over \mathcal{X}.

Proof of Theorem 2. The proof follows that of the main result of Abbasi-Yadkori and Szepesvári (2011). First, we decompose the regret into a number of terms, which are then bound one by one. Define $\widetilde{x}_{t+1}^{a}=f\left(x_{t}, a, \widetilde{\Theta}_{t}, z_{t+1}\right)$, where f is the map of Assumption A1 and let $h_{t}(x)=h\left(x, \widetilde{\Theta}_{t}\right)$ be the solution of the ACOE underlying $p\left(\cdot \mid x, a, \widetilde{\Theta}_{t}\right)$. By Assumption A3 (i), h_{t} exists and $h_{t}(x) \in[0, H]$ for any $x \in \mathcal{X}$. By Assumption A1, for any $g \in L^{1}\left(p\left(\cdot \mid x_{t}, a, \widetilde{\Theta}_{t}\right)\right)$, $\int g(d y) p\left(d y \mid x_{t}, a, \widetilde{\Theta}_{t}\right)=\mathbb{E}\left[g\left(\widetilde{x}_{t+1}^{a}\right) \mid \mathcal{F}_{t}, \widetilde{\Theta}_{t}\right]$. Hence, from (1) and (2),

$$
\begin{aligned}
J\left(\widetilde{\Theta}_{t}\right)+h_{t}\left(x_{t}\right) & =\min _{a \in \mathcal{A}}\left\{\ell\left(x_{t}, a\right)+\mathbb{E}\left[h_{t}\left(\widetilde{x}_{t+1}^{a}\right) \mid \mathcal{F}_{t}, \widetilde{\Theta}_{t}\right]\right\} \\
& \geq \ell\left(x_{t}, a_{t}\right)+\mathbb{E}\left[h_{t}\left(\widetilde{x}_{t+1}^{a_{t}}\right) \mid \mathcal{F}_{t}, \widetilde{\Theta}_{t}\right]-\sigma_{t} \\
& =\ell\left(x_{t}, a_{t}\right)+\mathbb{E}\left[h_{t}\left(x_{t+1}+\epsilon_{t}\right) \mid \mathcal{F}_{t}, \widetilde{\Theta}_{t}\right]-\sigma_{t}
\end{aligned}
$$

where $\epsilon_{t}=\widetilde{x}_{t+1}^{a_{t}}-x_{t+1}$. As $J(\cdot)$ is a deterministic function and conditioned on $\mathcal{F}_{\tau_{t}}, \widetilde{\Theta}_{t}$ and Θ_{*} have the same distribution,

$$
\begin{aligned}
R(T) & =\sum_{t=1}^{T} \mathbb{E}\left[\ell\left(x_{t}, a_{t}\right)-J\left(\Theta_{*}\right)\right]=\sum_{t=1}^{T} \mathbb{E}\left[\mathbb{E}\left[\ell\left(x_{t}, a_{t}\right)-J\left(\Theta_{*}\right) \mid \mathcal{F}_{\tau_{t}}\right]\right] \\
& =\sum_{t=1}^{T} \mathbb{E}\left[\mathbb{E}\left[\ell\left(x_{t}, a_{t}\right)-J\left(\widetilde{\Theta}_{t}\right) \mid \mathcal{F}_{\tau_{t}}\right]\right]=\sum_{t=1}^{T} \mathbb{E}\left[\ell\left(x_{t}, a_{t}\right)-J\left(\widetilde{\Theta}_{t}\right)\right] \\
& \leq \sum_{t=1}^{T} \mathbb{E}\left[h_{t}\left(x_{t}\right)-\mathbb{E}\left[h_{t}\left(x_{t+1}+\epsilon_{t}\right) \mid \mathcal{F}_{t}, \widetilde{\Theta}_{t}\right]\right]+\sum_{t=1}^{T} \mathbb{E}\left[\sigma_{t}\right] \\
& =\sum_{t=1}^{T} \mathbb{E}\left[h_{t}\left(x_{t}\right)-h_{t}\left(x_{t+1}+\epsilon_{t}\right)\right]+\sum_{t=1}^{T} \mathbb{E}\left[\sigma_{t}\right]
\end{aligned}
$$

Let $\Sigma_{T}=\sum_{t=1}^{T} \mathbb{E}\left[\sigma_{t}\right]$ be the total error due to the approximate optimal control oracle. Thus, we can bound the regret using

$$
\begin{aligned}
R(T) & \leq \Sigma_{T}+\mathbb{E}\left[h_{1}\left(x_{1}\right)-h_{T+1}\left(x_{T+1}\right)\right]+\sum_{t=1}^{T} \mathbb{E}\left[h_{t+1}\left(x_{t+1}\right)-h_{t}\left(x_{t+1}+\epsilon_{t}\right)\right] \\
& \leq \Sigma_{T}+H+\sum_{t=1}^{T} \mathbb{E}\left[h_{t+1}\left(x_{t+1}\right)-h_{t}\left(x_{t+1}+\epsilon_{t}\right)\right]
\end{aligned}
$$

where the second inequality follows because $h_{1}\left(x_{1}\right) \leq H$ and $-h_{T+1}\left(x_{T+1}\right) \leq 0$. Let A_{t} denote the event that the algorithm has changed its policy at time t. We can write

$$
\begin{aligned}
R(T)-\left(\Sigma_{T}+H\right) & \leq \sum_{t=1}^{T} \mathbb{E}\left[h_{t+1}\left(x_{t+1}\right)-h_{t}\left(x_{t+1}+\epsilon_{t}\right)\right] \\
& =\sum_{t=1}^{T} \mathbb{E}\left[h_{t+1}\left(x_{t+1}\right)-h_{t}\left(x_{t+1}\right)\right]+\sum_{t=1}^{T} \mathbb{E}\left[h_{t}\left(x_{t+1}\right)-h_{t}\left(x_{t+1}+\epsilon_{t}\right)\right] \\
& \leq 2 H \sum_{t=1}^{T} \mathbb{E}\left[\mathbf{1}\left\{A_{t}\right\}\right]+B \sum_{t=1}^{T} \mathbb{E}\left[\left\|\epsilon_{t}\right\|\right]
\end{aligned}
$$

where we used again that $0 \leq h_{t}(x) \leq H$, and also Assumption A3 (ii). Define

$$
R_{1}=H \sum_{t=1}^{T} \mathbb{E}\left[\mathbf{1}\left\{A_{t}\right\}\right], \quad R_{2}=B \sum_{t=1}^{T} \mathbb{E}\left[\left\|\epsilon_{t}\right\|\right]
$$

It remains to bound R_{2} and to show that the number of switches is small.

Bounding R_{2} Let $\tau_{t} \leq t$ be the last round before time step t when the policy is changed. So $\widetilde{\Theta}_{t}=\widetilde{\Theta}_{\tau_{t}}$. Letting $M_{t}=M\left(x_{t}, a_{t}\right)$, by Assumption A1,

$$
\mathbb{E}\left[\left\|\epsilon_{t}\right\|\right] \leq \mathbb{E}\left[\left\|\widetilde{\Theta}_{t}-\Theta_{*}\right\|_{M_{t}}\right]
$$

Further,

$$
\left\|\widetilde{\Theta}_{t}-\Theta_{*}\right\|_{M_{t}} \leq\left\|\widetilde{\Theta}_{t}-\widehat{\Theta}_{t}\right\|_{M_{t}}+\left\|\widehat{\Theta}_{t}-\Theta_{*}\right\|_{M_{t}}
$$

For $\Theta \in\left\{\widetilde{\Theta}_{\tau_{t}}, \Theta_{*}\right\}$ we have that

$$
\begin{aligned}
\left\|\Theta-\widehat{\Theta}_{\tau_{t}}\right\|_{M_{t}}^{2} & =\left\|\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)^{\top} M_{t}\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)\right\|_{2} \\
& =\left\|\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)^{\top} V_{t}^{\frac{1}{2}} V_{t}^{-\frac{1}{2}} M_{t} V_{t}^{-\frac{1}{2}} V_{t}^{\frac{1}{2}}\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)\right\|_{2} \\
& \leq\left\|\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)^{\top} V_{t}^{\frac{1}{2}}\right\|_{2}^{2}\left\|V_{t}^{-\frac{1}{2}} M_{t} V_{t}^{-\frac{1}{2}}\right\|_{2}=\left\|\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)^{\top} V_{t}^{\frac{1}{2}}\right\|_{2}^{2}\left\|V_{t}^{-\frac{1}{2}}\right\|_{M_{t}}^{2}
\end{aligned}
$$

where the last inequality follows because $\|\cdot\|_{2}$ is an induced norm and induced norms are sub-multiplicative. Hence, we have that

$$
\begin{aligned}
\sum_{t=1}^{T} \mathbb{E}\left[\left\|\Theta-\widehat{\Theta}_{\tau_{t}}\right\|_{M_{t}}\right] & \leq \mathbb{E}\left[\sum_{t=1}^{T}\left\|\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)^{\top} V_{t}^{1 / 2}\right\|_{2}\left\|V_{t}^{-1 / 2}\right\|_{M_{t}}\right] \\
& \leq \mathbb{E}\left[\sqrt{\sum_{t=1}^{T}\left\|\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)^{\top} V_{t}^{1 / 2}\right\|_{2}^{2}} \sqrt{\sum_{t=1}^{T}\left\|V_{t}^{-1 / 2}\right\|_{M_{t}}^{2}}\right] \\
& \leq \sqrt{\mathbb{E}\left[\sum_{t=1}^{T}\left\|\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)^{\top} V_{t}^{1 / 2}\right\|_{2}^{2}\right]} \sqrt{\mathbb{E}\left[\sum_{t=1}^{T}\left\|V_{t}^{-1 / 2}\right\|_{M_{t}}^{2}\right]}
\end{aligned}
$$

where the first inequality uses Hölder's inequality, and the last two inequalities use Cauchy-Schwarz. By Lemma 8 in Appendix A, using Assumption A4, we have that

$$
\sum_{t=1}^{T} \min \left(1,\left\|V_{t}^{-1 / 2}\right\|_{M_{t}}^{2}\right) \leq 2 m \log \left(\frac{\operatorname{trace}(V)+T \Phi^{2}}{m}\right)
$$

Denoting by $\lambda_{\min }(V)$ the minimum eigenvalue of V, a simple argument shows $\left\|V_{t}^{-1 / 2}\right\|_{M_{t}}^{2} \leq\left\|M_{t}\right\|_{2} / \lambda_{\min }(V) \leq$ $\Phi^{2} / \lambda_{\min }(V)$, where in the second inequality we used Assumption A4 again. Hence,

$$
\begin{aligned}
\sum_{t=1}^{T}\left\|V_{t}^{-1 / 2}\right\|_{M_{t}}^{2} & \leq \sum_{t=1}^{T} \min \left(\Phi^{2} / \lambda_{\min }(V),\left\|V_{t}^{-1 / 2}\right\|_{M_{t}}^{2}\right) \\
& \leq \sum_{t=1}^{T} \max \left(1, \Phi^{2} / \lambda_{\min }(V)\right) \min \left(1,\left\|V_{t}^{-1 / 2}\right\|_{M_{t}}^{2}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \sum_{t=1}^{T} \mathbb{E}\left[\left\|\Theta-\widehat{\Theta}_{\tau_{t}}\right\|_{M_{t}}^{2}\right] \leq \sqrt{\mathbb{E}\left[2 m \max \left(1, \frac{\Phi^{2}}{\lambda_{\min }(V)}\right) \log \left(\frac{\operatorname{trace}(V)+T \Phi^{2}}{m}\right)\right]} \\
& \times \sqrt{\mathbb{E}\left[\sum_{t=1}^{T}\left\|\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)^{\top} V_{t}^{1 / 2}\right\|_{2}^{2}\right]}
\end{aligned}
$$

By Lemma 9 of Appendix A and the choice of τ_{t}, we have that

$$
\begin{equation*}
\left\|\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)^{\top} V_{t}^{1 / 2}\right\|_{2} \leq \sqrt{\frac{\operatorname{det}\left(V_{t}\right)}{\operatorname{det}\left(V_{\tau_{t}}\right)}}\left\|\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)^{\top} V_{\tau_{t}}^{1 / 2}\right\|_{2} \leq \sqrt{2}\left\|\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)^{\top} V_{\tau_{t}}^{1 / 2}\right\|_{2} \tag{5}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\mathbb{E}\left[\sum_{t=1}^{T}\left\|\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)^{\top} V_{t}^{1 / 2}\right\|_{2}^{2}\right] & \leq 2 \mathbb{E}\left[\sum_{t=1}^{T}\left\|\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)^{\top} V_{\tau_{t}}^{1 / 2}\right\|_{2}^{2}\right] \tag{5}\\
& =2 \mathbb{E}\left[\sum_{t=1}^{T} \mathbb{E}\left[\left\|\left(\Theta-\widehat{\Theta}_{\tau_{t}}\right)^{\top} V_{\tau_{t}}^{1 / 2}\right\|_{2}^{2} \mid \mathcal{F}_{\tau_{t}}\right]\right] \quad \text { (by (5)) } \\
& \leq 2 C T .
\end{align*} \quad \text { (by the tower rule) }
$$

Let $G_{T}=2 m \max \left(1, \frac{\Phi^{2}}{\lambda_{\min }(V)}\right) \log \left(\frac{\operatorname{trace}(V)+T \Phi^{2}}{m}\right)$. Collecting the inequalities, we get

$$
\begin{aligned}
R_{2} & =B \sum_{t=1}^{T} \mathbb{E}\left[\left\|\left(\widetilde{\Theta}_{\tau_{t}}-\Theta_{*}\right)^{\top} \varphi_{t}\right\|\right] \leq \sqrt{\mathbb{E}\left[G_{T}\right]} \sqrt{C T} \\
& \leq 4 B \sqrt{m \max \left(1, \frac{\Phi^{2}}{\lambda_{\min }(V)}\right) \log \left(\frac{\operatorname{trace}(V)+T \Phi^{2}}{m}\right)} \sqrt{C T}
\end{aligned}
$$

Bounding $R_{1} \quad$ If the algorithm has changed the policy K times up to time T, then we should have that $\operatorname{det}\left(V_{T}\right) \geq 2^{K}$. On the other hand, from Assumption A4 we have $\lambda_{\max }\left(V_{T}\right) \leq \operatorname{trace}(V)+(T-1) \Phi^{2}$. Thus, it holds that $2^{K} \leq$ (trace $\left.(V)+\Phi^{2} T\right)^{m}$. Solving for K, we get $K \leq m \log _{2}\left(\operatorname{trace}(V)+\Phi^{2} T\right)$. Thus,

$$
R_{1}=H \sum_{t=1}^{T} \mathbb{E}\left[\mathbf{1}\left\{A_{t}\right\}\right] \leq H m \log _{2}\left(\operatorname{trace}(V)+\Phi^{2} T\right)
$$

Putting together the bounds obtained for R_{1} and R_{2}, we get the desired result.

Proof of Theorem 3. First notice that Theorem 2 continues to hold if Assumption A4 is replaced by the following weaker assumption:

Assumption A6(Boundedness Along Trajectories) There exist $\Phi>0$ such that for all $t \geq 1, \mathbb{E}\left[\operatorname{trace}\left(M\left(x_{t}, a_{t}\right)\right)\right] \leq \Phi^{2}$.

The reason this is true is because A4 is used only in a context where $\mathbb{E}\left[\log \left(\operatorname{trace}\left(V+\sum_{s=1}^{T} M_{t}\right)\right)\right]$ needs to be bounded. Using that \log is concave, we get

$$
\mathbb{E}\left[\log \left(\operatorname{trace}\left(V+\sum_{s=1}^{T} M_{t}\right)\right)\right] \leq \log \left(\mathbb{E}\left[\operatorname{trace}\left(V+\sum_{s=1}^{T} M_{t}\right)\right]\right) \leq \log \left(\operatorname{trace}(V)+T \Phi^{2}\right)
$$

With this observation, the result follows from Theorem 2 applied to Lazy PSRL and $\left\{p^{\prime}(\cdot \mid x, a, \Theta)\right\}$ as running Stabilized Lazy PSRL for t time steps in $p\left(\cdot \mid x, a, \Theta_{*}\right)$ results in the same total expected cost as running Lazy PSRL for t time steps in $p^{\prime}\left(\cdot \mid x, a, \Theta_{*}\right)$ thanks to the definition of Stabilized Lazy PSRL and p^{\prime}.
Hence, all what remains is to show that the conditions of Theorem 2 are satisfied when it is used with $\left\{p^{\prime}(\cdot \mid x, a, \Theta)\right\}$. In fact, A3 and A2 hold true by our assumptions. Let us check Assumption A3 next. Defining $f^{\prime}(x, a, \Theta, z)=f(x, a, \Theta, z)$ if $x \in \mathcal{R}$ and $f^{\prime}(x, a, \Theta, z)=f\left(x, \pi_{\text {stab }}(x), \Theta, z\right)$ otherwise, we see that $x_{t+1}=f^{\prime}\left(x_{t}, a_{t}, \Theta, z_{t+1}\right)$. Further, defining $M^{\prime}(x, a)=M(x, a)$ if $x \in \mathcal{R}$ and $M^{\prime}(x, a)=M\left(x, \pi_{\text {stab }}(x)\right)$ otherwise, we see that, thanks to the second part that of A1 applied to $p(\cdot \mid x, a, \Theta)$, for $y=f^{\prime}(x, a, \Theta, z), y^{\prime}=f^{\prime}\left(x, a, \Theta^{\prime}, z\right), \mathbb{E}\left[\left\|y-y^{\prime}\right\|\right] \leq \mathbb{E}\left[\left\|\Theta-\Theta^{\prime}\right\|_{M(x, a)}\right]$ if $x \in \mathcal{R}$ and $\mathbb{E}\left[\left\|y-y^{\prime}\right\|\right] \leq \mathbb{E}\left[\left\|\Theta-\Theta^{\prime}\right\|_{M\left(x, \pi_{\text {stab }}(x)\right)}\right]$ otherwise. Hence, $\mathbb{E}\left[\left\|y-y^{\prime}\right\|\right] \leq E E\left\|\Theta-\Theta^{\prime}\right\|_{M^{\prime}(x, a)}$, thus showing that A1 holds for $p^{\prime}(\cdot \mid x, a, \Theta)$ when M is replaced by M^{\prime}. Now, Assumption A6 follows from Assumption A5.

C Choice of the matrices in the web-server application

Hellerstein et al. (2004) fitted the linear model detailed earlier to an Apache HTTP server and obtained the parameters

$$
A=\left(\begin{array}{cc}
0.54 & -0.11 \\
-0.026 & 0.63
\end{array}\right), \quad B=\left(\begin{array}{cc}
-85 & 4.4 \\
-2.5 & 2.8
\end{array}\right) \times 10^{-4}
$$

while the noise standard deviation was measured to be 0.1 . Hellerstein et al. found that these parameters provided a reasonable fit to their data. For control purposes, the cost matrices $Q=\operatorname{diag}(5,1), R=\operatorname{diag}\left(1 / 5062,0.1^{6}\right)$, taken from Example 6.9 of Aström and Murray (2008), were chosen.

