
A Some Useful Lemmas
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Lemma 9 (Lemma 11 of Abbasi-Yadkori and Szepesvári (2011)). Let A 2 Rm⇥m and B 2 Rm⇥m be positive semi-
definite matrices such that A � B. Then, we have

sup

X 6=0

�

�X>AX
�

�

2

kX>BXk
2

 det(A)

det(B)

.

B Proofs

Proof of Proposition 1. Note that if ACOE (1) holds for h, then for any constant C, it also holds that
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Proof of Theorem 2. The proof follows that of the main result of Abbasi-Yadkori and Szepesvári (2011). First, we de-
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It remains to bound R
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and to show that the number of switches is small.
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where the last inequality follows because k·k
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where the first inequality uses Hölder’s inequality, and the last two inequalities use Cauchy-Schwarz. By Lemma 8 in
Appendix A, using Assumption A4, we have that
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Bounding R
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If the algorithm has changed the policy K times up to time T , then we should have that det(V
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Proof of Theorem 3. First notice that Theorem 2 continues to hold if Assumption A4 is replaced by the following weaker
assumption:
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With this observation, the result follows from Theorem 2 applied to Lazy PSRL and {p0(·|x, a,⇥)} as running Stabilized
Lazy PSRL for t time steps in p(·|x, a,⇥⇤) results in the same total expected cost as running Lazy PSRL for t time steps
in p0(·|x, a,⇥⇤) thanks to the definition of Stabilized Lazy PSRL and p0.

Hence, all what remains is to show that the conditions of Theorem 2 are satisfied when it is used with {p0(·|x, a,⇥)}. In
fact, A3 and A2 hold true by our assumptions. Let us check Assumption A3 next. Defining f 0
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C Choice of the matrices in the web-server application

Hellerstein et al. (2004) fitted the linear model detailed earlier to an Apache HTTP server and obtained the parameters

A =

✓

0.54 �0.11
�0.026 0.63

◆

, B =
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�85 4.4
�2.5 2.8

◆

⇥ 10

�4 ,

while the noise standard deviation was measured to be 0.1. Hellerstein et al. found that these parameters provided a
reasonable fit to their data. For control purposes, the cost matrices Q = diag(5, 1), R = diag(1/5062, 0.16), taken from
Example 6.9 of Aström and Murray (2008), were chosen.


