
A HELGASON TRANSFORMS

The reader is referred to Terras (1985) for a general defin-
tion of the Helgason-Fourier transform on a symmetric
space. We specialize those constructions for H2, regarded
in this section as the Poincaré half-plane with the metric
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Let f and � denote smooth maps

f : H2 ! C, � : R⇥ SO2 ! C

with compact supports.

The Helgason-Fourier transform H[f ] is the map
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✓

of pos-
itive determinant determined by an angle ✓, sending each
pair (s, k

✓

) to the integral
Z

H2

f(z)Im(k

✓

(z))

s̄

dz

The inverse Helgason-Fourier transform is the map
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For each f , we have the identities

H�1
[H[f ]] = f, kfk2 = kH[f ]k2. (11)

In a certain sense, the operation H takes convolutions to
products in the following sense. Let g denote a compactly
supported density on SL2 that is SO2-invariant in the sense
that g(axb) = g(x) for all a, b 2 SO2. Then each g passes
to a well-defined density on H2 = SL2/SO2, which, by
abuse of notation, is also written as g. As a function on
SL2, the convolution g ⇤ f can be defined as the density on
H2 defined by

(g ⇤ f)(z) =
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g(m)f(m
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where the integral is taken with respect to the Haar measure
on SL2, the measure on SL2 that is unique up to scaling
and invariant under multiplication on the left or right by an
element. Then for all f and g,

H[g ⇤ f ] = H[g]H[f ].

Moreover, the Helgason-Fourier transform and its inverse
each send real-valued functions to real-valued functions.

B EFFICIENT COMPUTATION OF THE
TEST STATISTIC

We compute our test statistics as follows. Given a pair of
graphs G1 and G2 (of possibly varying size), we use gen-
eralized multidimensional scaling to obtain coordinates for
G1 and G2, functions

�1 : V1 ! H2, �2 : V2 ! H2

from the vertices V1 of G1 and V2 of G2. In our power tests,
we generate our graphs G1 and G2 by sampling 100 points
from two different densities on H2 and connecting those
points according to the Heaviside step function, as outlined
in Figure 3. Very rarely, generalized multidimensional scal-
ing fails in the sense that cosh applied to the distance matrix
does not have two negative eigenvalues. When such failure
occurs during our power tests, we simply generate two new
graphs of 100 nodes from appropriate densities on H2 and
attempt the embedding algorithm once again.

We then let f
i

be the generalized kernel density estima-
tor (5) on H2 determined by the points �
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shows that for the n values with which we are working,
this choice of bandwidth h works best.) Thus the network
models we estimate for G1 and G2 are the continuous la-
tent space models ˆ

P1 and ˆ

P2 respectively determined by f1

and f2. The test statistic d
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approximated by averaging the integrand over 100 uni-
formly chosen pairs (t, ✓) 2 [�T,+T ]⇥ [0, 2⇡). The inte-
grand itself is computed as follows. The Helgason-Fourier
transform H[f
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] of (5) is the function
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defined by the rule
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