
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages
SUPPLEMENTARY MATERIAL

A MEDIAN HEURISTIC FOR GAUSSIAN KERNEL ON MEAN EMBEDDINGS

In the proposed KJIT, there are two kernels: the inner kernel k for computing mean embeddings, and the outer Gaussian
kernel κ defined on the mean embeddings. Both of the kernels depend on a number of parameters. In this section,
we describe a heuristic to choose the kernel parameters. We emphasize that this heuristic is merely for computational
convenience. A full parameter selection procedure like cross validation or evidence maximization will likely yield a better
set of parameters. We use this heuristic in the initial mini-batch phase before the actual online learning.

Let {r(l)i | l = 1, . . . , c, and i = 1, . . . , n} be a set of n incoming message tuples collected during the mini-batch phase,
from c variables neighboring the factor. Let Ri := (r

(l)
i)cl=1 be the ith tuple, and let ri := ×cl=1r

(l)
i be the product of

incoming messages in the ith tuple. Define Si and si to be the corresponding quantities of another tuple of messages. We
will drop the subscript i when considering only one tuple.

Recall that the kernel on two tuples of messages R and S is given by

κ(R,S) = κ(r, s) = exp

(
−‖µr − µs‖2H

2γ2

)
= exp

(
− 1

2γ2
〈µr, µr〉+

1

γ2
〈µr, µs〉 −

1

2γ2
〈µs, µs〉

)
,

where 〈µr, µs〉 = Ex∼rEy∼sk(x−y). The inner kernel k is a Gaussian kernel defined on the domainX := X (1)×· · ·×X (c)

where X (l) denotes the domain of r(l). For simplicity, we assume that X (l) is one-dimensional. The Gaussian kernel k
takes the form

k(x− y) = exp

(
−1

2
(x− y)

>
Σ−1 (x− y)

)
=

c∏
l=1

exp

(
− (xj − yj)2

2σ2
l

)
,

where Σ = diag(σ2
1 , . . . , σ

2
c). The heuristic for choosing σ2

1 , . . . , σ
2
c and γ is as follows.

1. Set σ2
l := 1

n

∑n
i=1 Vxl∼r(l)i

[xl] where V
xl∼r(l)i

[xl] denotes the variance of r(l)i .

2. With Σ = diag(σ2
1 , . . . , σ

2
c) as defined in the previous step, set γ2 := median

(
{‖µri − µsj‖2}ni,j=1

)
.

B KERNELS AND RANDOM FEATURES

This section reviews relevant kernels and their random feature representations.

B.1 RANDOM FEATURES

This section contains a summary of Rahimi and Recht (2007)’s random Fourier features for a translation invariant kernel.

A kernel k(x, y) = 〈φ(x), φ(y)〉 in general may correspond to an inner product in an infinite-dimensional space whose
feature map φ cannot be explicitly computed. In Rahimi and Recht (2007), methods of computing an approximate feature
maps φ̂ were proposed. The approximate feature maps are such that k(x, y) ≈ φ̂(x)>φ̂(y) (with equality in expectation)
where φ̂(x), φ̂(y) ∈ RD and D is the number of random features. High D yields a better approximation with higher
computational cost. Assume k(x, y) = k(x−y) (translation invariant) and x, y ∈ Rd. Random Fourier features φ̂(x) ∈ RD
such that k(x, y) ≈ φ̂(x)>φ̂(y) are generated as follows:

1. Compute the Fourier transform k̂ of the kernel k: k̂(ω) = 1
2π

´
e−jω

>δk(δ) dδ.

2. Draw D i.i.d. samples ω1, . . . , ωD ∈ Rd from k̂.

3. Draw D i.i.d samples b1, . . . , bD ∈ R from U [0, 2π] (uniform distribution).

4. φ̂(x) =
√

2
D

(
cos
(
ω>1 x+ b1

)
, . . . , cos

(
ω>Dx+ bD

))> ∈ RD

Why It Works
Theorem 1. Bochner’s theorem (Rudin, 2013). A continuous kernel k(x, y) = k(x− y) on Rm is positive definite iff k(δ)
is the Fourier transform of a non-negative measure.

Furthermore, if a translation invariant kernel k(δ) is properly scaled, Bochner’s theorem guarantees that its Fourier trans-
form p(ω) is a probability distribution. From this fact, we have

k(x− y) =

ˆ
k̂(ω)ejω

>(x−y) dω = Eω [ηω(x)ηω(y)∗] ,

where j =
√
−1, ηω(x) = ejω

>x and ·∗ denotes the complex conjugate. Since both k̂ and k are real, the complex
exponential contains only the cosine terms. Drawing D samples lowers the variance of the approximation.

Theorem 2. Separation of variables. Let f̂ be the Fourier transform of f . If f(x1, . . . , xd) = f1(x1) · · · fd(xd), then
f̂(ω1, . . . , ωd) =

∏d
i=1 f̂i(ωi).

Theorem 2 suggests that the random Fourier features can be extended to a product kernel by drawing ω independently for
each kernel.

B.2 MV (MEAN-VARIANCE) KERNEL

Assume there are c incoming messages R :=
(
r(l)
)c
l=1

and S :=
(
s(l)
)c
l=1

. Assume that

Er(l) [x] = ml

Vr(l) [x] = vl

Es(l) [y] = µl

Vs(l) [y] = σ2
l .

Incoming messages are not necessarily Gaussian. The MV (mean-variance) kernel is defined as a product kernel on means
and variances.

κmv (R,S) =

c∏
i=1

k ((mi − µi) /wmi)

c∏
i=1

k
((
vi − σ2

i

)
/wvi

)
,

where k is a Gaussian kernel with unit width. The kernel κmv has P := (wm1 , . . . , w
m
c , w

v
1 , . . . , w

v
c) as its parameters.

With this kernel, we treat messages as finite dimensional vectors. All incoming messages (s(i))ci=1 are represented as(
µ1, . . . , µc, σ

2
1 , . . . , σ

2
c

)>
. This treatment reduces the problem of having distributions as inputs to the familiar problem of

having input points from a Euclidean space. The random features of Rahimi and Recht (2007) can be applied straightfor-
wardly.

B.3 EXPECTED PRODUCT KERNEL

Given two distributions r(x) = N (x;mr, Vr) and s(y) = N (y;ms, Vs) (d-dimensional Gaussian), the expected product
kernel is defined as

κpro(r, s) = 〈µr, µs〉H = ErEsk(x− y),

where µr := Erk(x, ·) is the mean embedding of r, and we assume that the kernel k associated with H is translation
invariant i.e., k(x, y) = k(x− y). The goal here is to derive random Fourier features for the expected product kernel. That
is, we aim to find φ̂ such that κpro(r, s) ≈ φ̂(r)>φ̂(s) and φ̂ ∈ RD.

We first give some results which will be used to derive the Fourier features for inner product of mean embeddings.

Lemma 3. If b ∼ N (b; 0, σ2), then E[cos(b)] = exp
(
− 1

2σ
2
)
.

Proof. We can see this by considering the characteristic function of x ∼ N (x;µ, σ2) which is given by

cx(t) = Ex [exp (itb)] = exp

(
itm− 1

2
σ2t2

)
.

For m = 0, t = 1, we have

cb(1) = Eb [exp(ib)] = exp

(
−1

2
σ2

)
= Eb [cos(b)] ,

where the imaginary part i sin(tb) vanishes.

From Rahimi and Recht (2007) which provides random features for k(x− y), we immediately have

ErEsk(x− y) ≈ ErEs
2

D

D∑
i=1

cos
(
w>i x+ bi

)
cos
(
w>i y + bi

)
=

2

D

D∑
i=1

Er(x) cos
(
w>i x+ bi

)
Es(y) cos

(
w>i y + bi

)
,

where {wi}Di=1 ∼ k̂(w) (Fourier transform of k) and {bi}Di=1 ∼ U [0, 2π].

Consider Er(x) cos
(
w>i x+ bi

)
. Define zi = w>i x+ bi. So zi ∼ N (zi;w

>
i mr + bi, w

>
i Vrwi). Let di ∼ N (0, w>i Vrwi).

Then, r(di +w>i mr + bi) = N (w>i mr + bi, w
>
i Vrwi) which is the same distribution as that of zi. From these definitions

we have,

Er(x) cos
(
w>i x+ bi

)
= Er(zi) cos(zi)

= Er(di) cos
(
di + w>i mr + bi

)
(a)
= Er(di) cos(di) cos(w>i mr + bi)− Er(di) sin(di) sin(w>i mr + bi)

(b)
= cos(w>i mr + bi)Er(di) cos(di)

(c)
= cos(w>i mr + bi) exp

(
−1

2
w>i Vrwi

)
,

where at (a) we use cos(α + β) = cos(α) cos(β) − sin(α) sin(β). We have (b) because sin is an odd function and
Er(di) sin(di) = 0. The last equality (c) follows from Lemma 3. It follows that the random features φ̂(r) ∈ RD are given
by

φ̂(r) =

√
2

D

 cos(w>1 mr + b1) exp
(
− 1

2w
>
1 Vrw1

)
...

cos(w>Dmr + bD) exp
(
− 1

2w
>
DVrwD

)
 .

Notice that the translation invariant kernel k provides k̂ from which {wi}i are drawn. For a different type of distribution
r, we only need to be able to compute Er(x) cos

(
w>i x+ bi

)
. With φ̂(r), we have κpro(r, s) ≈ φ̂(r)>φ̂(s) with equality in

expectation.

Analytic Expression for Gaussian Case For reference, if r, s are normal distributions and k is a Gaussian kernel, an
analytic expression is available. Assume k(x − y) = exp

(
− 1

2 (x− y)
>

Σ−1 (x− y)
)

where Σ is the kernel parameter.
Then

ErEsk(x− y) =

√
det(Drs)

det(Σ−1)
exp

(
−1

2
(mr −ms)

>
Drs (mr −ms)

)
,

Drs := (Vr + Vs + Σ)
−1
.

Approximation Quality The following result compares the randomly generated features to the true kernel matrix using
various numbers of random features D. For each D, we repeat 10 trials, where the randomness in each trial arises from
the construction of the random features. Samples are univariate normal distributions N (m, v) where m ∼ N (0, 9) and
v ∼ Gamma(3, 1/4) (shape-rate parameterization). The kernel parameter was Σ := σ2I where σ2 = 3.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

#Random features
di

ffe
re

nc
e

n=1000, repeats=10

Avg diff.

max entry diff

s.d. entry diff

“max entry diff” refers to the maximum entry-wise difference between the true kernel matrix and the approximated kernel
matrix.

B.4 PRODUCT KERNEL ON MEAN EMBEDDINGS

Previously, we have defined an expected product kernel on single distributions. One way to define a kernel between two
tuples of more than one incoming message is to take a product of the kernels defined on each message.

Let µr(l) := Er(l)(a)k(l)(·, a) be the mean embedding (Smola et al., 2007) of the distribution r(l) into RKHSH(l) induced

by the kernel k. Assume k(l) = k
(l)
gauss (Gaussian kernel) and assume there are c incoming messages R := (r(i)(a(i)))ci=1

and S := (s(i)(b(i)))ci=1. A product of expected product kernels is defined as

κpro, prod(R,S) :=

〈
c⊗
l=1

µr(l) ,

c⊗
l=1

µs(l)

〉
⊗lH(l)

=

c∏
l=1

Er(l)(a(l))Es(l)(b(l))k(l)gauss

(
a(l), b(l)

)
≈ φ̂(R)>φ̂(S),

where φ̂(R)>φ̂(S) =
∏c
l=1 φ̂

(l)(r(l))>φ̂(l)(s(l)). The feature map φ̂(l)(r(l)) can be estimated by applying the random
Fourier features to k

(l)
gauss and taking the expectations Er(l)(a)Es(l)(b). The final feature map is φ̂(R) = φ̂(1)(r(1)) ~

φ̂(2)(r(2))~· · ·~φ̂(c)(r(c)) ∈ RDc

, where ~ denotes a Kronecker product and we assume that φ̂(l) ∈ RD for l ∈ {1, . . . , c}.

B.5 SUM KERNEL ON MEAN EMBEDDINGS

If we instead define the kernel as the sum of c kernels, we have

κpro, sum(R,S) =

c∑
l=1

〈µr(l) , µs(l)〉H(l)

≈
c∑
l=1

φ̂(l)(r(l))>φ̂(l)(s(l))

= ϕ̂(R)>ϕ̂(S),

where ϕ̂(R) :=
(
φ̂(1)(r(1))>, . . . , φ̂(c)(r(c))>

)>
∈ RcD.

B.6 NUMBER OF RANDOM FEATURES FOR GAUSSIAN KERNEL ON MEAN EMBEDDINGS

We quantify the effect ofDin andDout empirically as follows. We generate 300 Gaussian messages, compute the true Gram
matrix and the approximate Gram matrix given by the random features, and report the Frobenius norm of the difference
of the two matrices on a grid of Din and Dout. For each (Din, Dout), we repeat 20 times with a different set of random
features and report the averaged Frobenius norm.

100 150 200 250 300 350 400 450 500 550 600 650 700
100

150

200

250

300

350

400

450

500

550

600
n=300, repeats=50. Report Fro. norm(K − Khat) / n.

in
ne

r
#f

ea
tu

re
s

outer #features

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

The result suggests that Dout has more effect in improving the approximation.

C MORE DETAILS ON EXPERIMENT 1: BATCH LEARNING

There are a number of kernels on distributions we may use for just-in-time learning. To find the most suitable kernel,
we compare the performance of each on a collection of incoming and output messages at the logistic factor in the binary
logistic regression problem i.e., same problem as in experiment 1 in the main text. All messages are collected by running
EP 20 times on generated toy data. Only messages in the first five iterations are considered as messages passed in the early
phase of EP vary more than in a near-convergence phase. The regression output to be learned is the numerator of (1).

A training set of 5000 messages and a test set of 3000 messages are obtained by subsampling all the collected messages.
Where random features are used, kernel widths and regularization parameters are chosen by leave-one-out cross validation.
To get a good sense of the approximation error from the random features, we also compare with incomplete Cholesky
factorization (denoted by IChol), a widely used Gram matrix approximation technique. We use hold-out cross validation
with randomly chosen training and validation sets for parameter selection, and kernel ridge regression in its dual form
when the incomplete Cholesky factorization is used.

Let f be the logistic factor and mf→i be an outgoing message. Let qf→i be the ground truth belief message (numerator)
associated with mf→i. The error metric we use is KL[qf→i || q̂f→i] where q̂f→i are the belief messages estimated by a
learned regression function. The following table reports the mean of the log KL-divergence and standard deviations.

mean log KL s.d. of log KL
Random features + MV Kernel -6.96 1.67
Random features + Expected product kernel on joint embeddings -2.78 1.82
Random features + Sum of expected product kernels -1.05 1.93
Random features + Product of expected product kernels -2.64 1.65
Random features + Gaussian kernel on joint embeddings (KJIT) -8.97 1.57
IChol + sum of Gaussian kernel on embeddings -2.75 2.84
IChol + Gaussian kernel on joint embeddings -8.71 1.69
Breiman’s random forests (Breiman, 2001) -8.69 1.79
Extremely randomized trees (Geurts et al., 2006) -8.90 1.59
Eslami et al. (2014)’s random forests (Eslami et al., 2014) -6.94 3.88

The MV kernel is defined in Section B.2. Here product (sum) of expected product kernels refers to a product (sum) of
kernels, where each is an expected product kernel defined on one incoming message. Evidently, the Gaussian kernel on
joint mean embeddings performs significantly better than other kernels. Besides the proposed method, we also compare
the message prediction performance to Breiman’s random forests (Breiman, 2001), extremely randomized trees (Geurts
et al., 2006), and Eslami et al. (2014)’s random forests. We use scikit-learn toolbox for the extremely randomized trees and
Breiman’s random forests. For Eslami et al. (2014)’s random forests, we reimplemented the method as closely as possible
according to the description given in Eslami et al. (2014). In all cases, the number of trees is set to 64. Empirically we
observe that decreasing the log KL error below -8 will not yield a noticeable performance gain in the actual EP.

−25 −20 −15 −10 −5 0 5
−6

−5

−4

−3

−2

−1

0

1

2

Log KL error

L
o

g
 p

re
d

ic
ti
v
e

 v
a

ri
a

n
c
e

Test set

Training set

Figure 10: KL-divergence error versus predictive variance for predicting the mean of mf→zi (normal distribution) in the
logistic factor problem.

To verify that the uncertainty estimates given by KJIT coincide with the actual predictive performance (i.e., accurate
prediction when confident), we plot the predictive variance against the KL-divergence error on both the training and test
sets. The results are shown in Fig. 10. The uncertainty estimates show a positive correlation with the KL-divergence errors.
It is instructive to note that no point lies at the bottom right i.e., making a large error while being confident. The fact that
the errors on the training set are roughly the same as the errors on the test set indicates that the operator does not overfit.

References
[sup1] L. Breiman. Random Forests. Mach. Learn., 45(1):5–32, 2001.

[sup7] S. M. A. Eslami, D. Tarlow, P. Kohli, and J. Winn. Just-In-Time Learning for Fast and Flexible Inference. In NIPS,
pages 154–162, 2014.

[sup3] P. Geurts, D. Ernst, and L. Wehenkel. Extremely Randomized Trees. Mach. Learn., 63(1):3–42, 2006.

[sup17] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, pages 1177–1184, 2007.

[sup19] W. Rudin. Fourier Analysis on Groups: Interscience Tracts in Pure and Applied Mathematics, No. 12. Literary
Licensing, LLC, 2013.

[sup21] A. Smola, A. Gretton, L. Song, and B. Schölkopf. A Hilbert space embedding for distributions. In ALT, pages 13–31,
2007.

