
Appendix

A Proof of Theorem 3

Proof. Taking the expectation over the choice of edges (i
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where ⌦ denotes the Kronecker product. This shows that the method is a descent method. Now we are ready to prove the
main convergence theorem. We have the following:
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Combining this with inequality (9), we obtain
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B Proof of Theorem 5

Proof. In this case, the expectation should be over the selection of the pair (i
k

, j
k

) and random index l
k

2 [N ]. In this
proof, the definition of ⌘

k

includes l
k

i.e., ⌘
k

= {(i
0

, j
0

, l
0

), . . . , (i
k�1

, j
k�1

, l
k�1

)}. We define the following:

dk
ik

=


↵
k

2L

h
r

yjk
f
lk(x

k

)�r

yik
f
lk(x

k

)

i>
, �

↵
k

L

h
r

zik
f
lk(x

k

)

i>�>
,

dk
jk

=


↵
k

2L

h
r

yjk
f
lk(x

k

)�r

yik
f
lk(x

k

)

i>
,

↵
k

L

h
r

zjk
f
lk(x

k

)

i>�>
,

dlk
ikjk

= U
ikd

k

ik
� U

jkd
k

jk
.

For the expectation of objective value at xk+1, we have
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Taking expectation over l
k

, we get the following relationship:
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Combining this with inequality Equation 10, we obtain
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Section 2.2 of [24] for more details).

C Proof of Theorem 4

Proof. For ease of exposition, we analyze the case where the unconstrained variables z are absent. The analysis of case
with z variables can be carried out in a similar manner. Consider the update on edge (i
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The third and fourth steps in the above derivation follow from definition of dk
ij

and Cauchy-Schwarz inequality respectively.
The last step follows from the fact the gradients are Lipschitz continuous. Using the assumption that staleness in the
variables is bounded by ⌧ , i.e., k �D(k)  ⌧ and definition of dk
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The first step follows from triangle inequality. The second inequality follows from fact that ab  (a2 + b2)/2. Using
expectation over the edges, we have
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We now prove that, for all k � 0
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The fifth step follows from triangle inequality. We now prove (12): the induction hypothesis is trivially true for k = 0.
Assume it is true for some k � 1 � 0. Now using Equation (13), we have
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Thus, the statement holds for k. Therefore, the statement holds for all k 2 N by mathematical induction. Substituting the
above in Equation (11), we get
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This proves that the method is a descent method in expectation. Using the definition of dk
ij

, we have
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The second and third steps are similar to the proof of Theorem 3. The last step follows from the fact that the method is a
descent method in expectation. Following similar analysis as Theorem 3, we get the required result.

D Proof of Theorem 6
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The second step follows from optimality of d
ikjk . The fourth step follows from Lemma 8. Now using the similar recurrence

relation as in Theorem 2, we get the required result.



E Reduction of General Case

In this section we show how to reduce a problem with linear constraints to the form of Problem 4 in the paper. For
simplicity, we focus on smooth objective functions. However, the formulation can be extended to composite objective
functions along similar lines. Consider the optimization problem
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where

g(y, z) = f(�(y, z)) = f

 
X

i

U
i

(A+

i

y
i

+

¯A
i

z
i

)

!
. (15)

It is clear that the sets S
1

= {x|Ax = 0} and S
2

= {�(y, z)|
P

i

y
i

= 0} are equal and hence the problem defined in 14 is
equivalent to that in 1.

Note that such a transformation preserves convexity of the objective function. It is also easy to show that it preserves the
block-wise Lipschitz continuity of the gradients as we prove in the following result.
Lemma 9. Let f be a function with L

i

-Lipschitz gradient w.r.t x
i

. Let g(y, z) be the function defined in 15. Then g satisfies
the following condition
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where �
min

(B) denotes the minimum non-zero singular value of B.

Proof. We have
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>
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� y0
i

k =
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(A
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)
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i
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k,

Similar proof holds for kr
zig(y, z)�r

zig(y, z
0
)k , noting that k ¯A

i

k = 1.

It is worth noting that this reduction is mainly used to simplify analysis. In practice, however, we observed that an algorithm
that operates directly on the original variables x

i

(i.e. Algorithm 1) converges much faster and is much less sensitive to the
conditioning of A

i

compared to an algorithm that operates on y
i

and z
i

. Indeed, with appropriate step sizes, Algorithm 1
minimizes, in each step, a tighter bound on the objective function compared to the bound based 14 as stated in the following
result.

4If the rank constraint is not satisfied then one solution is to use a coarser partitioning of x so that the dimensionality of xi is large
enough.



Lemma 10. Let g and � be as defined in 15. And let

d
i

= A+

i

d
yi +

¯A
i

d
zi .

Then, for any d
i

and d
j

satisfying A
i

d
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j

d
j

= 0 and any feasible x = �(y, z) we have
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Proof. The proof follows directly from the fact that

r

i

f(x) = A+

i

>
r

yig(y, z) +
¯A
i

>
r

zig(y, z).


