Appendix

A Proof of Theorem 3

Proof. Taking the expectation over the choice of edges (i_k, j_k) gives the following inequality

$$\mathbb{E}_{i_{k}j_{k}}[f(x^{k+1})|\eta_{k}] \leq \mathbb{E}_{i_{k}j_{k}}\left[f(x^{k}) - \frac{1}{4L} \|\nabla_{y_{i_{k}}}f(x^{k}) - \nabla_{y_{j_{k}}}f(x^{k})\|^{2} - \frac{1}{2L} \|\nabla_{z_{i_{k}}}f(x^{k})\|^{2} - \frac{1}{2L} \|\nabla_{z_{j_{k}}}f(x^{k})\|^{2}\right] \\ \leq f(x^{k}) - \frac{1}{2} \nabla_{y}f(x^{k})^{\top} (\mathcal{L} \otimes I_{n_{y}}) \nabla_{y}f(x^{k}) - \frac{1}{2} \nabla_{z}f(x^{k})^{\top} (\mathcal{D} \otimes I_{n_{z}}) \nabla_{z}f(x^{k}) \\ \leq f(x^{k}) - \frac{1}{2} \nabla f(x^{k})^{\top} \mathcal{K} \nabla f(x^{k}),$$

$$(9)$$

where \otimes denotes the Kronecker product. This shows that the method is a descent method. Now we are ready to prove the main convergence theorem. We have the following:

$$f(x^{k+1}) - f^* \leq \langle \nabla f(x^k), x^k - x^* \rangle \leq ||x^k - x^*||_{\mathcal{K}}^* ||\nabla f(x^k)||_{\mathcal{K}}$$
$$\leq R(x^0) ||\nabla f(x^k)||_{\mathcal{K}} \quad \forall k \geq 0.$$

Combining this with inequality (9), we obtain

$$\mathbb{E}[f(x^{k+1}|\eta_k] \le f(x^k) - \frac{(f(x^k) - f^*)^2}{2R^2(x^0)}.$$

Taking the expectation of both sides an denoting $\Delta_k = \mathbb{E}[f(x^k)] - f^*$ gives

$$\Delta_{k+1} \le \Delta_k - \frac{\Delta_k^2}{2R^2(x^0)}$$

Dividing both sides by $\Delta_k \Delta_{k+1}$ and using the fact that $\Delta_{k+1} \leq \Delta_k$ we obtain

$$\frac{1}{\Delta_k} \le \frac{1}{\Delta_{k+1}} - \frac{1}{2R^2(x^0)}.$$

Adding these inequalities for k steps $0 \le \frac{1}{\Delta_0} \le \frac{1}{\Delta_k} - \frac{k}{2R^2(x^0)}$ from which we obtain the statement of the theorem where $C = 2R^2(x^0)$.

B Proof of Theorem 5

Proof. In this case, the expectation should be over the selection of the pair (i_k, j_k) and random index $l_k \in [N]$. In this proof, the definition of η_k includes l_k i.e., $\eta_k = \{(i_0, j_0, l_0), \dots, (i_{k-1}, j_{k-1}, l_{k-1})\}$. We define the following:

$$\begin{aligned} d_{i_k}^k &= \left[\frac{\alpha_k}{2L} \left[\nabla_{y_{j_k}} f_{l_k}(x^k) - \nabla_{y_{i_k}} f_{l_k}(x^k) \right]^\top, \quad -\frac{\alpha_k}{L} \left[\nabla_{z_{i_k}} f_{l_k}(x^k) \right]^\top \right]^\top, \\ d_{j_k}^k &= \left[\frac{\alpha_k}{2L} \left[\nabla_{y_{j_k}} f_{l_k}(x^k) - \nabla_{y_{i_k}} f_{l_k}(x^k) \right]^\top, \quad \frac{\alpha_k}{L} \left[\nabla_{z_{j_k}} f_{l_k}(x^k) \right]^\top \right]^\top, \\ d_{i_k j_k}^{l_k} &= U_{i_k} d_{i_k}^k - U_{j_k} d_{j_k}^k. \end{aligned}$$

For the expectation of objective value at x^{k+1} , we have

$$\begin{split} & \mathbb{E}[f(x^{k+1})|\eta_{k}] \leq \mathbb{E}_{i_{k}j_{k}} \mathbb{E}_{l_{k}} \left[f(x^{k}) + \left\langle \nabla f(x^{k}), d_{i_{k}j_{k}}^{l_{k}} \right\rangle + \frac{L}{2} \| d_{i_{k}j_{k}}^{l_{k}} \|^{2} \right] \\ & \leq \mathbb{E}_{i_{k}j_{k}} \left[f(x^{k}) + \left\langle \nabla f(x^{k}), \mathbb{E}_{l_{k}} [d_{i_{k}j_{k}}^{l_{k}}] \right\rangle + \frac{L}{2} \mathbb{E}_{l_{k}} [\| d_{i_{k}j_{k}}^{l_{k}} \|^{2}] \right] \\ & \leq \mathbb{E}_{i_{k}j_{k}} \left[f(x^{k}) + \frac{\alpha_{k}}{2L} \left\langle \nabla_{y_{i_{k}}} f(x^{k}), \mathbb{E}_{l_{k}} [\nabla_{y_{j_{k}}} f_{l_{k}}(x^{k}) - \nabla_{y_{i_{k}}} f_{l_{k}}(x^{k})] \right\rangle \right. \\ & \left. + \frac{\alpha_{k}}{2L} \left\langle \nabla_{y_{j_{k}}} f(x^{k}), \mathbb{E}_{l_{k}} [\nabla_{y_{i_{k}}} f_{l_{k}}(x^{k}) - \nabla_{y_{j_{k}}} f_{l_{k}}(x^{k})] \right\rangle \right. \\ & \left. - \frac{\alpha_{k}}{L} \left\langle \nabla_{z_{i_{k}}} f(x^{k}), \mathbb{E}_{l_{k}} [\nabla_{z_{i_{k}}} f_{l_{k}}(x^{k})] \right\rangle - \frac{\alpha_{k}}{L} \left\langle \nabla_{z_{j_{k}}} f(x^{k}), \mathbb{E}_{l_{k}} [\nabla_{z_{j_{k}}} f_{l_{k}}(x^{k})] \right\rangle + \frac{L}{2} \mathbb{E}_{l_{k}} [\| d_{i_{k}j_{k}}^{l_{k}} \|^{2}] \right]. \end{split}$$

Taking expectation over l_k , we get the following relationship:

$$\begin{split} \mathbb{E}[f(x^{k+1})|\eta_k] &\leq \mathbb{E}_{i_k j_k} \left[f(x^k) + \frac{\alpha_k}{2L} \left\langle \nabla_{y_{i_k}} f(x^k), \nabla_{y_{j_k}} f(x^k) - \nabla_{y_{i_k}} f(x^k) \right\rangle \right. \\ &+ \frac{\alpha_k}{2L} \left\langle \nabla_{y_{j_k}} f(x^k), \nabla_{y_{i_k}} f(x^k) - \nabla_{y_{j_k}} f(x^k) \right\rangle \\ &- \frac{\alpha_k}{L} \left\langle \nabla_{z_{i_k}} f(x^k), \nabla_{z_{i_k}} f(x^k) \right\rangle - \frac{\alpha_k}{L} \left\langle \nabla_{z_{j_k}} f(x^k), \nabla_{z_{j_k}} f(x^k) \right\rangle + \frac{L}{2} \mathbb{E}_{l_k} [\|d_{i_k j_k}^{l_k}\|^2] \Big]. \end{split}$$

We first note that $\mathbb{E}_{l_k}[\|d_{i_k j_k}^{l_k}\|^2] \le 8M^2 \alpha_k^2/L^2$ since $\|\nabla f_l\| \le M$. Substituting this in the above inequality and simplifying we get,

$$\mathbb{E}[f(x_{k+1})|\eta_k] \leq f(x^k) - \alpha_k \nabla_y f(x^k)^\top (\mathcal{L} \otimes I_n) \nabla_y f(x^k) - \alpha_k \nabla_z f(x^k)^\top (\mathcal{D} \otimes I_n) \nabla_z f(x^k) + \frac{4M^2 \alpha_k^2}{L} \leq f(x^k) - \alpha_k \nabla f(x^k)^\top \mathcal{K} \nabla f(x^k) + \frac{4M^2 \alpha_k^2}{L}.$$
(10)

Similar to Theorem 3, we obtain a lower bound on $\nabla f(x^k)^\top \mathcal{K} \nabla f(x^k)$ in the following manner.

$$f(x^k) - f^* \leq \langle \nabla f(x^k), x^k - x^* \rangle \leq ||x^k - x^*||_{\mathcal{K}}^* \cdot ||\nabla f(x^k)||_{\mathcal{K}}$$
$$\leq R(x^0) ||\nabla f(x^k)||_{\mathcal{K}}.$$

Combining this with inequality Equation 10, we obtain

$$\mathbb{E}[f(x_{k+1})|\eta_k] \le f(x^k) - \alpha_k \frac{(f(x^k) - f^*)^2}{R^2(x^0)} + \frac{4M^2 \alpha_k^2}{L}$$

Taking the expectation of both sides an denoting $\Delta_k = \mathbb{E}[f(x^k)] - f^*$ gives

$$\Delta_{k+1} \leq \Delta_k - \alpha_k \frac{\Delta_k^2}{R^2(x^0)} + \frac{4M^2 \alpha_k^2}{L}$$

Adding these inequalities from i = 0 to i = k and use telescopy we get,

$$\Delta_{k+1} + \sum_{i=0}^{k} \alpha_i \frac{\Delta_k^2}{R^2(x^0)} \le \Delta_0 + \frac{4M^2}{L} \sum_{i=0}^{k} \alpha_i^2.$$

Using the definition of $\bar{x}_{k+1} = \arg \min_{0 \le i \le k+1} f(x_i)$, we get

$$\sum_{i=0}^{k} \alpha_{i} \frac{(\mathbb{E}[f(\bar{x}_{k+1}) - f^{*}])^{2}}{R^{2}(x^{0})} \leq \Delta_{k+1} + \sum_{i=0}^{k} \alpha_{i} \frac{\Delta_{k}^{2}}{R^{2}(x^{0})} \leq \Delta_{0} + \frac{4M^{2}}{L} \sum_{i=0}^{k} \alpha_{i}^{2}.$$

Therefore, from the above inequality we have,

$$\mathbb{E}[f(\bar{x}_{k+1}) - f^*] \le R(x^0) \sqrt{\frac{(\Delta_0 + 4M^2 \sum_{i=0}^k \alpha_i^2/L)}{\sum_{i=0}^k \alpha_i}}$$

Note that $\mathbb{E}[f(\bar{x}_{k+1}) - f^*] \to 0$ if we choose step sizes satisfying the condition that $\sum_{i=0}^{\infty} \alpha_i = \infty$ and $\sum_{i=0}^{\infty} \alpha_i^2 < \infty$. Substituting $\alpha_i = \sqrt{\Delta_0 L}/(2M\sqrt{i+1})$, we get the required result using the reasoning from [24] (we refer the reader to Section 2.2 of [24] for more details).

C Proof of Theorem 4

Proof. For ease of exposition, we analyze the case where the unconstrained variables z are absent. The analysis of case with z variables can be carried out in a similar manner. Consider the update on edge (i_k, j_k) . Recall that D(k) denotes the index of the iterate used in the k^{th} iteration for calculating the gradients. Let $d^k = \frac{\alpha_k}{2L} \left(\nabla_{y_{j_k}} f(x^{D(k)}) - \nabla_{y_{i_k}} f(x^{D(k)}) \right)$

and $d_{i_k j_k}^k = x^{k+1} - x^k = U_{i_k} d^k - U_{j_k} d^k$. Note that $||d_{i_k j_k}^k||^2 = 2||d^k||^2$. Since f is Lipschitz continuous gradient, we have

$$\begin{split} f(x^{k+1}) &\leq f(x^k) + \left\langle \nabla_{y_{i_k}y_{j_k}} f(x^k), d_{i_k j_k}^k \right\rangle + \frac{L}{2} \|d_{i_k j_k}^k\|^2 \\ &\leq f(x^k) + \left\langle \nabla_{y_{i_k}y_{j_k}} f(x^{D(k)}) + \nabla_{y_{i_k}y_{j_k}} f(x^k) - \nabla_{y_{i_k}y_{j_k}} f(x^{D(k)}), d_{i_k j_k}^k \right\rangle + \frac{L}{2} \|d_{i_k j_k}^k\|^2 \\ &\leq f(x^k) - \frac{L}{\alpha_k} \|d_{i_k j_k}^k\|^2 + \left\langle \nabla_{y_{i_k}y_{j_k}} f(x^k) - \nabla_{y_{i_k}y_{j_k}} f(x^{D(k)}), d_{i_k j_k}^k \right\rangle + \frac{L}{2} \|d_{i_k j_k}^k\|^2 \\ &\leq f(x^k) - L\left(\frac{1}{\alpha_k} - \frac{1}{2}\right) \|d_{i_k j_k}^k\|^2 + \|\nabla_{y_{i_k}y_{j_k}} f(x^k) - \nabla_{y_{i_k}y_{j_k}} f(x^{D(k)})\|\|d_{i_k j_k}^k\| \\ &\leq f(x^k) - L\left(\frac{1}{\alpha_k} - \frac{1}{2}\right) \|d_{i_k j_k}^k\|^2 + L\|x^k - x^{D(k)}\|\|d_{i_k j_k}^k\|. \end{split}$$

The third and fourth steps in the above derivation follow from definition of d_{ij}^k and Cauchy-Schwarz inequality respectively. The last step follows from the fact the gradients are Lipschitz continuous. Using the assumption that staleness in the variables is bounded by τ , i.e., $k - D(k) \le \tau$ and definition of d_{ij}^k , we have

$$\begin{split} f(x^{k+1}) &\leq f(x^k) - L\left(\frac{1}{\alpha_k} - \frac{1}{2}\right) \|d_{i_k j_k}^k\|^2 + L\left(\sum_{t=1}^{\tau} \|d_{i_{k-t} j_{k-t}}^{k-t}\| \|d_{i_k j_k}^k\|\right) \\ &\leq f(x^k) - L\left(\frac{1}{\alpha_k} - \frac{1}{2}\right) \|d_{i_k j_k}^k\|^2 + \frac{L}{2}\left(\sum_{t=1}^{\tau} \left[\|d_{i_{k-t} j_{k-t}}^{k-t}\|^2 + \|d_{i_k j_k}^k\|^2\right]\right) \\ &\leq f(x^k) - L\left(\frac{1}{\alpha_k} - \frac{1+\tau}{2}\right) \|d_{i_k j_k}^k\|^2 + \frac{L}{2}\sum_{t=1}^{\tau} \|d_{i_{k-t} j_{k-t}}^{k-t}\|^2. \end{split}$$

The first step follows from triangle inequality. The second inequality follows from fact that $ab \leq (a^2 + b^2)/2$. Using expectation over the edges, we have

$$\mathbb{E}[f(x^{k+1})] \le \mathbb{E}[f(x^k)] - L\left(\frac{1}{\alpha_k} - \frac{1+\tau}{2}\right) \mathbb{E}[\|d_{i_k j_k}^k\|^2] + \frac{L}{2} \mathbb{E}\left[\sum_{t=1}^{\tau} \|d_{i_{k-t} j_{k-t}}^{k-t}\|^2\right].$$
(11)

We now prove that, for all $k \ge 0$

$$\mathbb{E}\left[\|d_{i_{k-1}j_{k-1}}^{k-1}\|^{2}\right] \le \rho \mathbb{E}\left[\|d_{i_{k}j_{k}}^{k}\|^{2}\right],\tag{12}$$

where we define $\mathbb{E}\left[\|d_{i_{k-1}j_{k-1}}^{k-1}\|^2\right] = 0$ for k = 0. Let w^t denote the vector of size |E| such that $w_{ij}^t = \sqrt{p_{ij}} \|d_{ij}^t\|$ (with slight abuse of notation, we use w_{ij}^t to denote the entry corresponding to edge (i, j)). Note that $\mathbb{E}\left[\|d_{i_t j_t}^t\|^2\right] = \mathbb{E}[\|w^t\|^2]$. We prove Equation (12) by induction.

Let u^k be a vector of size |E| such that $u_{ij}^k = \sqrt{p_{ij}} ||d_{ij}^k - d_{ij}^{k-1}||$. Consider the following:

$$\mathbb{E}[\|w^{k-1}\|]^{2} - \mathbb{E}[\|w^{k}\|^{2}] = \mathbb{E}[2\|w^{k-1}\|]^{2} - \mathbb{E}[\|w^{k}\|^{2} + \|w^{k-1}\|^{2}]
\leq 2\mathbb{E}[\|w^{k-1}\|^{2}] - 2\mathbb{E}[\langle w^{k-1}, w^{k} \rangle]
\leq 2\mathbb{E}[\|w^{k-1}\|\|w^{k-1} - w^{k}\|]
\leq 2\mathbb{E}[\|w^{k-1}\|\|u^{k}\|] \leq 2\mathbb{E}[\|w^{k-1}\|\sqrt{2}\alpha_{k}\|x^{D(k)} - x^{D(k-1)}\|]
\leq \sqrt{2}\alpha_{k} \sum_{t=\min(D(k-1),D(k))}^{\max(D(k-1),D(k))} \left(\mathbb{E}[\|w^{k-1}\|^{2}] + \mathbb{E}[\|d_{i_{t}j_{t}}^{t}\|^{2}]\right).$$
(13)

The fourth step follows from the bound below on $|u_{ij}^k|$

$$\begin{aligned} |u_{ij}^{k}| &= \sqrt{p_{ij}} \|d_{ij}^{k} - d_{ij}^{k-1}\| \\ &\leq \sqrt{p_{ij}} \|(U_{i} - U_{j}) \frac{\alpha_{k}}{2L} (\nabla_{y_{i}} f(x^{D(k)}) - \nabla_{y_{j}} f(x^{D(k)}) + \nabla_{y_{j}} f(x^{D(k-1)}) - \nabla_{y_{i}} f(x^{D(k-1)}))\| \\ &\leq \sqrt{2p_{ij}} \alpha_{k} \|x^{D(k)} - x^{D(k-1)}\|. \end{aligned}$$

The fifth step follows from triangle inequality. We now prove (12): the induction hypothesis is trivially true for k = 0. Assume it is true for some $k - 1 \ge 0$. Now using Equation (13), we have

$$\mathbb{E}[\|w^{k-1}\|]^2 - \mathbb{E}[\|w^k\|^2] \le \sqrt{2}\alpha_k(\tau+2)\mathbb{E}[\|w^{k-1}\|^2] + \sqrt{2}\alpha_k(\tau+2)\rho^{\tau+1}\mathbb{E}[\|w^k\|^2]$$

for our choice of α_k . The last step follows from the fact that $\mathbb{E}[\|d_{i_t j_t}^t\|^2] = \mathbb{E}[\|w^t\|^2]$ and mathematical induction. From the above, we get

$$\mathbb{E}[\|w^{k-1}\|^2] \le \frac{1+\sqrt{2}\alpha_k(\tau+2)\rho^{(\tau+1)}}{1-\sqrt{2}\alpha_k(\tau+2)} \mathbb{E}[\|w^k\|^2] \le \rho \mathbb{E}[\|w^k\|^2].$$

Thus, the statement holds for k. Therefore, the statement holds for all $k \in \mathbb{N}$ by mathematical induction. Substituting the above in Equation (11), we get

$$\mathbb{E}[f(x^{k+1})] \le \mathbb{E}[f(x^k)] - L\left(\frac{1}{\alpha_k} - \frac{1+\tau+\tau\rho^{\tau}}{2}\right) \mathbb{E}[\|d_{i_k j_k}^k\|^2]$$

This proves that the method is a descent method in expectation. Using the definition of d_{ij}^k , we have

$$\begin{split} \mathbb{E}[f(x^{k+1})] &\leq \mathbb{E}[f(x^{k})] - \frac{\alpha_{k}^{2}}{4L} \left(\frac{1}{\alpha_{k}} - \frac{1+\tau+\tau\rho^{\tau}}{2}\right) \mathbb{E}[\|\nabla_{y_{i_{k}}}f(x^{D(k)}) - \nabla_{y_{j_{k}}}f(x^{D(k)})\|^{2}] \\ &\leq \mathbb{E}[f(x^{k})] - \frac{\alpha_{k}^{2}}{4L} \left(\frac{1}{\alpha_{k}} - \frac{1+\tau+\tau\rho^{\tau}}{2}\right) \mathbb{E}[\|\nabla f(x^{D(k)}) - \nabla f(x^{D(k)})\|_{\mathcal{K}}^{2}] \\ &\leq \mathbb{E}[f(x^{k})] - \frac{\alpha_{k}^{2}}{2R^{2}(x^{0})} \left(\frac{1}{\alpha_{k}} - \frac{1+\tau+\tau\rho^{\tau}}{2}\right) \mathbb{E}[(f(x^{D(k)}) - f^{*})^{2}] \\ &\leq \mathbb{E}[f(x^{k})] - \frac{\alpha_{k}^{2}}{2R^{2}(x^{0})} \left(\frac{1}{\alpha_{k}} - \frac{1+\tau+\tau\rho^{\tau}}{2}\right) \mathbb{E}[(f(x^{k}) - f^{*})^{2}]. \end{split}$$

The second and third steps are similar to the proof of Theorem 3. The last step follows from the fact that the method is a descent method in expectation. Following similar analysis as Theorem 3, we get the required result. \Box

D Proof of Theorem 6

Proof. Let $Ax = \sum_{i} x_i$. Let \tilde{x}_{k+1} be solution to the following optimization problem:

$$\tilde{x}^{k+1} = \arg\min_{\{x|Ax=0\}} \langle \nabla f(x^k), x - x^k \rangle + \frac{L}{2} \|x - x^k\|^2 + h(x).$$

To prove our result, we first prove few intermediate results. We say vectors $d \in \mathbb{R}^n$ and $d' \in \mathbb{R}^n$ are conformal if $d_i d'_i \ge 0$ for all $i \in [b]$. We use $d_{i_k j_k} = x^{k+1} - x^k$ and $d = \tilde{x}^{k+1} - x^k$. Our first claim is that for any d, we can always find conformal vectors whose sum is d (see [22]). More formally, we have the following result.

Lemma 7. For any $d \in \mathbb{R}^n$ with Ad = 0, we have a multi-set $S = \{d'_{ij}\}_{i \neq j}$ such that d and d'_{ij} are conformal for all $i \neq j$ and $i, j \in [b]$ i.e., $\sum_{i \neq j} d'_{ij} = d$, $Ad'_{ij} = 0$ and d'_{ij} can be non-zero only in coordinates corresponding to x_i and x_j .

Proof. We prove by an iterative construction, i.e., for every vector d such that Ad = 0, we construct a set $S = \{s_{ij}\}$ $(s_{ij} \in \mathbb{R}^n)$ with the required properties. We start with a vector $u^0 = d$ and multi-set $S^0 = \{s_{ij}^0\}$ and $s_{ij}^0 = 0$ for all $i \neq j$ and $i, j \in [n]$. At the k^{th} step of the construction, we will have $Au^k = 0$, As = 0 for all $s \in S^k$, $d = u^k + \sum_{s \in S^k} s$ and each element of s is conformal to d.

In k^{th} iteration, pick the element with the smallest absolute value (say v) in u^{k-1} . Let us assume it corresponds to y_p^j . Now pick an element from u^{k-1} corresponding to y_q^j for $p \neq q \in [m]$ with at least absolute value v albeit with opposite sign. Note that such an element should exist since $Au^{k-1} = 0$. Let p_1 and p_2 denote the indices of these elements in u^{k-1} . Let S^k be same as S^{k-1} except for s_{pq}^k which is given by $s_{pq}^k = s_{pq}^{k-1} + r = s_{pq}^{k-1} + u_{p_1}^{k-1}e_{p_1} - u_{p_1}^{k-1}e_{p_2}$ where e_i denotes a vector in \mathbb{R}^n with zero in all components except in i^{th} position (where it is one). Note that Ar = 0 and r is conformal to d since it has the same sign. Let $u^{k+1} = u^k - r$. Note that $Au^{k+1} = 0$ since $Au^k = 0$ and Ar = 0. Also observe that As = 0 for all $s \in S^{k+1}$ and $u^{k+1} = \sum_{s \in S^k} s = d$.

Finally, note that each iteration the number of non-zero elements of u^k decrease by at least 1. Therefore, this algorithm terminates after a finite number of iterations. Moreover, at termination $u^k = 0$ otherwise the algorithm can always pick an element and continue with the process. This gives us the required conformal multi-set.

Now consider a set $\{d_{ij}\}$ which is conformal to d. We define \hat{x}_{k+1} in the following manner:

$$\hat{x}_i^{k+1} = \begin{cases} x_i^k + d'_{ij} & \text{ if } (i,j) = (i_k,j_k) \\ x_i^k & \text{ if } (i,j) \neq (i_k,j_k) \end{cases}$$

Lemma 8. For any $x \in \mathbb{R}^n$ and $k \ge 0$,

$$\mathbb{E}[\|\hat{x}^{k+1} - x^k\|^2 \le \lambda(\|\tilde{x}^{k+1} - x^k\|^2)$$

We also have

$$\mathbb{E}(h(\hat{x}^{k+1})) \le (1-\lambda)h(x^k) + \lambda h(\tilde{x}^{k+1}).$$

Proof. We have the following bound:

$$\mathbb{E}_{i_k j_k} [\|\hat{x}^{k+1} - x^k\|^2 = \lambda \sum_{i \neq j} \|d'_{ij}\|^2 \le \lambda \|\sum_{i \neq j} d'_{ij}\|^2 = \lambda \|d\|^2 = \lambda \|\tilde{x}^{k+1} - x^k\|^2.$$

The above statement directly follows the fact that $\{d'_{ij}\}$ is conformal to d. The remaining part directly follows from [22].

The remaining part essentially on similar lines as [22]. We give the details here for completeness. From Lemma 1, we have

$$\begin{split} \mathbb{E}_{i_{k}j_{k}}[F(x^{k+1})] &\leq \mathbb{E}_{i_{k}j_{k}}[f(x^{k}) + \langle \nabla f(x^{k}), d_{i_{k}j_{k}} \rangle + \frac{L}{2} \|d_{i_{k}j_{k}}\|^{2} + h(x^{k} + d_{i_{k}j_{k}})] \\ &\leq \mathbb{E}_{i_{k}j_{k}}[f(x^{k}) + \langle \nabla f(x^{k}), d'_{i_{k}j_{k}} \rangle + \frac{L}{2} \|d'_{i_{k}j_{k}}\|^{2} + h(x^{k} + d'_{i_{k}j_{k}})] \\ &= f(x^{k}) + \lambda \left(\langle \nabla f(x), \sum_{i \neq j} d'_{ij} \rangle + \sum_{i \neq j} \frac{L}{2} \|d'_{ij}\|^{2} + \sum_{i \neq j} h(x + d'_{ij}) \right) \\ &\leq (1 - \lambda)F(x^{k}) + \lambda(f(x^{k}) + \langle \nabla f(x), d \rangle + \frac{L}{2} \|d\|^{2} + h(x + d)) \\ &\leq \min_{\{y|Ay=0\}} (1 - \lambda)F(x^{k}) + \lambda(F(y) + \frac{L}{2} \|y - x^{k}\|^{2}) \\ &\leq \min_{\beta \in [0,1]} (1 - \lambda)F(x^{k}) + \lambda(F(\beta x^{*} + (1 - \beta)x^{k}) + \frac{\beta^{2}L}{2} \|x^{k} - x^{*}\|^{2}) \\ &\leq (1 - \lambda)F(x^{k}) + \lambda \left(F(x^{k}) - \frac{2(F(x^{k}) - F(x^{*}))^{2}}{LR^{2}(x^{0})}\right). \end{split}$$

The second step follows from optimality of $d_{i_k j_k}$. The fourth step follows from Lemma 8. Now using the similar recurrence relation as in Theorem 2, we get the required result.

E Reduction of General Case

In this section we show how to reduce a problem with linear constraints to the form of Problem 4 in the paper. For simplicity, we focus on smooth objective functions. However, the formulation can be extended to composite objective functions along similar lines. Consider the optimization problem

$$\min_{x} f(x)$$

s.t. $Ax = \sum A_i x_i = 0$

where f_i is a convex function with an *L*-Lipschitz gradient.

Let \bar{A}_i be a matrix with orthonormal columns satisfying range $(\bar{A}_i) = \ker(A_i)$, this can be obtained (e.g. using SVD). For each *i*, define $y_i = A_i x_i$ and assume that the rank of A_i is less than or equal to the dimensionality of x_i .⁴ Then we can rewrite *x* as a function h(y, z) satisfying

$$x_i = A_i^+ y_i + \bar{A}_i z_i$$

for some unknown z_i , where C^+ denote the pseudo-inverse of C. The problem then becomes

$$\min_{y,z} g(y,z) \ s.t. \ \sum_{i=1}^{N} y_i = 0, \tag{14}$$

where

$$g(y,z) = f(\phi(y,z)) = f\left(\sum_{i} U_i(A_i^+ y_i + \bar{A}_i z_i)\right).$$
 (15)

It is clear that the sets $S_1 = \{x | Ax = 0\}$ and $S_2 = \{\phi(y, z) | \sum_i y_i = 0\}$ are equal and hence the problem defined in 14 is equivalent to that in 1.

Note that such a transformation preserves convexity of the objective function. It is also easy to show that it preserves the block-wise Lipschitz continuity of the gradients as we prove in the following result.

Lemma 9. Let f be a function with L_i -Lipschitz gradient w.r.t x_i . Let g(y, z) be the function defined in 15. Then g satisfies the following condition

$$\begin{aligned} \|\nabla_{y_i} g(y, z) - \nabla_{y_i} g(y', z)\| &\leq \frac{L_i}{\sigma_{\min}^2(A_i)} \|y_i - y'_i\| \\ \|\nabla_{z_i} g(y, z) - \nabla_{z_i} g(y, z')\| &\leq L_i \|z_i - z'_i\|, \end{aligned}$$

where $\sigma_{\min}(B)$ denotes the minimum non-zero singular value of B.

Proof. We have

result.

$$\begin{split} \|\nabla_{y_i}g(y,z) - \nabla_{y_i}g(y',z)\| &= \|(U_iA_i^+)^\top [\nabla_x f(\phi(y,z)) - \nabla_x f(\phi(y',z))]\| \\ &\leq \|A_i^+\| \|\nabla_i f(\phi(y,z)) - \nabla_i f(\phi(y',z))\| \\ &\leq L_i \|A_i^+\| \|A_i^+(y_i - y_i')\| \leq L_i \|A_i^+\|^2 \|y_i - y_i'\| = \frac{L_i}{\sigma_{\min}^2(A_i)} \|y_i - y_i'\|, \end{split}$$

Similar proof holds for $\|\nabla_{z_i}g(y,z) - \nabla_{z_i}g(y,z')\|$, noting that $\|\bar{A}_i\| = 1.$

It is worth noting that this reduction is mainly used to simplify analysis. In practice, however, we observed that an algorithm that operates directly on the original variables x_i (i.e. Algorithm 1) converges much faster and is much less sensitive to the conditioning of A_i compared to an algorithm that operates on y_i and z_i . Indeed, with appropriate step sizes, Algorithm 1 minimizes, in each step, a tighter bound on the objective function compared to the bound based 14 as stated in the following

⁴If the rank constraint is not satisfied then one solution is to use a coarser partitioning of x so that the dimensionality of x_i is large enough.

Lemma 10. Let g and ϕ be as defined in 15. And let

$$d_i = A_i^+ d_{y_i} + \bar{A}_i d_{z_i}.$$

Then, for any d_i and d_j satisfying $A_i d_i + A_j d_j = 0$ and any feasible $x = \phi(y, z)$ we have

$$\begin{split} \langle \nabla_i f(x), d_i \rangle &+ \langle \nabla_j f(x), d_j \rangle + \frac{L_i}{2\alpha} \|d_i\|^2 + \frac{L_j}{2\alpha} \|d_j\|^2 \\ &\leq \langle \nabla_{y_i} g(y, z), d_{y_i} \rangle + \langle \nabla_{z_i} g(y, z), d_{z_i} \rangle + \langle \nabla_{y_j} g(y, z), d_{y_j} \rangle + \langle \nabla_{z_j} g(y, z), d_{z_j} \rangle \\ &+ \frac{L_i}{2\alpha \sigma_{\min}^2(A_i)} \|d_{y_i}\|^2 + \frac{L_i}{2\alpha} \|d_{z_i}\|^2 + \frac{L_j}{2\alpha \sigma_{\min}^2(A_j)} \|d_{y_j}\|^2 + \frac{L_j}{2\alpha} \|d_{z_j}\|^2. \end{split}$$

Proof. The proof follows directly from the fact that

$$\nabla_i f(x) = A_i^{+\top} \nabla_{y_i} g(y, z) + \bar{A}_i^{\top} \nabla_{z_i} g(y, z).$$