Appendix

A Proof of Theorem 3

Proof. Taking the expectation over the choice of edges $\left(i_{k}, j_{k}\right)$ gives the following inequality

$$
\begin{align*}
\mathbb{E}_{i_{k} j_{k}}\left[f\left(x^{k+1}\right) \mid \eta_{k}\right] & \leq \mathbb{E}_{i_{k} j_{k}}\left[f\left(x^{k}\right)-\frac{1}{4 L}\left\|\nabla_{y_{i_{k}}} f\left(x^{k}\right)-\nabla_{y_{j_{k}}} f\left(x^{k}\right)\right\|^{2}-\frac{1}{2 L}\left\|\nabla_{z_{i_{k}}} f\left(x^{k}\right)\right\|^{2}-\frac{1}{2 L}\left\|\nabla_{z_{j_{k}}} f\left(x^{k}\right)\right\|^{2}\right] \\
& \leq f\left(x^{k}\right)-\frac{1}{2} \nabla_{y} f\left(x^{k}\right)^{\top}\left(\mathcal{L} \otimes I_{n_{y}}\right) \nabla_{y} f\left(x^{k}\right)-\frac{1}{2} \nabla_{z} f\left(x^{k}\right)^{\top}\left(\mathcal{D} \otimes I_{n_{z}}\right) \nabla_{z} f\left(x^{k}\right) \\
& \leq f\left(x^{k}\right)-\frac{1}{2} \nabla f\left(x^{k}\right)^{\top} \mathcal{K} \nabla f\left(x^{k}\right), \tag{9}
\end{align*}
$$

where \otimes denotes the Kronecker product. This shows that the method is a descent method. Now we are ready to prove the main convergence theorem. We have the following:

$$
\begin{aligned}
f\left(x^{k+1}\right)-f^{*} & \leq\left\langle\nabla f\left(x^{k}\right), x^{k}-x^{*}\right\rangle \leq\left\|x^{k}-x^{*}\right\|_{\mathcal{K}}^{*}\left\|\nabla f\left(x^{k}\right)\right\|_{\mathcal{K}} \\
& \leq R\left(x^{0}\right)\left\|\nabla f\left(x^{k}\right)\right\|_{\mathcal{K}} \quad \forall k \geq 0 .
\end{aligned}
$$

Combining this with inequality (9), we obtain

$$
\mathbb{E}\left[f\left(x^{k+1} \mid \eta_{k}\right] \leq f\left(x^{k}\right)-\frac{\left(f\left(x^{k}\right)-f^{*}\right)^{2}}{2 R^{2}\left(x^{0}\right)}\right.
$$

Taking the expectation of both sides an denoting $\Delta_{k}=\mathbb{E}\left[f\left(x^{k}\right)\right]-f^{*}$ gives

$$
\Delta_{k+1} \leq \Delta_{k}-\frac{\Delta_{k}^{2}}{2 R^{2}\left(x^{0}\right)}
$$

Dividing both sides by $\Delta_{k} \Delta_{k+1}$ and using the fact that $\Delta_{k+1} \leq \Delta_{k}$ we obtain

$$
\frac{1}{\Delta_{k}} \leq \frac{1}{\Delta_{k+1}}-\frac{1}{2 R^{2}\left(x^{0}\right)}
$$

Adding these inequalities for k steps $0 \leq \frac{1}{\Delta_{0}} \leq \frac{1}{\Delta_{k}}-\frac{k}{2 R^{2}\left(x^{0}\right)}$ from which we obtain the statement of the theorem where $C=2 R^{2}\left(x^{0}\right)$.

B Proof of Theorem 5

Proof. In this case, the expectation should be over the selection of the pair $\left(i_{k}, j_{k}\right)$ and random index $l_{k} \in[N]$. In this proof, the definition of η_{k} includes l_{k} i.e., $\eta_{k}=\left\{\left(i_{0}, j_{0}, l_{0}\right), \ldots,\left(i_{k-1}, j_{k-1}, l_{k-1}\right)\right\}$. We define the following:

$$
\begin{aligned}
d_{i_{k}}^{k} & =\left[\begin{array}{ll}
\frac{\alpha_{k}}{2 L}\left[\nabla_{y_{j_{k}}} f_{l_{k}}\left(x^{k}\right)-\nabla_{y_{i_{k}}} f_{l_{k}}\left(x^{k}\right)\right]^{\top}, & \left.-\frac{\alpha_{k}}{L}\left[\nabla_{z_{i_{k}}} f_{l_{k}}\left(x^{k}\right)\right]^{\top}\right]^{\top}, \\
d_{j_{k}}^{k} & =\left[\frac{\alpha_{k}}{2 L}\left[\nabla_{y_{j_{k}}} f_{l_{k}}\left(x^{k}\right)-\nabla_{y_{i_{k}}} f_{l_{k}}\left(x^{k}\right)\right]^{\top},\right. \\
\alpha^{\top} & \frac{\alpha_{k}}{L}\left[\nabla_{z_{j_{k}}} f_{l_{k}}\left(x^{k}\right)\right]^{\top} \\
d_{i_{k} j_{k}}^{l_{k}} & =U_{i_{k}} d_{i_{k}}^{k}-U_{j_{k}} d_{j_{k}}^{k} .
\end{array}\right.
\end{aligned}
$$

For the expectation of objective value at x^{k+1}, we have

$$
\begin{aligned}
& \mathbb{E}\left[f\left(x^{k+1}\right) \mid \eta_{k}\right] \leq \mathbb{E}_{i_{k} j_{k}} \mathbb{E}_{l_{k}}\left[f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), d_{i_{k} j_{k}}^{l_{k}}\right\rangle+\frac{L}{2}\left\|d_{i_{k} j_{k}}^{l_{k}}\right\|^{2}\right] \\
& \leq \mathbb{E}_{i_{k} j_{k}}\left[f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), \mathbb{E}_{l_{k}}\left[d_{i_{k} j_{k}}^{l_{k}}\right]\right\rangle+\frac{L}{2} \mathbb{E}_{l_{k}}\left[\left\|d_{i_{k} j_{k}}^{l_{k}}\right\|^{2}\right]\right] \\
& \leq \mathbb{E}_{i_{k} j_{k}}\left[f\left(x^{k}\right)+\frac{\alpha_{k}}{2 L}\left\langle\nabla_{y_{i_{k}}} f\left(x^{k}\right), \mathbb{E}_{l_{k}}\left[\nabla_{y_{j_{k}}} f_{l_{k}}\left(x^{k}\right)-\nabla_{y_{i_{k}}} f_{l_{k}}\left(x^{k}\right)\right]\right\rangle\right. \\
& \quad+\frac{\alpha_{k}}{2 L}\left\langle\nabla_{y_{j_{k}}} f\left(x^{k}\right), \mathbb{E}_{l_{k}}\left[\nabla_{y_{i_{k}}} f_{l_{k}}\left(x^{k}\right)-\nabla_{y_{j_{k}}} f_{l_{k}}\left(x^{k}\right)\right]\right\rangle \\
& \left.\quad-\frac{\alpha_{k}}{L}\left\langle\nabla_{z_{i_{k}}} f\left(x^{k}\right), \mathbb{E}_{l_{k}}\left[\nabla_{z_{i_{k}}} f_{l_{k}}\left(x^{k}\right)\right]\right\rangle-\frac{\alpha_{k}}{L}\left\langle\nabla_{z_{j_{k}}} f\left(x^{k}\right), \mathbb{E}_{l_{k}}\left[\nabla_{z_{j_{k}}} f_{l_{k}}\left(x^{k}\right)\right]\right\rangle+\frac{L}{2} \mathbb{E}_{l_{k}}\left[\left\|d_{i_{k} j_{k}}^{l_{k}}\right\|^{2}\right]\right] .
\end{aligned}
$$

Taking expectation over l_{k}, we get the following relationship:

$$
\begin{aligned}
\mathbb{E}\left[f\left(x^{k+1}\right) \mid \eta_{k}\right] \leq & \mathbb{E}_{i_{k} j_{k}}\left[f\left(x^{k}\right)+\frac{\alpha_{k}}{2 L}\left\langle\nabla_{y_{i_{k}}} f\left(x^{k}\right), \nabla_{y_{j_{k}}} f\left(x^{k}\right)-\nabla_{y_{i_{k}}} f\left(x^{k}\right)\right\rangle\right. \\
& +\frac{\alpha_{k}}{2 L}\left\langle\nabla_{y_{j_{k}}} f\left(x^{k}\right), \nabla_{y_{i_{k}}} f\left(x^{k}\right)-\nabla_{y_{j_{k}}} f\left(x^{k}\right)\right\rangle \\
& \left.-\frac{\alpha_{k}}{L}\left\langle\nabla_{z_{i_{k}}} f\left(x^{k}\right), \nabla_{z_{i_{k}}} f\left(x^{k}\right)\right\rangle-\frac{\alpha_{k}}{L}\left\langle\nabla_{z_{j_{k}}} f\left(x^{k}\right), \nabla_{z_{j_{k}}} f\left(x^{k}\right)\right\rangle+\frac{L}{2} \mathbb{E}_{l_{k}}\left[\left\|d_{i_{k} j_{k}}^{l_{k}}\right\|^{2}\right]\right] .
\end{aligned}
$$

We first note that $\mathbb{E}_{l_{k}}\left[\left\|d_{i_{k} j_{k}}^{l_{k}}\right\|^{2}\right] \leq 8 M^{2} \alpha_{k}^{2} / L^{2}$ since $\left\|\nabla f_{l}\right\| \leq M$. Substituting this in the above inequality and simplifying we get,

$$
\begin{align*}
\mathbb{E}\left[f\left(x_{k+1}\right) \mid \eta_{k}\right] & \leq f\left(x^{k}\right)-\alpha_{k} \nabla_{y} f\left(x^{k}\right)^{\top}\left(\mathcal{L} \otimes I_{n}\right) \nabla_{y} f\left(x^{k}\right)-\alpha_{k} \nabla_{z} f\left(x^{k}\right)^{\top}\left(\mathcal{D} \otimes I_{n}\right) \nabla_{z} f\left(x^{k}\right)+\frac{4 M^{2} \alpha_{k}^{2}}{L} \\
& \leq f\left(x^{k}\right)-\alpha_{k} \nabla f\left(x^{k}\right)^{\top} \mathcal{K} \nabla f\left(x^{k}\right)+\frac{4 M^{2} \alpha_{k}^{2}}{L} \tag{10}
\end{align*}
$$

Similar to Theorem 3, we obtain a lower bound on $\nabla f\left(x^{k}\right)^{\top} \mathcal{K} \nabla f\left(x^{k}\right)$ in the following manner.

$$
\begin{aligned}
f\left(x^{k}\right)-f^{*} & \leq\left\langle\nabla f\left(x^{k}\right), x^{k}-x^{*}\right\rangle \leq\left\|x^{k}-x^{*}\right\|_{\mathcal{K}}^{*} \cdot\left\|\nabla f\left(x^{k}\right)\right\|_{\mathcal{K}} \\
& \leq R\left(x^{0}\right)\left\|\nabla f\left(x^{k}\right)\right\|_{\mathcal{K}}
\end{aligned}
$$

Combining this with inequality Equation 10, we obtain

$$
\mathbb{E}\left[f\left(x_{k+1}\right) \mid \eta_{k}\right] \leq f\left(x^{k}\right)-\alpha_{k} \frac{\left(f\left(x^{k}\right)-f^{*}\right)^{2}}{R^{2}\left(x^{0}\right)}+\frac{4 M^{2} \alpha_{k}^{2}}{L}
$$

Taking the expectation of both sides an denoting $\Delta_{k}=\mathbb{E}\left[f\left(x^{k}\right)\right]-f^{*}$ gives

$$
\Delta_{k+1} \leq \Delta_{k}-\alpha_{k} \frac{\Delta_{k}^{2}}{R^{2}\left(x^{0}\right)}+\frac{4 M^{2} \alpha_{k}^{2}}{L}
$$

Adding these inequalities from $i=0$ to $i=k$ and use telescopy we get,

$$
\Delta_{k+1}+\sum_{i=0}^{k} \alpha_{i} \frac{\Delta_{k}^{2}}{R^{2}\left(x^{0}\right)} \leq \Delta_{0}+\frac{4 M^{2}}{L} \sum_{i=0}^{k} \alpha_{i}^{2}
$$

Using the definition of $\bar{x}_{k+1}=\arg \min _{0 \leq i \leq k+1} f\left(x_{i}\right)$, we get

$$
\sum_{i=0}^{k} \alpha_{i} \frac{\left(\mathbb{E}\left[f\left(\bar{x}_{k+1}\right)-f^{*}\right]\right)^{2}}{R^{2}\left(x^{0}\right)} \leq \Delta_{k+1}+\sum_{i=0}^{k} \alpha_{i} \frac{\Delta_{k}^{2}}{R^{2}\left(x^{0}\right)} \leq \Delta_{0}+\frac{4 M^{2}}{L} \sum_{i=0}^{k} \alpha_{i}^{2}
$$

Therefore, from the above inequality we have,

$$
\mathbb{E}\left[f\left(\bar{x}_{k+1}\right)-f^{*}\right] \leq R\left(x^{0}\right) \sqrt{\frac{\left(\Delta_{0}+4 M^{2} \sum_{i=0}^{k} \alpha_{i}^{2} / L\right)}{\sum_{i=0}^{k} \alpha_{i}}}
$$

Note that $\mathbb{E}\left[f\left(\bar{x}_{k+1}\right)-f^{*}\right] \rightarrow 0$ if we choose step sizes satisfying the condition that $\sum_{i=0}^{\infty} \alpha_{i}=\infty$ and $\sum_{i=0}^{\infty} \alpha_{i}^{2}<\infty$. Substituting $\alpha_{i}=\sqrt{\Delta_{0} L} /(2 M \sqrt{i+1})$, we get the required result using the reasoning from [24] (we refer the reader to Section 2.2 of [24] for more details).

C Proof of Theorem 4

Proof. For ease of exposition, we analyze the case where the unconstrained variables z are absent. The analysis of case with z variables can be carried out in a similar manner. Consider the update on edge $\left(i_{k}, j_{k}\right)$. Recall that $D(k)$ denotes the index of the iterate used in the $k^{\text {th }}$ iteration for calculating the gradients. Let $d^{k}=\frac{\alpha_{k}}{2 L}\left(\nabla_{y_{j_{k}}} f\left(x^{D(k)}\right)-\nabla_{y_{i_{k}}} f\left(x^{D(k)}\right)\right)$
and $d_{i_{k} j_{k}}^{k}=x^{k+1}-x^{k}=U_{i_{k}} d^{k}-U_{j_{k}} d^{k}$. Note that $\left\|d_{i_{k} j_{k}}^{k}\right\|^{2}=2\left\|d^{k}\right\|^{2}$. Since f is Lipschitz continuous gradient, we have

$$
\begin{aligned}
f\left(x^{k+1}\right) & \leq f\left(x^{k}\right)+\left\langle\nabla_{y_{i_{k}} y_{j_{k}}} f\left(x^{k}\right), d_{i_{k} j_{k}}^{k}\right\rangle+\frac{L}{2}\left\|d_{i_{k} j_{k}}^{k}\right\|^{2} \\
& \leq f\left(x^{k}\right)+\left\langle\nabla_{y_{i_{k}} y_{j_{k}}} f\left(x^{D(k)}\right)+\nabla_{y_{i_{k}} y_{j_{k}}} f\left(x^{k}\right)-\nabla_{y_{i_{k}} y_{j_{k}}} f\left(x^{D(k)}\right), d_{i_{k} j_{k}}^{k}\right\rangle+\frac{L}{2}\left\|d_{i_{k} j_{k}}^{k}\right\|^{2} \\
& \leq f\left(x^{k}\right)-\frac{L}{\alpha_{k}}\left\|d_{i_{k} j_{k}}^{k}\right\|^{2}+\left\langle\nabla_{y_{i_{k}} y_{j_{k}}} f\left(x^{k}\right)-\nabla_{y_{i_{k}} y_{j_{k}}} f\left(x^{D(k)}\right), d_{i_{k} j_{k}}^{k}\right\rangle+\frac{L}{2}\left\|d_{i_{k} j_{k}}^{k}\right\|^{2} \\
& \leq f\left(x^{k}\right)-L\left(\frac{1}{\alpha_{k}}-\frac{1}{2}\right)\left\|d_{i_{k} j_{k}}^{k}\right\|^{2}+\left\|\nabla_{y_{i_{k}} y_{j_{k}}} f\left(x^{k}\right)-\nabla_{y_{i_{k}} y_{j_{k}}} f\left(x^{D(k)}\right)\right\|\left\|d_{i_{k} j_{k}}^{k}\right\| \\
& \leq f\left(x^{k}\right)-L\left(\frac{1}{\alpha_{k}}-\frac{1}{2}\right)\left\|d_{i_{k} j_{k}}^{k}\right\|^{2}+L\left\|x^{k}-x^{D(k)}\right\|\left\|d_{i_{k} j_{k}}^{k}\right\| .
\end{aligned}
$$

The third and fourth steps in the above derivation follow from definition of $d_{i j}^{k}$ and Cauchy-Schwarz inequality respectively. The last step follows from the fact the gradients are Lipschitz continuous. Using the assumption that staleness in the variables is bounded by τ, i.e., $k-D(k) \leq \tau$ and definition of $d_{i j}^{k}$, we have

$$
\begin{aligned}
f\left(x^{k+1}\right) & \leq f\left(x^{k}\right)-L\left(\frac{1}{\alpha_{k}}-\frac{1}{2}\right)\left\|d_{i_{k} j_{k}}^{k}\right\|^{2}+L\left(\sum_{t=1}^{\tau}\left\|d_{i_{k-t} j_{k-t}}^{k-t}\right\|\left\|d_{i_{k} j_{k}}^{k}\right\|\right) \\
& \leq f\left(x^{k}\right)-L\left(\frac{1}{\alpha_{k}}-\frac{1}{2}\right)\left\|d_{i_{k} j_{k}}^{k}\right\|^{2}+\frac{L}{2}\left(\sum_{t=1}^{\tau}\left[\left\|d_{i_{k-t} j_{k-t}}^{k-t}\right\|^{2}+\left\|d_{i_{k} j_{k}}^{k}\right\|^{2}\right]\right) \\
& \leq f\left(x^{k}\right)-L\left(\frac{1}{\alpha_{k}}-\frac{1+\tau}{2}\right)\left\|d_{i_{k} j_{k}}^{k}\right\|^{2}+\frac{L}{2} \sum_{t=1}^{\tau}\left\|d_{i_{k-t} j_{k-t}}^{k-t}\right\|^{2} .
\end{aligned}
$$

The first step follows from triangle inequality. The second inequality follows from fact that $a b \leq\left(a^{2}+b^{2}\right) / 2$. Using expectation over the edges, we have

$$
\begin{equation*}
\mathbb{E}\left[f\left(x^{k+1}\right)\right] \leq \mathbb{E}\left[f\left(x^{k}\right)\right]-L\left(\frac{1}{\alpha_{k}}-\frac{1+\tau}{2}\right) \mathbb{E}\left[\left\|d_{i_{k} j_{k}}^{k}\right\|^{2}\right]+\frac{L}{2} \mathbb{E}\left[\sum_{t=1}^{\tau}\left\|d_{i_{k-t} j_{k-t}}^{k-t}\right\|^{2}\right] \tag{11}
\end{equation*}
$$

We now prove that, for all $k \geq 0$

$$
\begin{equation*}
\mathbb{E}\left[\left\|d_{i_{k-1} j_{k-1}}^{k-1}\right\|^{2}\right] \leq \rho \mathbb{E}\left[\left\|d_{i_{k} j_{k}}^{k}\right\|^{2}\right] \tag{12}
\end{equation*}
$$

where we define $\mathbb{E}\left[\left\|d_{i_{k-1} j_{k-1}}^{k-1}\right\|^{2}\right]=0$ for $k=0$. Let w^{t} denote the vector of size $|E|$ such that $w_{i j}^{t}=\sqrt{p_{i j}}\left\|d_{i j}^{t}\right\|$ (with slight abuse of notation, we use $w_{i j}^{t}$ to denote the entry corresponding to edge $\left.(i, j)\right)$. Note that $\mathbb{E}\left[\left\|d_{i_{t} j_{t}}^{t}\right\|^{2}\right]=\mathbb{E}\left[\left\|w^{t}\right\|^{2}\right]$. We prove Equation (12) by induction.
Let u^{k} be a vector of size $|E|$ such that $u_{i j}^{k}=\sqrt{p_{i j}}\left\|d_{i j}^{k}-d_{i j}^{k-1}\right\|$. Consider the following:

$$
\begin{align*}
\mathbb{E}\left[\left\|w^{k-1}\right\|\right]^{2}-\mathbb{E}\left[\left\|w^{k}\right\|^{2}\right] & =\mathbb{E}\left[2\left\|w^{k-1}\right\|\right]^{2}-\mathbb{E}\left[\left\|w^{k}\right\|^{2}+\left\|w^{k-1}\right\|^{2}\right] \\
& \leq 2 \mathbb{E}\left[\left\|w^{k-1}\right\|^{2}\right]-2 \mathbb{E}\left[\left\langle w^{k-1}, w^{k}\right\rangle\right] \\
& \leq 2 \mathbb{E}\left[\left\|w^{k-1}\right\|\left\|w^{k-1}-w^{k}\right\|\right] \\
& \leq 2 \mathbb{E}\left[\left\|w^{k-1}\right\|\left\|u^{k}\right\|\right] \leq 2 \mathbb{E}\left[\left\|w^{k-1}\right\| \sqrt{2} \alpha_{k}\left\|x^{D(k)}-x^{D(k-1)}\right\|\right] \\
& \leq \sqrt{2} \alpha_{k} \sum_{t=\min (D(k-1), D(k))}^{\max (D(k-1), D(k))}\left(\mathbb{E}\left[\left\|w^{k-1}\right\|^{2}\right]+\mathbb{E}\left[\left\|d_{i_{t} j_{t}}^{t}\right\|^{2}\right]\right) . \tag{13}
\end{align*}
$$

The fourth step follows from the bound below on $\left|u_{i j}^{k}\right|$

$$
\begin{aligned}
\left|u_{i j}^{k}\right| & =\sqrt{p_{i j}}\left\|d_{i j}^{k}-d_{i j}^{k-1}\right\| \\
& \leq \sqrt{p_{i j}}\left\|\left(U_{i}-U_{j}\right) \frac{\alpha_{k}}{2 L}\left(\nabla_{y_{i}} f\left(x^{D(k)}\right)-\nabla_{y_{j}} f\left(x^{D(k)}\right)+\nabla_{y_{j}} f\left(x^{D(k-1)}\right)-\nabla_{y_{i}} f\left(x^{D(k-1)}\right)\right)\right\| \\
& \leq \sqrt{2 p_{i j}} \alpha_{k}\left\|x^{D(k)}-x^{D(k-1)}\right\| .
\end{aligned}
$$

The fifth step follows from triangle inequality. We now prove (12): the induction hypothesis is trivially true for $k=0$. Assume it is true for some $k-1 \geq 0$. Now using Equation (13), we have

$$
\mathbb{E}\left[\left\|w^{k-1}\right\|\right]^{2}-\mathbb{E}\left[\left\|w^{k}\right\|^{2}\right] \leq \sqrt{2} \alpha_{k}(\tau+2) \mathbb{E}\left[\left\|w^{k-1}\right\|^{2}\right]+\sqrt{2} \alpha_{k}(\tau+2) \rho^{\tau+1} \mathbb{E}\left[\left\|w^{k}\right\|^{2}\right]
$$

for our choice of α_{k}. The last step follows from the fact that $\mathbb{E}\left[\left\|d_{i_{t} j_{t}}^{t}\right\|^{2}\right]=\mathbb{E}\left[\left\|w^{t}\right\|^{2}\right]$ and mathematical induction. From the above, we get

$$
\mathbb{E}\left[\left\|w^{k-1}\right\|^{2}\right] \leq \frac{1+\sqrt{2} \alpha_{k}(\tau+2) \rho^{(\tau+1)}}{1-\sqrt{2} \alpha_{k}(\tau+2)} \mathbb{E}\left[\left\|w^{k}\right\|^{2}\right] \leq \rho \mathbb{E}\left[\left\|w^{k}\right\|^{2}\right] .
$$

Thus, the statement holds for k. Therefore, the statement holds for all $k \in \mathbb{N}$ by mathematical induction. Substituting the above in Equation (11), we get

$$
\mathbb{E}\left[f\left(x^{k+1}\right)\right] \leq \mathbb{E}\left[f\left(x^{k}\right)\right]-L\left(\frac{1}{\alpha_{k}}-\frac{1+\tau+\tau \rho^{\tau}}{2}\right) \mathbb{E}\left[\left\|d_{i_{k} j_{k}}^{k}\right\|^{2}\right]
$$

This proves that the method is a descent method in expectation. Using the definition of $d_{i j}^{k}$, we have

$$
\begin{aligned}
\mathbb{E}\left[f\left(x^{k+1}\right)\right] & \leq \mathbb{E}\left[f\left(x^{k}\right)\right]-\frac{\alpha_{k}^{2}}{4 L}\left(\frac{1}{\alpha_{k}}-\frac{1+\tau+\tau \rho^{\tau}}{2}\right) \mathbb{E}\left[\left\|\nabla_{y_{i_{k}}} f\left(x^{D(k)}\right)-\nabla_{y_{j_{k}}} f\left(x^{D(k)}\right)\right\|^{2}\right] \\
& \leq \mathbb{E}\left[f\left(x^{k}\right)\right]-\frac{\alpha_{k}^{2}}{4 L}\left(\frac{1}{\alpha_{k}}-\frac{1+\tau+\tau \rho^{\tau}}{2}\right) \mathbb{E}\left[\left\|\nabla f\left(x^{D(k)}\right)-\nabla f\left(x^{D(k)}\right)\right\|_{\mathcal{K}}^{2}\right] \\
& \leq \mathbb{E}\left[f\left(x^{k}\right)\right]-\frac{\alpha_{k}^{2}}{2 R^{2}\left(x^{0}\right)}\left(\frac{1}{\alpha_{k}}-\frac{1+\tau+\tau \rho^{\tau}}{2}\right) \mathbb{E}\left[\left(f\left(x^{D(k)}\right)-f^{*}\right)^{2}\right] \\
& \leq \mathbb{E}\left[f\left(x^{k}\right)\right]-\frac{\alpha_{k}^{2}}{2 R^{2}\left(x^{0}\right)}\left(\frac{1}{\alpha_{k}}-\frac{1+\tau+\tau \rho^{\tau}}{2}\right) \mathbb{E}\left[\left(f\left(x^{k}\right)-f^{*}\right)^{2}\right] .
\end{aligned}
$$

The second and third steps are similar to the proof of Theorem 3. The last step follows from the fact that the method is a descent method in expectation. Following similar analysis as Theorem 3, we get the required result.

D Proof of Theorem 6

Proof. Let $A x=\sum_{i} x_{i}$. Let \tilde{x}_{k+1} be solution to the following optimization problem:

$$
\tilde{x}^{k+1}=\arg \min _{\{x \mid A x=0\}}\left\langle\nabla f\left(x^{k}\right), x-x^{k}\right\rangle+\frac{L}{2}\left\|x-x^{k}\right\|^{2}+h(x)
$$

To prove our result, we first prove few intermediate results. We say vectors $d \in \mathbb{R}^{n}$ and $d^{\prime} \in \mathbb{R}^{n}$ are conformal if $d_{i} d_{i}^{\prime} \geq 0$ for all $i \in[b]$. We use $d_{i_{k} j_{k}}=x^{k+1}-x^{k}$ and $d=\tilde{x}^{k+1}-x^{k}$. Our first claim is that for any d, we can always find conformal vectors whose sum is d (see [22]). More formally, we have the following result.

Lemma 7. For any $d \in \mathbb{R}^{n}$ with $A d=0$, we have a multi-set $S=\left\{d_{i j}^{\prime}\right\}_{i \neq j}$ such that d and $d_{i j}^{\prime}$ are conformal for all $i \neq j$ and $i, j \in[b]$ i.e., $\sum_{i \neq j} d_{i j}^{\prime}=d, A d_{i j}^{\prime}=0$ and $d_{i j}^{\prime}$ can be non-zero only in coordinates corresponding to x_{i} and x_{j}.

Proof. We prove by an iterative construction, i.e., for every vector d such that $A d=0$, we construct a set $S=\left\{s_{i j}\right\}$ $\left(s_{i j} \in \mathbb{R}^{n}\right)$ with the required properties. We start with a vector $u^{0}=d$ and multi-set $S^{0}=\left\{s_{i j}^{0}\right\}$ and $s_{i j}^{0}=0$ for all $i \neq j$ and $i, j \in[n]$. At the $k^{\text {th }}$ step of the construction, we will have $A u^{k}=0, A s=0$ for all $s \in S^{k}, d=u^{k}+\sum_{s \in S^{k}} s$ and each element of s is conformal to d.

In $k^{\text {th }}$ iteration, pick the element with the smallest absolute value (say v) in u^{k-1}. Let us assume it corresponds to y_{p}^{j}. Now pick an element from u^{k-1} corresponding to y_{q}^{j} for $p \neq q \in[m]$ with at least absolute value v albeit with opposite sign. Note that such an element should exist since $A u^{k-1}=0$. Let p_{1} and p_{2} denote the indices of these elements in u^{k-1}. Let S^{k} be same as S^{k-1} except for $s_{p q}^{k}$ which is given by $s_{p q}^{k}=s_{p q}^{k-1}+r=s_{p q}^{k-1}+u_{p_{1}}^{k-1} e_{p_{1}}-u_{p_{1}}^{k-1} e_{p_{2}}$ where e_{i} denotes a vector in \mathbb{R}^{n} with zero in all components except in $i^{\text {th }}$ position (where it is one). Note that $A r=0$ and r is conformal to d since it has the same sign. Let $u^{k+1}=u^{k}-r$. Note that $A u^{k+1}=0$ since $A u^{k}=0$ and $A r=0$. Also observe that $A s=0$ for all $s \in S^{k+1}$ and $u^{k+1}=\sum_{s \in S^{k}} s=d$.

Finally, note that each iteration the number of non-zero elements of u^{k} decrease by at least 1 . Therefore, this algorithm terminates after a finite number of iterations. Moreover, at termination $u^{k}=0$ otherwise the algorithm can always pick an element and continue with the process. This gives us the required conformal multi-set.

Now consider a set $\left\{d_{i j}^{\prime}\right\}$ which is conformal to d. We define \hat{x}_{k+1} in the following manner:

$$
\hat{x}_{i}^{k+1}= \begin{cases}x_{i}^{k}+d_{i j}^{\prime} & \text { if }(i, j)=\left(i_{k}, j_{k}\right) \\ x_{i}^{k} & \text { if }(i, j) \neq\left(i_{k}, j_{k}\right)\end{cases}
$$

Lemma 8. For any $x \in \mathbb{R}^{n}$ and $k \geq 0$,

$$
\mathbb{E}\left[\left\|\hat{x}^{k+1}-x^{k}\right\|^{2} \leq \lambda\left(\left\|\tilde{x}^{k+1}-x^{k}\right\|^{2}\right)\right.
$$

We also have

$$
\mathbb{E}\left(h\left(\hat{x}^{k+1}\right)\right) \leq(1-\lambda) h\left(x^{k}\right)+\lambda h\left(\tilde{x}^{k+1}\right)
$$

Proof. We have the following bound:

$$
\mathbb{E}_{i_{k} j_{k}}\left[\left\|\hat{x}^{k+1}-x^{k}\right\|^{2}=\lambda \sum_{i \neq j}\left\|d_{i j}^{\prime}\right\|^{2} \leq \lambda\left\|\sum_{i \neq j} d_{i j}^{\prime}\right\|^{2}=\lambda\|d\|^{2}=\lambda\left\|\tilde{x}^{k+1}-x^{k}\right\|^{2}\right.
$$

The above statement directly follows the fact that $\left\{d_{i j}^{\prime}\right\}$ is conformal to d. The remaining part directly follows from [22].

The remaining part essentially on similar lines as [22]. We give the details here for completeness. From Lemma 1, we have

$$
\begin{aligned}
\mathbb{E}_{i_{k} j_{k}}\left[F\left(x^{k+1}\right)\right] & \leq \mathbb{E}_{i_{k} j_{k}}\left[f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), d_{i_{k} j_{k}}\right\rangle+\frac{L}{2}\left\|d_{i_{k} j_{k}}\right\|^{2}+h\left(x^{k}+d_{i_{k} j_{k}}\right)\right] \\
& \leq \mathbb{E}_{i_{k} j_{k}}\left[f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), d_{i_{k} j_{k}}^{\prime}\right\rangle+\frac{L}{2}\left\|d_{i_{k} j_{k}}^{\prime}\right\|^{2}+h\left(x^{k}+d_{i_{k} j_{k}}^{\prime}\right)\right] \\
& =f\left(x^{k}\right)+\lambda\left(\left\langle\nabla f(x), \sum_{i \neq j} d_{i j}^{\prime}\right\rangle+\sum_{i \neq j} \frac{L}{2}\left\|d_{i j}^{\prime}\right\|^{2}+\sum_{i \neq j} h\left(x+d_{i j}^{\prime}\right)\right) \\
& \leq(1-\lambda) F\left(x^{k}\right)+\lambda\left(f\left(x^{k}\right)+\langle\nabla f(x), d\rangle+\frac{L}{2}\|d\|^{2}+h(x+d)\right) \\
& \leq \min _{\{y \mid A y=0\}}(1-\lambda) F\left(x^{k}\right)+\lambda\left(F(y)+\frac{L}{2}\left\|y-x^{k}\right\|^{2}\right) \\
& \leq \min _{\beta \in[0,1]}(1-\lambda) F\left(x^{k}\right)+\lambda\left(F\left(\beta x^{*}+(1-\beta) x^{k}\right)+\frac{\beta^{2} L}{2}\left\|x^{k}-x^{*}\right\|^{2}\right) \\
& \leq(1-\lambda) F\left(x^{k}\right)+\lambda\left(F\left(x^{k}\right)-\frac{2\left(F\left(x^{k}\right)-F\left(x^{*}\right)\right)^{2}}{L R^{2}\left(x^{0}\right)}\right)
\end{aligned}
$$

The second step follows from optimality of $d_{i_{k} j_{k}}$. The fourth step follows from Lemma 8. Now using the similar recurrence relation as in Theorem 2, we get the required result.

E Reduction of General Case

In this section we show how to reduce a problem with linear constraints to the form of Problem 4 in the paper. For simplicity, we focus on smooth objective functions. However, the formulation can be extended to composite objective functions along similar lines. Consider the optimization problem

$$
\begin{gathered}
\min _{x} f(x) \\
\text { s.t. } A x=\sum A_{i} x_{i}=0,
\end{gathered}
$$

where f_{i} is a convex function with an L-Lipschitz gradient.
Let \bar{A}_{i} be a matrix with orthonormal columns satisfying range $\left(\bar{A}_{i}\right)=\operatorname{ker}\left(A_{i}\right)$, this can be obtained (e.g. using SVD). For each i, define $y_{i}=A_{i} x_{i}$ and assume that the rank of A_{i} is less than or equal to the dimensionality of x_{i}. ${ }^{4}$ Then we can rewrite x as a function $h(y, z)$ satisfying

$$
x_{i}=A_{i}^{+} y_{i}+\bar{A}_{i} z_{i},
$$

for some unknown z_{i}, where C^{+}denote the pseudo-inverse of C. The problem then becomes

$$
\begin{equation*}
\min _{y, z} g(y, z) \text { s.t. } \sum_{i=1}^{N} y_{i}=0, \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
g(y, z)=f(\phi(y, z))=f\left(\sum_{i} U_{i}\left(A_{i}^{+} y_{i}+\bar{A}_{i} z_{i}\right)\right) . \tag{15}
\end{equation*}
$$

It is clear that the sets $S_{1}=\{x \mid A x=0\}$ and $S_{2}=\left\{\phi(y, z) \mid \sum_{i} y_{i}=0\right\}$ are equal and hence the problem defined in 14 is equivalent to that in 1.
Note that such a transformation preserves convexity of the objective function. It is also easy to show that it preserves the block-wise Lipschitz continuity of the gradients as we prove in the following result.
Lemma 9. Let f be a function with L_{i}-Lipschitz gradient w.r.t x_{i}. Let $g(y, z)$ be the function defined in 15 . Then g satisfies the following condition

$$
\begin{array}{r}
\left\|\nabla_{y_{i}} g(y, z)-\nabla_{y_{i}} g\left(y^{\prime}, z\right)\right\| \leq \frac{L_{i}}{\sigma_{\min }^{2}\left(A_{i}\right)}\left\|y_{i}-y_{i}^{\prime}\right\| \\
\left\|\nabla_{z_{i}} g(y, z)-\nabla_{z_{i}} g\left(y, z^{\prime}\right)\right\| \leq L_{i}\left\|z_{i}-z_{i}^{\prime}\right\|,
\end{array}
$$

where $\sigma_{\min }(B)$ denotes the minimum non-zero singular value of B.
Proof. We have

$$
\begin{aligned}
\left\|\nabla_{y_{i}} g(y, z)-\nabla_{y_{i}} g\left(y^{\prime}, z\right)\right\| & =\left\|\left(U_{i} A_{i}^{+}\right)^{\top}\left[\nabla_{x} f(\phi(y, z))-\nabla_{x} f\left(\phi\left(y^{\prime}, z\right)\right)\right]\right\| \\
& \leq\left\|A_{i}^{+}\right\|\left\|\nabla_{i} f(\phi(y, z))-\nabla_{i} f\left(\phi\left(y^{\prime}, z\right)\right)\right\| \\
& \leq L_{i}\left\|A_{i}^{+}\right\|\left\|A_{i}^{+}\left(y_{i}-y_{i}^{\prime}\right)\right\| \leq L_{i}\left\|A_{i}^{+}\right\|^{2}\left\|y_{i}-y_{i}^{\prime}\right\|=\frac{L_{i}}{\sigma_{\min }^{2}\left(A_{i}\right)}\left\|y_{i}-y_{i}^{\prime}\right\|,
\end{aligned}
$$

Similar proof holds for $\left\|\nabla_{z_{i}} g(y, z)-\nabla_{z_{i}} g\left(y, z^{\prime}\right)\right\|$, noting that $\left\|\bar{A}_{i}\right\|=1$.
It is worth noting that this reduction is mainly used to simplify analysis. In practice, however, we observed that an algorithm that operates directly on the original variables x_{i} (i.e. Algorithm 1) converges much faster and is much less sensitive to the conditioning of A_{i} compared to an algorithm that operates on y_{i} and z_{i}. Indeed, with appropriate step sizes, Algorithm 1 minimizes, in each step, a tighter bound on the objective function compared to the bound based 14 as stated in the following result.

[^0]Lemma 10. Let g and ϕ be as defined in 15. And let

$$
d_{i}=A_{i}^{+} d_{y_{i}}+\bar{A}_{i} d_{z_{i}}
$$

Then, for any d_{i} and d_{j} satisfying $A_{i} d_{i}+A_{j} d_{j}=0$ and any feasible $x=\phi(y, z)$ we have

$$
\begin{aligned}
& \left\langle\nabla_{i} f(x), d_{i}\right\rangle+\left\langle\nabla_{j} f(x), d_{j}\right\rangle+\frac{L_{i}}{2 \alpha}\left\|d_{i}\right\|^{2}+\frac{L_{j}}{2 \alpha}\left\|d_{j}\right\|^{2} \\
& \leq\left\langle\nabla_{y_{i}} g(y, z), d_{y_{i}}\right\rangle+\left\langle\nabla_{z_{i}} g(y, z), d_{z_{i}}\right\rangle+\left\langle\nabla_{y_{j}} g(y, z), d_{y_{j}}\right\rangle+\left\langle\nabla_{z_{j}} g(y, z), d_{z_{j}}\right\rangle \\
& +\frac{L_{i}}{2 \alpha \sigma_{\min }^{2}\left(A_{i}\right)}\left\|d_{y_{i}}\right\|^{2}+\frac{L_{i}}{2 \alpha}\left\|d_{z_{i}}\right\|^{2}+\frac{L_{j}}{2 \alpha \sigma_{\min }^{2}\left(A_{j}\right)}\left\|d_{y_{j}}\right\|^{2}+\frac{L_{j}}{2 \alpha}\left\|d_{z_{j}}\right\|^{2} .
\end{aligned}
$$

Proof. The proof follows directly from the fact that

$$
\nabla_{i} f(x)=A_{i}^{+\top} \nabla_{y_{i}} g(y, z)+\bar{A}_{i}^{\top} \nabla_{z_{i}} g(y, z)
$$

[^0]: ${ }^{4}$ If the rank constraint is not satisfied then one solution is to use a coarser partitioning of x so that the dimensionality of x_{i} is large enough.

