Appendix
A.1 Proof of Theorem 1

Theorem 1 (Backward consistency of U-SGD with sample average). If the feature representation is tabular, the vectors u
and 0 are initially set to zero, and 0 < n < 1, then U-SGD defined by (5)-(7) degenerates to the recency-weighted average
estimator defined by (3) and (4), in the sense that each component of the parameter vector 0,11 of U-SGD becomes the
recency-weighted average estimator of the corresponding input.

Proof. Consider that £ samples have been observed and among them ¢, samples correspond to input . Hence, ) t, =
t. Let Y, j, denote the kth output corresponding to input z. Then the recency-weighted average estimator of v(z) given
overall data up to ¢ can be equivalently redefined in the following way:
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Consider that the ith feature corresponds to input x. Then it is equivalent to prove that [6;1]; = f/tﬁ 1, where [-]; denotes
the ith component of a vector.

We prove by induction. First we show that [u;11]; = Ut”l. By assumption, [u;]; = U; = 0. Now, consider that
[ut]; = U(¢—1),+1. Then the ith component of u;,; can be written as

[arsi]i = (1= nlee]?) [ueli + [l
If the ¢th input is not «, then t,, = (¢ — 1), and [¢;]; = 0. Hence
[eali = (1= 0)Uq—1),41 +0 = U1y, 41 = Up,41.
On the other hand, if the ¢th input is , then ¢, = (¢ — 1), + 1 and [¢p;]; = 1. Hence,
)i = (L= nUp-1),41+1=1—n)U;, + 1 =T, 41.

Hence, [av;11]; = Ut,l,ﬂ ,if t, > 0, or [ay1]; = 0, otherwise.

Now, by assumption, [01]; = 171 = 0. Consider [8;]; = f/(t,l)ﬁl and t, > 0. Then the ith component of 8,1 can be
written as

[0:11]i = [04]; + [ows1)i (Vi — 0 by [
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If the tth input is not x, then [0:11]; = ‘7(t71)z+1 +0= ‘Z&mﬂ.
On the other hand, if the ¢th input is z, then Y; = Y, ; and
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The only case that is left is when ¢, = 0. In this case, the ¢th input cannot be z, and \N/tﬁl = f/(t,l)ﬁl =
Then
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A.2 Proof of Theorem 2

Theorem 2 (Backward consistency of WIS-SGD-1 with WIS). If the feature representation is tabular, the vectors u and 6
are initially set to zero, and 0 < n < 1, then WIS-SGD-1 defined by (10)-(12) degenerates to recency-weighted WIS defined
by (8) and (9) with Y}, = GIH'1 and Wy, = p?‘l in the sense that each component of the parameter vector of WIS-SGD-1

OII% becomes the recency- wezghted WIS estimator of the corresponding input.

Proof. The proof is similar to that of Theorem 1.

Consider that data is available up to time ¢ 4+ 1, among which state s was visited on ¢ steps. Let Giﬁf denote the kth flat

truncated return originated from state s and pHl its corresponding importance-sampling ratio. Then the recency-weighted

WIS estimator of v(s) given overall data up to ¢ 4+ 1 can be equivalently redefined in the following way:
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Ut5+1 =(1- W)UtS + Pst,s Uy =0.

Consider that the 7th feature corresponds to input s. Then it is equivalent to prove that [Of/ﬂ] = Vttsfrll, where [-]; denotes

the ¢th component of a vector. By abuse of notation, we drop all the ¢ 4+ 1 from superscripts, as it is redundant in this proof.

We prove by induction. First we show that [u,,,]; = U, ,,. By assumption, [u]; = U, = 0. Considering [u,]; =
U( t—1)ot1° Then the ith component of u,, ; can be written as

[1)i = (1=l i + o[l

If the state at time ¢ is not s, then t, = (¢ — 1), and [¢;]; = 0. Hence
[w, )i = (1 - O)Uv(tfl)sﬂ +0= U(t Dedl = =Up, 11

On the other hand, if the state at time ¢ is s, then t; = (t — 1)s + 1, [¢p¢]; = L and p, = pst Hence,
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Hence, [0 1] = if t, > 0, or o, 1]; = 0, otherwise.
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Now, by assumption, [6,]; = V;, = 0. Considering [0,]; = 1_/(,571)5 41 and t5 > 0, the ith component of 6,  ; can be written
as

[0,41]i = [0,]i + [cv;44] 'Pt (G — ¢/ 0, ) [
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If the state at time ¢ is not s, then [0, 1]; = Vis_1).41 + 0 = Vi 41.

If the state at time ¢ is not s, then p, = p, , , G, = G, and
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The only case that is left is when ¢, = 0. In this case, the the state at time ¢ cannot be s, and Vi1 = V(t_l)SH =...=
Vo = 0. Then
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A.3 Proof of Theorem 3
Theorem 3 (Online equivalence technique). Consider any forward view that updates toward an interim scalar target Y
with

0. =F0, " + Y Wi +xp, 0<k<t+1,
where 0} = 0y for some initial 6, and both Fj, € R"*"™ and wy, € R™ can be computed using data available at k. Assume
that the temporal difference th+1 — Y} at k is related to the temporal difference at k + 1 as follows:
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V- Y! = dp (Y;fﬂ* Vi )+ btngCja 0<k<t,
j=kt1

where by, ci, di, and gy, are scalars that can be computed using data available at time k. Then the final weight 01 i@fﬂ
can be computed through the following backward-view update, withe_, =0, dg = 0, and t > 0:
e, =w; +diFiey_q,
0,41 =F.0; + (Ytt+1 — Y e, + Yiw, + b Fidy + %,
diy1 = ¢ Fids + grey.

Proof. We can write the difference between two consecutive estimates as
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=F, (07" —0)) + Y/ 'wy, + (F, —1)0; +x.
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The vectors e; and d; can be incrementally updated as follows:
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Then plugging back in

011 = 0! +F, (07 —0!) + Y w, + (F, —1)6! +x,
=0, + d;Fer 1 (V" = V)) + bFedy + Y/ wy + (Fe =18 + %,
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A.4 Proof of Theorem 4

Theorem 4 (Generality of the new equivalence technique). The online equivalence technique by van Hasselt, Mahmood
and Sutton (2014, Theorem 1) can be retrieved as a special case from the online equivalence technique given in Theorem
3.

Proof. We describe the online equivalence technique by van Hasselt et al. (2014) in the following.
Consider any forward view that updates toward an interim scalar target Y;! with
0,1 =0+ (VT — 90, ¢+ %1, 0 < k <t

where 8% = 6, for some initial 6. Assume that the temporal difference Y,/ ™ — Y} at k is related to the temporal difference
at k + 1 as follows:

Vi -V = dea (VT V), 0< k< t,

where dy, is a scalar that can be computed using data available at time k. Then the final weight 8,1 i@fﬂ can be computed
through the following backward-view update, withe_; = 0 and ¢ > 0:

e = e+ di(I— Nt¢t¢:)et71a
041 =06, + (Yttﬂ - Ytt)et + ,Ut(Ytt - ¢:0t)¢t + X¢.

The above equivalence technique can be obtained from Theorem 3 as a special case by substituting Fr, = I — up ¢y gi);,
Wk:,uk¢k andbkzo. O

A.5 Proof of Theorem 5

Theorem 5 (Backward view update for a; of WIS-TD())). The step-size vector a; computed by the following backward-
view update and the forward-view update defined by (18) — (20) are equal at each step t:

w1 = (1 —ndo¢y) o+ pipr oy + (pr — 1)y (1 —npy 0 @) o vy, (22)
Vil = Yedepr (1 —nde 0 @) o Vi + prpy o @y, (23)
[0 7R =1 (%) Ug41- (24)

Proof. First, note that the component-wise vector multiplication in (19) can be written equivalently as a matrix-vector
multiplication in the following way:

(1 —nepy 0 px) oujt = (I — nDiag (¢r o @) ul,
where Diag(v) € RIVI*IV is a diagonal matrix with the components of v in its diagonal.

In Theorem 3, we substitute 07" = ut™!, Fy, = (I — nDiag (¢1, 0 ¢r)), X1, = 0, Wy, = ¢, 0 ¢p and Y/ T = pitt.

Now, ﬁfjl can be recursively in ¢ written as follows
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Hence, it proves that

t—1
VIV = din (V=Y +bge [ [ e, 0 <k <t
j=k+1
with d; = 0, b; = (p; — 1)7i\i, g = pi and ¢; = v\ p;, Vi
Inserting these substitutes in Theorem 3 yields us the backward-view defined by (22) — (24). ]

A.6 Proof of Theorem 6

Theorem 6 (Backward view update for 8} of WIS-TD(\)). The parameter vector 8, computed by the following backward-
view update and the parameter vector 0} computed by the forward-view update defined by (17) and (21) are equal at every
time step t:

e = prQui1 0 @ + Vehipr (€11 — pr (Cuy1 0 @) P €4-1) (25)
041 = 0+ i1 0p (010 — 0] d1) i + (Rev1 + 71110, Pri1 — 0,11 )ey

+ (pr — Dyede (de — pe (g1 0 @) @) dy) (26)

diy1 = v et (dt — pt (a1 0 Py) ¢:dt) + (Rt+l + 9t—r¢t+1 - 9:—1¢t) €. (27)

Proof. First, we redefine (21) for convenience:
015 = 01" + csr o i (Cf 01— @O ) b 28)
where G, ;| = pi(}, .- Hence, (7, .| can be given by:

t
Chor1 = Ch ((1 =) G e (G + ¢:+19t)) +y . Gt ((1 — )G + (1= N) (Gl + ¢:9i71))
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In Theorem 3, we substitute Fy, = I — pj (i1 © 1) PL s Wi = pragy1 o ¢y, Vi = Ch oy and xi = 0, VE, to get
(28). Now, the next step is to establish a recursive relation for (” both in k and ¢. For that, we use the following identities:
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First we establish the recurrence relation in k:
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t
+ Rk+1 Z C,Z_l(l — 'Yz>\z)
i=k+2

t
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i=k+1
¢
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i=k-+1
+ Rygr + Va1 (1= prs1Xier1) Pryr O

Then the recurrence in ¢ can be established by subtracting ¢/ , from ¢/, I

t

<}51t+1 - C}it = pk+17k+1)\k+1C£+1,t+1 + (C}é + Z 01171(1 - Vi)\i) - 1> (Rk+1 + ¢l—<|;—+19k - d’gek*l)
i=k+1

+ Rt + Y1 (1= prp1Xit1) @10k

t—1
— P41 Ve 41 418k 1y — (Ci_l + Z Ci (1 —yih) — 1) (Ris1 + 1Ok — &) Or—1)
i1=k+1

— Ry1 + Y1 (1= prg1Aeg1) ¢’kT+19k

= Ph+1Vk+1 k41 (C£+17t+1 - Clg-&-l,t)
+(Cf = CE + O 1 = M) (Rt + @iy O — 04 Oi—1)

= pk+17k+1)‘k+1 (<£+1,t+1 - C]€+1,t) + (pt - 1)7t/\t01€_1 (Rk+1 + ¢;+19k - d)ge’f—l) .

The above recurrence relation establishes

t—1
VY] = (Vi) b e 0 < k<
j=k+1

with d; = pividi, bi = (pi — 1)vidi, gi = Rip1 + ¢j+10i — d)?@i,l and ¢; = y;\;pi, Ve. Inserting these substitutes in
Theorem 3 yields us the backward-view defined by (25) — (27). O]



A.7 Description of WIS-TD()\), WIS-GTD()\), WIS-TO-GTD()\), U-TD()\) and U-TO-TD()\)

Algorithm 1 WIS-TD()\)

Algorithm 3 WIS-TO-GTD(\)

Initialization:
Choose 0p,ug > 0,7 >0
Setug = ugl,vo =0,e_1 =0,dg =0
fort=0,1,--- do
receive @, pr, Ve, Aty Rit1, Ger1, Ver1, A1
Wy = (L —n¢0¢) ouy + prpy o Py
+(pt — D)y A (1 —neps 0 ) o vy
Vir1 = YeAepr (1 — 0t 0 @) o Vi + props © by
a1 = 10w
e = Pyl 0@y

+YeAepr (€11 — pi (Qrg1 0 1) Pf €11)

011 =0; + 10 (0,101 — 6/ &) b
+(Reg1 + 7410 11 — 0 1 d1)ey

+(pe —)yeAe (de — pr (g1 0 ) @/ dy)

der1 = Yehepe (de — pi (g 0 @) @/ dy)
+ (Riy1+ 0/ 111 — 0, 1¢1) e

Initialization:

Choose 0y, wo,ug > 0,n>0,8>0

Setug =upl,vo=0,e_;1=e¥, =e%¥, =0,p/ =0
fort=0,1,--- do

receive @y, pr, Vi, Aty Rit 1, Prp1, Vir1, Mgt
i1 = (1 =10 ds) ouy + preps o by
+(pt — D)y A (1 —neps 0 ) o vy
Vir1 = YeAepr (1 — 0t 0 @) o Vi + props o by
a1 = 10w
e = POyl O Py
+YeAepr (€11 — pi (@1 0 1) Pf €1-1)
eY  =p(viher1+ ¢r)
e =yhpel +B(1—nhp'dl e ) ¢
o0 =R+ ’Yt+10;¢t+1 - OtT(ﬁt
0111 =6, +6ei+ (e — ot y10p::) (0 —6,-1) T Py
—ai1 01 (1= A1) (W] e )i

end for W1 = Wy + pidiel — B(w/ ¢y
ro=p
end for

Algorithm 4 U-TD()\)

Initialization:

Choose 0p,ug > 0,7 >0

Setug = upl,,e_1 =0

fort =0,1,--- do
receive @, Ve, Aty Ret1, a1, Va1, Ader1
W1 = (1 —ngi o) ou + ¢ oy
a1 = 10w
e =he—1+ @
0 =R+ '7t+10:¢t+1 - 9tT¢t
011 = 0; + ayq1 05y

end for

Algorithm 2 WIS-GTD(\)
Initialization:
Choose 0y, wo,ug > 0,n>0,8>0
Setug = upl,vg =0,e_1 =0
fort =0,1,--- do Algorithm 5 U-TO-TD())
receive @, Pi, Ve, Aty Rit1, Q1 Vet1, Att1 Initialization:
U1 = (1 —nepr o dr) ouy + prepy o Choose 0p,ug > 0,7 >0
+(pt — D)yt (L = nps o pr) o v Setug = ugl,e_1 =0
Vir1 = YeAepr (1 =1t 0 @) o Vi + preps o ¢y fort =0,1,--- do
a1 =10 uy receive @, Ve, Aty Riq1, Pert, Vo1, Adet1
e =p(he—1 + @) g1 = (1 —n¢i0¢)ouy + ¢y o ¢y
& = Rip1+ 7410, dpry1 — 0, ¢ a1 =10u
011 =0 + a1 0 0rey e =100+ (e 1—(qui1 0 @) e 1)
—0ty1 0 Yea1 (1 — Aey1) (e Wi) e 041 =0, + 10 (0] 19— 0] by) py
W1 = Wi + B [0rer — (W, )] +(Rig1 + 71410 b1 — 01 d1)ey
end for end for
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