Appendix

A. 1 Proof of Theorem 1

Theorem 1 (Backward consistency of U-SGD with sample average). If the feature representation is tabular, the vectors \mathbf{u} and $\boldsymbol{\theta}$ are initially set to zero, and $0 \leq \eta<1$, then $U-S G D$ defined by (5)-(7) degenerates to the recency-weighted average estimator defined by (3) and (4), in the sense that each component of the parameter vector $\boldsymbol{\theta}_{t+1}$ of $U-S G D$ becomes the recency-weighted average estimator of the corresponding input.

Proof. Consider that t samples have been observed and among them t_{x} samples correspond to input x. Hence, $\sum_{x \in \mathcal{X}} t_{x}=$ t. Let $Y_{x, k}$ denote the k th output corresponding to input x. Then the recency-weighted average estimator of $v(x)$ given overall data up to t can be equivalently redefined in the following way:

$$
\begin{array}{rlr}
\tilde{V}_{t_{x}+1} & \doteq \frac{\sum_{k=1}^{t_{x}}(1-\eta)^{t_{x}-k} Y_{x, k}}{\sum_{k=1}^{t_{x}}(1-\eta)^{t_{x}-k}} \\
& =\tilde{V}_{t_{x}}+\frac{1}{\tilde{U}_{t_{x}+1}}\left(Y_{x, t_{x}}-\tilde{V}_{t_{x}}\right) ; & \tilde{V}_{1}=0, \\
\tilde{U}_{t_{x}+1} & \doteq(1-\eta) \tilde{U}_{t_{x}}+1 ; & \tilde{U}_{1}=0 .
\end{array}
$$

Consider that the i th feature corresponds to input x. Then it is equivalent to prove that $\left[\boldsymbol{\theta}_{t+1}\right]_{i}=\tilde{V}_{t_{x}+1}$, where $[\cdot]_{i}$ denotes the i th component of a vector.
We prove by induction. First we show that $\left[\mathbf{u}_{t+1}\right]_{i}=\tilde{U}_{t_{x}+1}$. By assumption, $\left[\mathbf{u}_{1}\right]_{i}=\tilde{U}_{1}=0$. Now, consider that $\left[\mathbf{u}_{t}\right]_{i}=\tilde{U}_{(t-1)_{x}+1}$. Then the i th component of \mathbf{u}_{t+1} can be written as

$$
\left[\mathbf{u}_{t+1}\right]_{i}=\left(1-\eta\left[\boldsymbol{\phi}_{t}\right]_{i}^{2}\right)\left[\mathbf{u}_{t}\right]_{i}+\left[\boldsymbol{\phi}_{t}\right]_{i}^{2}
$$

If the t th input is not x, then $t_{x}=(t-1)_{x}$ and $\left[\phi_{t}\right]_{i}=0$. Hence

$$
\left[\mathbf{u}_{t+1}\right]_{i}=(1-0) \tilde{U}_{(t-1)_{x}+1}+0=\tilde{U}_{(t-1)_{x}+1}=\tilde{U}_{t_{x}+1}
$$

On the other hand, if the t th input is x, then $t_{x}=(t-1)_{x}+1$ and $\left[\phi_{t}\right]_{i}=1$. Hence,

$$
\left[\mathbf{u}_{t+1}\right]_{i}=(1-\eta) \tilde{U}_{(t-1)_{x}+1}+1=(1-\eta) \tilde{U}_{t_{x}}+1=\tilde{U}_{t_{x}+1}
$$

Hence, $\left[\boldsymbol{\alpha}_{t+1}\right]_{i}=\frac{1}{\tilde{U}_{t_{x}+1}}$, if $t_{x}>0$, or $\left[\boldsymbol{\alpha}_{t+1}\right]_{i}=0$, otherwise.
Now, by assumption, $\left[\boldsymbol{\theta}_{1}\right]_{i}=\tilde{V}_{1}=0$. Consider $\left[\boldsymbol{\theta}_{t}\right]_{i}=\tilde{V}_{(t-1)_{x}+1}$ and $t_{x}>0$. Then the i th component of $\boldsymbol{\theta}_{t+1}$ can be written as

$$
\begin{aligned}
{\left[\boldsymbol{\theta}_{t+1}\right]_{i} } & =\left[\boldsymbol{\theta}_{t}\right]_{i}+\left[\boldsymbol{\alpha}_{t+1}\right]_{i}\left(Y_{t}-\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}\right)\left[\boldsymbol{\phi}_{t}\right]_{i} \\
& =\tilde{V}_{(t-1)_{x}+1}+\frac{1}{\tilde{U}_{t_{x}+1}}\left(Y_{t}-\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}\right)\left[\boldsymbol{\phi}_{t}\right]_{i}
\end{aligned}
$$

If the t th input is not x, then $\left[\boldsymbol{\theta}_{t+1}\right]_{i}=\tilde{V}_{(t-1)_{x}+1}+0=\tilde{V}_{t_{x}+1}$.
On the other hand, if the t th input is x, then $Y_{t}=Y_{x, t_{x}}$ and

$$
\begin{aligned}
{\left[\boldsymbol{\theta}_{t+1}\right]_{i} } & =\tilde{V}_{(t-1)_{x}+1}+\frac{1}{\tilde{U}_{t_{x}+1}}\left(Y_{x, t_{x}}-\tilde{V}_{(t-1)_{x}+1}\right) \\
& =\tilde{V}_{t_{x}}+\frac{1}{\tilde{U}_{t_{x}+1}}\left(Y_{x, t_{x}}-\tilde{V}_{t_{x}}\right)=\tilde{V}_{t_{x}+1}
\end{aligned}
$$

The only case that is left is when $t_{x}=0$. In this case, the t th input cannot be x, and $\tilde{V}_{t_{x}+1}=\tilde{V}_{(t-1)_{x}+1}=\cdots=\tilde{V}_{1}=0$. Then

$$
\begin{aligned}
{\left[\boldsymbol{\theta}_{t+1}\right]_{i} } & =\left[\boldsymbol{\theta}_{t}\right]_{i}+\left[\boldsymbol{\alpha}_{t+1}\right]_{i}\left(Y_{t}-\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}\right)\left[\boldsymbol{\phi}_{t}\right]_{i} \\
& =\tilde{V}_{(t-1)_{x}+1}+0 \cdot\left(Y_{t}-\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}\right) \cdot 0 \\
& =0=\tilde{V}_{t_{x}+1} .
\end{aligned}
$$

A. 2 Proof of Theorem 2

Theorem 2 (Backward consistency of WIS-SGD-1 with WIS). If the feature representation is tabular, the vectors \mathbf{u} and $\boldsymbol{\theta}$ are initially set to zero, and $0 \leq \eta<1$, then WIS-SGD-1 defined by (10)-(12) degenerates to recency-weighted WIS defined by (8) and (9) with $Y_{k} \doteq G_{k}^{t+1}$ and $W_{k} \doteq \rho_{k}^{t+1}$, in the sense that each component of the parameter vector of WIS-SGD-1 $\boldsymbol{\theta}_{t+1}^{t+1}$ becomes the recency-weighted WIS estimator of the corresponding input.

Proof. The proof is similar to that of Theorem 1.
Consider that data is available up to time $t+1$, among which state s was visited on t_{s} steps. Let $G_{s, k}^{t+1}$ denote the k th flat truncated return originated from state s and $\rho_{s, k}^{t+1}$ its corresponding importance-sampling ratio. Then the recency-weighted WIS estimator of $v(s)$ given overall data up to $t+1$ can be equivalently redefined in the following way:

$$
\begin{array}{ll}
\bar{V}_{t_{s}+1}^{t+1} \doteq \bar{V}_{t_{s}}^{t+1}+\frac{\rho_{s, t_{s}}^{t+1}}{\bar{U}_{t_{s}+1}^{t+1}}\left(G_{s, t_{s}}^{t+1}-\bar{V}_{t_{s}}^{t+1}\right) ; & \bar{V}_{0}^{t+1}=0 \\
\bar{U}_{t_{s}+1}^{t+1} \doteq(1-\eta) \bar{U}_{t_{s}}^{t+1}+\rho_{s, t_{s}}^{t+1} ; & \bar{U}_{0}^{t+1}=0
\end{array}
$$

Consider that the i th feature corresponds to input s. Then it is equivalent to prove that $\left[\boldsymbol{\theta}_{t+1}^{t+1}\right]_{i}=\bar{V}_{t_{s}+1}^{t+1}$, where $[\cdot]_{i}$ denotes the i th component of a vector. By abuse of notation, we drop all the $t+1$ from superscripts, as it is redundant in this proof.
We prove by induction. First we show that $\left[\mathbf{u}_{t+1}\right]_{i}=\bar{U}_{t_{s}+1}$. By assumption, $\left[\mathbf{u}_{0}\right]_{i}=\bar{U}_{0}=0$. Considering $\left[\mathbf{u}_{t}\right]_{i}=$ $\bar{U}_{(t-1)_{s}+1}$. Then the i th component of \mathbf{u}_{t+1} can be written as

$$
\left[\mathbf{u}_{t+1}\right]_{i}=\left(1-\eta\left[\boldsymbol{\phi}_{t}\right]_{i}^{2}\right)\left[\mathbf{u}_{t}\right]_{i}+\rho_{t}\left[\boldsymbol{\phi}_{t}\right]_{i}^{2}
$$

If the state at time t is not s, then $t_{s}=(t-1)_{s}$ and $\left[\phi_{t}\right]_{i}=0$. Hence

$$
\left[\mathbf{u}_{t+1}\right]_{i}=(1-0) \bar{U}_{(t-1)_{s}+1}+0=\bar{U}_{(t-1)_{s}+1}=\bar{U}_{t_{s}+1}
$$

On the other hand, if the state at time t is s, then $t_{s}=(t-1)_{s}+1,\left[\phi_{t}\right]_{i}=1$ and $\rho_{t}=\rho_{s, t_{s}}^{t+1}$. Hence,

$$
\begin{aligned}
{\left[\mathbf{u}_{t+1}\right]_{i} } & =(1-\eta) \bar{U}_{(t-1)_{s}+1}+\rho_{s, t_{s}}^{t+1} \\
& =(1-\eta) \bar{U}_{t_{s}}+\rho_{s, t_{s}}^{t+1}=\bar{U}_{t_{s}+1}
\end{aligned}
$$

Hence, $\left[\boldsymbol{\alpha}_{t+1}\right]_{i}=\frac{1}{U_{t_{s}+1}}$, if $t_{s}>0$, or $\left[\boldsymbol{\alpha}_{t+1}\right]_{i}=0$, otherwise.
Now, by assumption, $\left[\boldsymbol{\theta}_{0}\right]_{i}=\bar{V}_{0}=0$. Considering $\left[\boldsymbol{\theta}_{t}\right]_{i}=\bar{V}_{(t-1)_{s}+1}$ and $t_{s}>0$, the i th component of $\boldsymbol{\theta}_{t+1}$ can be written as

$$
\begin{aligned}
{\left[\boldsymbol{\theta}_{t+1}\right]_{i} } & =\left[\boldsymbol{\theta}_{t}\right]_{i}+\left[\boldsymbol{\alpha}_{t+1}\right]_{i} \rho_{t}\left(G_{t}-\boldsymbol{\phi}_{t}^{\top} \boldsymbol{\theta}_{t}\right)\left[\boldsymbol{\phi}_{t}\right]_{i} \\
& =\bar{V}_{(t-1)_{s}+1}+\frac{\rho_{t}}{\bar{U}_{t_{s}+1}}\left(G_{t}-\boldsymbol{\phi}_{t}^{\top} \boldsymbol{\theta}_{t}\right)\left[\boldsymbol{\phi}_{t}\right]_{i} .
\end{aligned}
$$

If the state at time t is not s, then $\left[\boldsymbol{\theta}_{t+1}\right]_{i}=\bar{V}_{(t-1)_{s}+1}+0=\bar{V}_{t_{s}+1}$.
If the state at time t is not s, then $\rho_{t}=\rho_{s, t_{s}}, G_{t}=G_{s, t_{s}}$ and

$$
\begin{aligned}
{\left[\boldsymbol{\theta}_{t+1}\right]_{i} } & =\bar{V}_{(t-1)_{s}+1}+\frac{\rho_{s, t_{s}}}{\bar{U}_{t_{s}+1}}\left(G_{s, t_{s}}-\bar{V}_{(t-1)_{s}+1}\right) \\
& =\bar{V}_{t_{s}}+\frac{\rho_{s, t_{s}}}{\bar{U}_{t_{s}+1}}\left(G_{s, t_{s}}-\bar{V}_{t_{s}}\right)=\bar{V}_{t_{s}+1}
\end{aligned}
$$

The only case that is left is when $t_{s}=0$. In this case, the the state at time t cannot be s, and $\bar{V}_{t_{s}+1}=\bar{V}_{(t-1)_{s}+1}=\cdots=$ $\bar{V}_{0}=0$. Then

$$
\begin{aligned}
{\left[\boldsymbol{\theta}_{t+1}\right]_{i} } & =\left[\boldsymbol{\theta}_{t}\right]_{i}+\left[\boldsymbol{\alpha}_{t+1}\right]_{i} \rho_{t}\left(G_{t}-\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}\right)\left[\boldsymbol{\phi}_{t}\right]_{i} \\
& =\bar{V}_{(t-1)_{s}+1}+0 \cdot \rho_{t}\left(G_{t}-\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}\right) \cdot 0 \\
& =0=\bar{V}_{t_{s}+1} .
\end{aligned}
$$

A. 3 Proof of Theorem 3

Theorem 3 (Online equivalence technique). Consider any forward view that updates toward an interim scalar target Y_{k}^{t} with

$$
\boldsymbol{\theta}_{k+1}^{t+1} \doteq \mathbf{F}_{k} \boldsymbol{\theta}_{k}^{t+1}+Y_{k}^{t+1} \mathbf{w}_{k}+\mathbf{x}_{k}, \quad 0 \leq k<t+1
$$

where $\boldsymbol{\theta}_{0}^{t} \doteq \boldsymbol{\theta}_{0}$ for some initial $\boldsymbol{\theta}_{0}$, and both $\mathbf{F}_{k} \in \mathbb{R}^{n \times n}$ and $\mathbf{w}_{k} \in \mathbb{R}^{n}$ can be computed using data available at k. Assume that the temporal difference $Y_{k}^{t+1}-Y_{k}^{t}$ at k is related to the temporal difference at $k+1$ as follows:

$$
Y_{k}^{t+1}-Y_{k}^{t}=d_{k+1}\left(Y_{k+1}^{t+1}-Y_{k+1}^{t}\right)+b_{t} g_{k} \prod_{j=k+1}^{t-1} c_{j}, 0 \leq k<t
$$

where b_{k}, c_{k}, d_{k} and g_{k} are scalars that can be computed using data available at time k. Then the final weight $\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_{t+1}^{t+1}$ can be computed through the following backward-view update, with $\mathbf{e}_{-1} \doteq \mathbf{0}, \mathbf{d}_{0} \doteq \mathbf{0}$, and $t \geq 0$:

$$
\begin{aligned}
\mathbf{e}_{t} & \doteq \mathbf{w}_{t}+d_{t} \mathbf{F}_{t} \mathbf{e}_{t-1} \\
\boldsymbol{\theta}_{t+1} & \doteq \mathbf{F}_{t} \boldsymbol{\theta}_{t}+\left(Y_{t}^{t+1}-Y_{t}^{t}\right) \mathbf{e}_{t}+Y_{t}^{t} \mathbf{w}_{t}+b_{t} \mathbf{F}_{t} \mathbf{d}_{t}+\mathbf{x}_{t} \\
\mathbf{d}_{t+1} & \doteq c_{t} \mathbf{F}_{t} \mathbf{d}_{t}+g_{t} \mathbf{e}_{t}
\end{aligned}
$$

Proof. We can write the difference between two consecutive estimates as

$$
\begin{aligned}
\boldsymbol{\theta}_{t+1}^{t+1}-\boldsymbol{\theta}_{t}^{t} & =\mathbf{F}_{t} \boldsymbol{\theta}_{t}^{t+1}-\boldsymbol{\theta}_{t}^{t}+Y_{t}^{t+1} \mathbf{w}_{k}+\mathbf{x}_{t} \\
& =\mathbf{F}_{t}\left(\boldsymbol{\theta}_{t}^{t+1}-\boldsymbol{\theta}_{t}^{t}\right)+Y_{t}^{t+1} \mathbf{w}_{k}+\left(\mathbf{F}_{t}-\mathbf{I}\right) \boldsymbol{\theta}_{t}^{t}+\mathbf{x}_{t}
\end{aligned}
$$

Now let us expand $\boldsymbol{\theta}_{t}^{t+1}-\boldsymbol{\theta}_{t}^{t}$:

$$
\begin{aligned}
\boldsymbol{\theta}_{t}^{t+1}-\boldsymbol{\theta}_{t}^{t}= & \mathbf{F}_{t-1} \boldsymbol{\theta}_{t-1}^{t+1}+Y_{t-1}^{t+1} \mathbf{w}_{t-1}+\mathbf{x}_{t-1} \\
& -\mathbf{F}_{t-1} \boldsymbol{\theta}_{t-1}^{t}-Y_{t-1}^{t} \mathbf{w}_{t-1}-\mathbf{x}_{t-1} \\
= & \mathbf{F}_{t-1}\left(\boldsymbol{\theta}_{t-1}^{t+1}-\boldsymbol{\theta}_{t-1}^{t}\right)+\left(Y_{t-1}^{t+1}-Y_{t-1}^{t}\right) \mathbf{w}_{t-1} \\
= & \mathbf{F}_{t-1} \cdots \mathbf{F}_{0}\left(\boldsymbol{\theta}_{0}^{t+1}-\boldsymbol{\theta}_{0}^{t}\right)+\sum_{k=0}^{t-1} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1}\left(Y_{k}^{t+1}-Y_{k}^{t}\right) \mathbf{w}_{k} \\
= & \sum_{k=0}^{t-1} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1}\left(Y_{k}^{t+1}-Y_{k}^{t}\right) \mathbf{w}_{k} \\
= & \sum_{k=0}^{t-1} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1}\left(d_{k+1}\left(Y_{k+1}^{t+1}-Y_{k+1}^{t}\right)+b_{t} g_{k} \prod_{j=k+1}^{t-1} c_{j}\right) \mathbf{w}_{k} \\
= & \sum_{k=0}^{t-1} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1}\left(d _ { k + 1 } \left(d_{k+2}\left(Y_{k+2}^{t+1}-Y_{k+2}^{t}\right)\right.\right. \\
& \left.\left.+b_{t} g_{k+1} \prod_{j=k+2}^{t-1} c_{j}\right)+b_{t} g_{k} \prod_{j=k+1}^{t-1} c_{j}\right) \mathbf{w}_{k} \\
= & \sum_{k=0}^{t-1} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1}\left(d_{k+1} d_{k+2}\left(Y_{k+2}^{t+1}-Y_{k+2}^{t}\right)\right. \\
& \left.+b_{t} g_{k+1} d_{k+1} \prod_{j=k+2}^{t-1} c_{j}+b_{t} g_{k} \prod_{j=k+1}^{t-1} c_{j}\right) \mathbf{w}_{k} \\
= & \sum_{k=0}^{t-1} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1}\left(\prod_{j=k+1}^{t} d_{j}\left(Y_{t}^{t+1}-Y_{t}^{t}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+b_{t} \sum_{n=k}^{t-1} g_{n} \prod_{i=k+1}^{n} d_{i} \prod_{j=n+1}^{t-1} c_{j}\right) \mathbf{w}_{k} \\
= & d_{t}\left(Y_{t}^{t+1}-Y_{t}^{t}\right) \underbrace{\sum_{k=0}^{t-1} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1} \prod_{j=k+1}^{t-1} d_{j} \mathbf{w}_{k}}_{\mathbf{e}_{t-1}} \\
& +b_{t} \underbrace{}_{\mathbf{d}_{t=0}^{t-1} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1} \sum_{n=k}^{t-1} g_{n} \prod_{i=k+1}^{n} d_{i} \prod_{j=n+1}^{t-1} c_{j} \mathbf{w}_{k}} \\
= & \left(Y_{t}^{t+1}-Y_{t}^{t}\right) d_{t} \mathbf{e}_{t-1}+b_{t} \mathbf{d}_{t}
\end{aligned}
$$

The vectors \mathbf{e}_{t} and \mathbf{d}_{t} can be incrementally updated as follows:

$$
\begin{aligned}
& \mathbf{e}_{t}=\sum_{k=0}^{t} \mathbf{F}_{t} \cdots \mathbf{F}_{k+1} \prod_{j=k+1}^{t} d_{j} \mathbf{w}_{k} \\
& =\mathbf{w}_{t}+d_{t} \mathbf{F}_{t} \sum_{k=0}^{t-1} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1} \prod_{j=k+1}^{t-1} d_{j} \mathbf{w}_{k} \\
& =\mathbf{w}_{t}+d_{t} \mathbf{F}_{t} \mathbf{e}_{t-1}, \\
& \mathbf{d}_{t}=\sum_{k=0}^{t-1} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1} \sum_{n=k}^{t-1} g_{n} \prod_{i=k+1}^{n} d_{i} \prod_{j=n+1}^{t-1} c_{j} \mathbf{w}_{k} \\
& =\sum_{k=0}^{t-1} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1}\left(\sum_{n=k}^{t-2} g_{n} \prod_{i=k+1}^{n} d_{i} \prod_{j=n+1}^{t-1} c_{j} \mathbf{w}_{k}+g_{t-1} \prod_{j=k+1}^{t-1} d_{j} \mathbf{w}_{k}\right) \\
& =\sum_{k=0}^{t-1} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1} \sum_{n=k}^{t-2} g_{n} \prod_{i=k+1}^{n} d_{i} \prod_{j=n+1}^{t-1} c_{j} \mathbf{w}_{k}+g_{t-1} \sum_{k=0}^{t-1} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1} \prod_{j=k+1}^{t-1} d_{j} \mathbf{w}_{k} \\
& =c_{t-1} \mathbf{F}_{t-1} \sum_{k=0}^{t-2} \mathbf{F}_{t-1} \cdots \mathbf{F}_{k+1} \sum_{n=k}^{t-2} g_{n} \prod_{i=k+1}^{n} d_{i} \prod_{j=n+1}^{t-2} c_{j} \mathbf{w}_{k}+g_{t-1} \mathbf{e}_{t-1} \\
& =c_{t-1} \mathbf{F}_{t-1} \mathbf{d}_{t-1}+g_{t-1} \mathbf{e}_{t-1} .
\end{aligned}
$$

Then plugging back in

$$
\begin{aligned}
\boldsymbol{\theta}_{t+1}^{t+1} & =\boldsymbol{\theta}_{t}^{t}+\mathbf{F}_{t}\left(\boldsymbol{\theta}_{t}^{t+1}-\boldsymbol{\theta}_{t}^{t}\right)+Y_{t}^{t+1} \mathbf{w}_{t}+\left(\mathbf{F}_{t}-\mathbf{I}\right) \boldsymbol{\theta}_{t}^{t}+\mathbf{x}_{t} \\
& =\boldsymbol{\theta}_{t}^{t}+d_{t} \mathbf{F}_{t} \mathbf{e}_{t-1}\left(Y_{t}^{t+1}-Y_{t}^{t}\right)+b_{t} \mathbf{F}_{t} \mathbf{d}_{t}+Y_{t}^{t+1} \mathbf{w}_{t}+\left(\mathbf{F}_{t}-\mathbf{I}\right) \boldsymbol{\theta}_{t}^{t}+\mathbf{x}_{t} \\
& =\mathbf{F}_{t} \boldsymbol{\theta}_{t}^{t}+\left(\mathbf{e}_{t}-\mathbf{w}_{t}\right)\left(Y_{t}^{t+1}-Y_{t}^{t}\right)+Y_{t}^{t+1} \mathbf{w}_{t}+b_{t} \mathbf{F}_{t} \mathbf{d}_{t}+\mathbf{x}_{t} \\
& =\mathbf{F}_{t} \boldsymbol{\theta}_{t}^{t}+\left(Y_{t}^{t+1}-Y_{t}^{t}\right) \mathbf{e}_{t}+Y_{t}^{t} \mathbf{w}_{t}+b_{t} \mathbf{F}_{t} \mathbf{d}_{t}+\mathbf{x}_{t} .
\end{aligned}
$$

A. 4 Proof of Theorem 4

Theorem 4 (Generality of the new equivalence technique). The online equivalence technique by van Hasselt, Mahmood and Sutton (2014, Theorem 1) can be retrieved as a special case from the online equivalence technique given in Theorem 3.

Proof. We describe the online equivalence technique by van Hasselt et al. (2014) in the following.
Consider any forward view that updates toward an interim scalar target Y_{k}^{t} with

$$
\boldsymbol{\theta}_{k+1}^{t+1}=\boldsymbol{\theta}_{k}^{t+1}+\mu_{k}\left(Y_{k}^{t+1}-\boldsymbol{\phi}_{k}^{\top} \boldsymbol{\theta}_{k}^{t+1}\right) \boldsymbol{\phi}_{k}+\mathbf{x}_{k}, 0 \leq k<t
$$

where $\boldsymbol{\theta}_{0}^{t}=\boldsymbol{\theta}_{0}$ for some initial $\boldsymbol{\theta}_{0}$. Assume that the temporal difference $Y_{k}^{t+1}-Y_{k}^{t}$ at k is related to the temporal difference at $k+1$ as follows:

$$
Y_{k}^{t+1}-Y_{k}^{t}=d_{k+1}\left(Y_{k+1}^{t+1}-Y_{k+1}^{t}\right), 0 \leq k<t
$$

where d_{k} is a scalar that can be computed using data available at time k. Then the final weight $\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_{t+1}^{t+1}$ can be computed through the following backward-view update, with $\mathbf{e}_{-1}=\mathbf{0}$ and $t \geq 0$:

$$
\begin{aligned}
\mathbf{e}_{t} & =\mu_{t} \boldsymbol{\phi}_{t}+d_{t}\left(\mathbf{I}-\mu_{t} \boldsymbol{\phi}_{t} \boldsymbol{\phi}_{t}^{\top}\right) \mathbf{e}_{t-1}, \\
\boldsymbol{\theta}_{t+1} & =\boldsymbol{\theta}_{t}+\left(Y_{t}^{t+1}-Y_{t}^{t}\right) \mathbf{e}_{t}+\mu_{t}\left(Y_{t}^{t}-\boldsymbol{\phi}_{t}^{\top} \boldsymbol{\theta}_{t}\right) \boldsymbol{\phi}_{t}+\mathbf{x}_{t} .
\end{aligned}
$$

The above equivalence technique can be obtained from Theorem 3 as a special case by substituting $\mathbf{F}_{k}=\mathbf{I}-\mu_{k} \boldsymbol{\phi}_{k} \boldsymbol{\phi}_{k}^{\top}$, $\mathbf{w}_{k}=\mu_{k} \boldsymbol{\phi}_{k}$ and $b_{k}=0$.

A. 5 Proof of Theorem 5

Theorem 5 (Backward view update for $\boldsymbol{\alpha}_{t}$ of WIS-TD (λ)). The step-size vector $\boldsymbol{\alpha}_{t}$ computed by the following backwardview update and the forward-view update defined by (18) - (20) are equal at each step t :

$$
\begin{align*}
\mathbf{u}_{t+1} & \doteq\left(\mathbf{1}-\eta \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\right) \circ \mathbf{u}_{t}+\rho_{t} \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}+\left(\rho_{t}-1\right) \gamma_{t} \lambda_{t}\left(\mathbf{1}-\eta \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\right) \circ \mathbf{v}_{t} \tag{22}\\
\mathbf{v}_{t+1} & \doteq \gamma_{t} \lambda_{t} \rho_{t}\left(\mathbf{1}-\eta \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\right) \circ \mathbf{v}_{t}+\rho_{t} \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t} \tag{23}\\
\boldsymbol{\alpha}_{t+1} & \doteq \mathbf{1} \oslash \mathbf{u}_{t+1} \tag{24}
\end{align*}
$$

Proof. First, note that the component-wise vector multiplication in (19) can be written equivalently as a matrix-vector multiplication in the following way:

$$
\left(\mathbf{1}-\eta \phi_{k} \circ \phi_{k}\right) \circ \mathbf{u}_{k}^{t+1}=\left(\mathbf{I}-\eta \operatorname{Diag}\left(\phi_{k} \circ \phi_{k}\right)\right) \mathbf{u}_{k}^{t+1}
$$

where $\operatorname{Diag}(\mathbf{v}) \in \mathbb{R}^{|\mathbf{v}| \times|\mathbf{v}|}$ is a diagonal matrix with the components of \mathbf{v} in its diagonal.
In Theorem 3, we substitute $\boldsymbol{\theta}_{k}^{t+1}=\mathbf{u}_{k}^{t+1}, \mathbf{F}_{k}=\left(\mathbf{I}-\eta \operatorname{Diag}\left(\phi_{k} \circ \phi_{k}\right)\right), \mathbf{x}_{k}=\mathbf{0}, \mathbf{w}_{k}=\phi_{k} \circ \phi_{k}$ and $Y_{k}^{t+1}=\tilde{\rho}_{k}^{t+1}$.
Now, $\tilde{\rho}_{k}^{t+1}$ can be recursively in t written as follows

$$
\begin{aligned}
\tilde{\rho}_{k}^{t+1} & =\rho_{k} \sum_{i=k+1}^{t} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)+\rho_{k} C_{k}^{t} \\
& =\rho_{k} \sum_{i=k+1}^{t-1} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)+\rho_{k} C_{k}^{t-1}\left(1-\gamma_{t} \lambda_{t}\right)+\rho_{k} C_{k}^{t} \\
& =\rho_{k} \sum_{i=k+1}^{t-1} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)+\rho_{k} C_{k}^{t-1}+\rho_{k} C_{k}^{t-1} \rho_{t} \gamma_{t} \lambda_{t}-\rho_{k} C_{k}^{t-1} \gamma_{t} \lambda_{t} \\
& =\tilde{\rho}_{k}^{t}+\left(\rho_{t}-1\right) \gamma_{t} \lambda_{t} \rho_{k} C_{k}^{t-1}
\end{aligned}
$$

Hence, it proves that

$$
Y_{k}^{t+1}-Y_{k}^{t}=d_{k+1}\left(Y_{k+1}^{t+1}-Y_{k+1}^{t}\right)+b_{t} g_{k} \prod_{j=k+1}^{t-1} c_{j}, 0 \leq k<t,
$$

with $d_{i}=0, b_{i}=\left(\rho_{i}-1\right) \gamma_{i} \lambda_{i}, g_{i}=\rho_{i}$ and $c_{i}=\gamma_{i} \lambda_{i} \rho_{i}, \forall i$.
Inserting these substitutes in Theorem 3 yields us the backward-view defined by (22) - (24).

A. 6 Proof of Theorem 6

Theorem 6 (Backward view update for $\boldsymbol{\theta}_{t}^{t}$ of WIS-TD(λ)). The parameter vector $\boldsymbol{\theta}_{t}$ computed by the following backwardview update and the parameter vector $\boldsymbol{\theta}_{t}^{t}$ computed by the forward-view update defined by (17) and (21) are equal at every time step t :

$$
\begin{align*}
& \mathbf{e}_{t} \doteq \rho_{t} \boldsymbol{\alpha}_{t+1} \circ \boldsymbol{\phi}_{t}+\gamma_{t} \lambda_{t} \rho_{t}\left(\mathbf{e}_{t-1}-\rho_{t}\left(\boldsymbol{\alpha}_{t+1} \circ \boldsymbol{\phi}_{t}\right) \boldsymbol{\phi}_{t}^{\top} \mathbf{e}_{t-1}\right), \tag{25}\\
& \boldsymbol{\theta}_{t+1} \doteq \doteq \boldsymbol{\theta}_{t}+\boldsymbol{\alpha}_{t+1} \circ \rho_{t}\left(\boldsymbol{\theta}_{t-1}^{\top} \boldsymbol{\phi}_{t}-\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}\right) \boldsymbol{\phi}_{t}+\left(R_{t+1}+\gamma_{t+1} \boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t+1}-\boldsymbol{\theta}_{t-1}^{\top} \boldsymbol{\phi}_{t}\right) \mathbf{e}_{t} \\
&+\left(\rho_{t}-1\right) \gamma_{t} \lambda_{t}\left(\mathbf{d}_{t}-\rho_{t}\left(\boldsymbol{\alpha}_{t+1} \circ \boldsymbol{\phi}_{t}\right) \boldsymbol{\phi}_{t}^{\top} \mathbf{d}_{t}\right), \tag{26}\\
& \mathbf{d}_{t+1} \doteq \gamma_{t} \lambda_{t} \rho_{t}\left(\mathbf{d}_{t}-\rho_{t}\left(\boldsymbol{\alpha}_{t+1} \circ \boldsymbol{\phi}_{t}\right) \boldsymbol{\phi}_{t}^{\top} \mathbf{d}_{t}\right)+\left(R_{t+1}+\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t+1}-\boldsymbol{\theta}_{t-1}^{\top} \boldsymbol{\phi}_{t}\right) \mathbf{e}_{t} . \tag{27}
\end{align*}
$$

Proof. First, we redefine (21) for convenience:

$$
\begin{equation*}
\boldsymbol{\theta}_{k+1}^{t+1} \doteq \boldsymbol{\theta}_{k}^{t+1}+\boldsymbol{\alpha}_{k+1} \circ \rho_{k}\left(\zeta_{k, t+1}^{\rho}-\boldsymbol{\phi}_{k}^{\top} \boldsymbol{\theta}_{k}^{t+1}\right) \boldsymbol{\phi}_{k}, \tag{28}
\end{equation*}
$$

where $G_{k, t+1}^{\rho}=\rho_{k} \zeta_{k, t+1}^{\rho}$. Hence, $\zeta_{k, t+1}^{\rho}$ can be given by:

$$
\begin{aligned}
\zeta_{k, t+1}^{\rho} \doteq & C_{k}^{t}\left(\left(1-\gamma_{t+1}\right) G_{k}^{t+1}+\gamma_{t+1}\left(G_{k}^{t+1}+\boldsymbol{\phi}_{t+1}^{\top} \boldsymbol{\theta}_{t}\right)\right)+\sum_{i=k+1}^{t} C_{k}^{i-1}\left(\left(1-\gamma_{i}\right) G_{k}^{i}+\gamma_{i}\left(1-\lambda_{i}\right)\left(G_{k}^{i}+\boldsymbol{\phi}_{i}^{\top} \boldsymbol{\theta}_{i-1}\right)\right) \\
& -\left(C_{k}^{t}+\sum_{i=k+1}^{t} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)-1\right) \boldsymbol{\phi}_{k}^{\top} \boldsymbol{\theta}_{k-1} .
\end{aligned}
$$

In Theorem 3, we substitute $\mathbf{F}_{k}=\mathbf{I}-\rho_{k}\left(\boldsymbol{\alpha}_{k+1} \circ \boldsymbol{\phi}_{k}\right) \boldsymbol{\phi}_{k}^{\top}, \mathbf{w}_{k}=\rho_{k} \boldsymbol{\alpha}_{k+1} \circ \boldsymbol{\phi}_{k}, Y_{k}^{t+1}=\zeta_{k, t+1}^{\rho}$ and $\mathbf{x}_{k}=0, \forall k$, to get (28). Now, the next step is to establish a recursive relation for ζ^{ρ} both in k and t. For that, we use the following identities:

$$
\begin{aligned}
G_{k}^{k+1} & =R_{k+1} \\
G_{k}^{t+1} & =\sum_{i=k}^{t} R_{i+1}=R_{k+1}+G_{k+1}^{t+1} .
\end{aligned}
$$

First we establish the recurrence relation in k :

$$
\begin{aligned}
\zeta_{k, t+1}^{\rho}= & C_{k}^{t}\left(\left(1-\gamma_{t+1}\right) G_{k}^{t+1}+\gamma_{t+1}\left(G_{k}^{t+1}+\boldsymbol{\phi}_{t+1}^{\top} \boldsymbol{\theta}_{t}\right)\right)+\sum_{i=k+1}^{t} C_{k}^{i-1}\left(\left(1-\gamma_{i}\right) G_{k}^{i}+\gamma_{i}\left(1-\lambda_{i}\right)\left(G_{k}^{i}+\boldsymbol{\phi}_{i}^{\top} \boldsymbol{\theta}_{i-1}\right)\right) \\
& -\left(C_{k}^{t}+\sum_{i=k+1}^{t} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)-1\right) \boldsymbol{\phi}_{k}^{\top} \boldsymbol{\theta}_{k-1} \\
= & C_{k}^{t}\left(\left(1-\gamma_{t+1}\right)\left(R_{k+1}+G_{k+1}^{t+1}\right)+\gamma_{t+1}\left(R_{k+1}+G_{k+1}^{t+1}+\boldsymbol{\phi}_{t+1}^{\top} \boldsymbol{\theta}_{t}\right)\right) \\
& +\left(\left(1-\gamma_{k+1}\right) G_{k}^{k+1}+\gamma_{k+1}\left(1-\lambda_{k+1}\right)\left(G_{k}^{k+1}+\boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k}\right)\right) \\
& +\sum_{i=k+2}^{t} C_{k}^{i-1}\left(\left(1-\gamma_{i}\right)\left(R_{k+1}+G_{k+1}^{i}\right)+\gamma_{i}\left(1-\lambda_{i}\right)\left(R_{k+1}+G_{k+1}^{i}+\boldsymbol{\phi}_{i}^{\top} \boldsymbol{\theta}_{i-1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\left(C_{k}^{t}+\sum_{i=k+1}^{t} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)-1\right) \boldsymbol{\phi}_{k}^{\top} \boldsymbol{\theta}_{k-1} \\
= & \rho_{k+1} \gamma_{k+1} \lambda_{k+1} C_{k+1}^{t}\left(\left(1-\gamma_{t+1}\right) G_{k+1}^{t+1}+\gamma_{t+1}\left(G_{k+1}^{t+1}+\boldsymbol{\phi}_{t+1}^{\top} \boldsymbol{\theta}_{t}\right)\right) \\
& +\rho_{k+1} \gamma_{k+1} \lambda_{k+1} \sum_{i=k+2}^{t} C_{k+1}^{i-1}\left(\left(1-\gamma_{i}\right) G_{k+1}^{i}+\gamma_{i}\left(1-\lambda_{i}\right)\left(G_{k+1}^{i}+\boldsymbol{\phi}_{i}^{\top} \boldsymbol{\theta}_{i-1}\right)\right) \\
& -\rho_{k+1} \gamma_{k+1} \lambda_{k+1}\left(C_{k+1}^{t}+\sum_{i=k+2}^{t} C_{k+1}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)-1\right) \boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k} \\
& +\left(C_{k}^{t}+\sum_{i=k+2}^{t} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)-\rho_{k+1} \gamma_{k+1} \lambda_{k+1}\right) \boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k} \\
& +C_{k}^{t} R_{k+1}+\left(1-\gamma_{k+1} \lambda_{k+1}\right) R_{k+1}+\gamma_{k+1}\left(1-\lambda_{k+1}\right) \boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k} \\
& +R_{k+1} \sum_{i=k+2}^{t} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right) \\
& -\left(C_{k}^{t}+\sum_{i=k+1}^{t} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)-1\right) \boldsymbol{\phi}_{k}^{\top} \boldsymbol{\theta}_{k-1} \\
= & \rho_{k+1} \gamma_{k+1} \lambda_{k+1} \zeta_{k+1, t+1}^{\rho}+\left(C_{k}^{t}+\sum_{i=k+1}^{t} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)-1\right)\left(R_{k+1}+\boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k}-\boldsymbol{\phi}_{k}^{\top} \boldsymbol{\theta}_{k-1}\right) \\
& +R_{k+1}+\boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k}-\rho_{k+1} \gamma_{k+1} \lambda_{k+1} \boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k}+\gamma_{k+1}\left(1-\lambda_{k+1}\right) \boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k}-\left(1-\gamma_{k+1} \lambda_{k+1}\right) \boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k} \\
= & \rho_{k+1} \gamma_{k+1} \lambda_{k+1} \zeta_{k+1, t+1}^{\rho}+\left(C_{k}^{t}+\sum_{i=k+1}^{t} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)-1\right)\left(R_{k+1}+\boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k}-\boldsymbol{\phi}_{k}^{\top} \boldsymbol{\theta}_{k-1}\right) \\
& +R_{k+1}+\gamma_{k+1}\left(1-\rho_{k+1} \lambda_{k+1}\right) \boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k} .
\end{aligned}
$$

Then the recurrence in t can be established by subtracting $\zeta_{k, t}^{\rho}$ from $\zeta_{k, t+1}^{\rho}$:

$$
\begin{aligned}
\zeta_{k, t+1}^{\rho}-\zeta_{k, t}^{\rho} & \doteq \rho_{k+1} \gamma_{k+1} \lambda_{k+1} \zeta_{k+1, t+1}^{\rho}+\left(C_{k}^{t}+\sum_{i=k+1}^{t} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)-1\right)\left(R_{k+1}+\boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k}-\boldsymbol{\phi}_{k}^{\top} \boldsymbol{\theta}_{k-1}\right) \\
& +R_{k+1}+\gamma_{k+1}\left(1-\rho_{k+1} \lambda_{k+1}\right) \boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k} \\
- & \rho_{k+1} \gamma_{k+1} \lambda_{k+1} \zeta_{k+1, t}^{\rho}-\left(C_{k}^{t-1}+\sum_{i=k+1}^{t-1} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)-1\right)\left(R_{k+1}+\boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k}-\boldsymbol{\phi}_{k}^{\top} \boldsymbol{\theta}_{k-1}\right) \\
& -R_{k+1}+\gamma_{k+1}\left(1-\rho_{k+1} \lambda_{k+1}\right) \boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k} \\
= & \rho_{k+1} \gamma_{k+1} \lambda_{k+1}\left(\zeta_{k+1, t+1}^{\rho}-\zeta_{k+1, t}^{\rho}\right) \\
& +\left(C_{k}^{t}-C_{k}^{t-1}+C_{k}^{t-1}\left(1-\gamma_{t} \lambda_{t}\right)\right)\left(R_{k+1}+\boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k}-\boldsymbol{\phi}_{k}^{\top} \boldsymbol{\theta}_{k-1}\right) \\
= & \rho_{k+1} \gamma_{k+1} \lambda_{k+1}\left(\zeta_{k+1, t+1}^{\rho}-\zeta_{k+1, t}^{\rho}\right)+\left(\rho_{t}-1\right) \gamma_{t} \lambda_{t} C_{k}^{t-1}\left(R_{k+1}+\boldsymbol{\phi}_{k+1}^{\top} \boldsymbol{\theta}_{k}-\boldsymbol{\phi}_{k}^{\top} \boldsymbol{\theta}_{k-1}\right) .
\end{aligned}
$$

The above recurrence relation establishes

$$
Y_{k}^{t+1}-Y_{k}^{t}=d_{k+1}\left(Y_{k+1}^{t+1}-Y_{k+1}^{t}\right)+b_{t} g_{k} \prod_{j=k+1}^{t-1} c_{j}, 0 \leq k<t
$$

with $d_{i}=\rho_{i} \gamma_{i} \lambda_{i}, b_{i}=\left(\rho_{i}-1\right) \gamma_{i} \lambda_{i}, g_{i}=R_{i+1}+\boldsymbol{\phi}_{i+1}^{\top} \boldsymbol{\theta}_{i}-\boldsymbol{\phi}_{i}^{\top} \boldsymbol{\theta}_{i-1}$ and $c_{i}=\gamma_{i} \lambda_{i} \rho_{i}, \forall i$. Inserting these substitutes in Theorem 3 yields us the backward-view defined by (25) - (27).

A. 7 Description of WIS-TD (λ), WIS-GTD (λ), WIS-TO-GTD (λ), U-TD (λ) and U-TO-TD (λ)

```
Algorithm 1 WIS-TD \((\lambda)\)
    Initialization:
    Choose \(\boldsymbol{\theta}_{0}, u_{0} \geq 0, \eta \geq 0\)
    Set \(\mathbf{u}_{0}=u_{0} \mathbf{1}, \mathbf{v}_{0}=\mathbf{0}, \mathbf{e}_{-1}=\mathbf{0}, \mathbf{d}_{0}=\mathbf{0}\)
    for \(t=0,1, \cdots\) do
        receive \(\phi_{t}, \rho_{t}, \gamma_{t}, \lambda_{t}, R_{t+1}, \phi_{t+1}, \gamma_{t+1}, \lambda_{t+1}\)
        \(\mathbf{u}_{t+1}=\left(\mathbf{1}-\eta \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\right) \circ \mathbf{u}_{t}+\rho_{t} \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\)
                        \(+\left(\rho_{t}-1\right) \gamma_{t} \lambda_{t}\left(\mathbf{1}-\eta \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\right) \circ \mathbf{v}_{t}\)
        \(\mathbf{v}_{t+1}=\gamma_{t} \lambda_{t} \rho_{t}\left(\mathbf{1}-\eta \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\right) \circ \mathbf{v}_{t}+\rho_{t} \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\)
        \(\boldsymbol{\alpha}_{t+1}=\mathbf{1} \oslash \mathbf{u}_{t+1}\)
        \(\mathbf{e}_{t}=\rho_{t} \boldsymbol{\alpha}_{t+1} \circ \boldsymbol{\phi}_{t}\)
                        \(+\gamma_{t} \lambda_{t} \rho_{t}\left(\mathbf{e}_{t-1}-\rho_{t}\left(\boldsymbol{\alpha}_{t+1} \circ \boldsymbol{\phi}_{t}\right) \boldsymbol{\phi}_{t}^{\top} \mathbf{e}_{t-1}\right)\)
        \(\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\boldsymbol{\alpha}_{t+1} \circ \rho_{t}\left(\boldsymbol{\theta}_{t-1}^{\top} \boldsymbol{\phi}_{t}-\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}\right) \boldsymbol{\phi}_{t}\)
            \(+\left(R_{t+1}+\gamma_{t+1} \boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t+1}-\boldsymbol{\theta}_{t-1}^{\top} \boldsymbol{\phi}_{t}\right) \mathbf{e}_{t}\)
            \(+\left(\rho_{t}-1\right) \gamma_{t} \lambda_{t}\left(\mathbf{d}_{t}-\rho_{t}\left(\boldsymbol{\alpha}_{t+1} \circ \boldsymbol{\phi}_{t}\right) \boldsymbol{\phi}_{t}^{\top} \mathbf{d}_{t}\right)\)
        \(\mathbf{d}_{t+1}=\gamma_{t} \lambda_{t} \rho_{t}\left(\mathbf{d}_{t}-\rho_{t}\left(\boldsymbol{\alpha}_{t+1} \circ \boldsymbol{\phi}_{t}\right) \boldsymbol{\phi}_{t}^{\top} \mathbf{d}_{t}\right)\)
        \(+\left(R_{t+1}+\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t+1}-\boldsymbol{\theta}_{t-1}^{\top} \boldsymbol{\phi}_{t}\right) \mathbf{e}_{t}\)
    end for
```

```
Algorithm 2 WIS-GTD \((\lambda)\)
    Initialization:
    Choose \(\boldsymbol{\theta}_{0}, \mathbf{w}_{0}, u_{0} \geq 0, \eta \geq 0, \beta \geq 0\)
    Set \(\mathbf{u}_{0}=u_{0} \mathbf{1}, \mathbf{v}_{0}=\mathbf{0}, \mathbf{e}_{-1}=\mathbf{0}\)
    for \(t=0,1, \cdots\) do
        receive \(\phi_{t}, \rho_{t}, \gamma_{t}, \lambda_{t}, R_{t+1}, \phi_{t+1}, \gamma_{t+1}, \lambda_{t+1}\)
        \(\mathbf{u}_{t+1}=\left(\mathbf{1}-\eta \phi_{t} \circ \phi_{t}\right) \circ \mathbf{u}_{t}+\rho_{t} \phi_{t} \circ \phi_{t}\)
            \(+\left(\rho_{t}-1\right) \gamma_{t} \lambda_{t}\left(\mathbf{1}-\eta \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\right) \circ \mathbf{v}_{t}\)
        \(\mathbf{v}_{t+1}=\gamma_{t} \lambda_{t} \rho_{t}\left(\mathbf{1}-\eta \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\right) \circ \mathbf{v}_{t}+\rho_{t} \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\)
        \(\boldsymbol{\alpha}_{t+1}=\mathbf{1} \oslash \mathbf{u}_{t+1}\)
        \(\mathbf{e}_{t}=\rho_{t}\left(\gamma_{t} \lambda_{t} \mathbf{e}_{t-1}+\boldsymbol{\phi}_{t}\right)\)
        \(\delta_{t}=R_{t+1}+\gamma_{t+1} \boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t+1}-\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}\)
        \(\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\boldsymbol{\alpha}_{t+1} \circ \delta_{t} \mathbf{e}_{t}\)
            \(-\boldsymbol{\alpha}_{t+1} \circ \gamma_{t+1}\left(1-\lambda_{t+1}\right)\left(\mathbf{e}_{t}^{\top} \mathbf{w}_{t}\right) \boldsymbol{\phi}_{t+1}\)
        \(\mathbf{w}_{t+1}=\mathbf{w}_{t}+\beta\left[\delta_{t} \mathbf{e}_{t}-\left(\mathbf{w}_{t}^{\top} \boldsymbol{\phi}_{t}\right) \boldsymbol{\phi}_{t}\right]\)
    end for
```

```
Algorithm 3 WIS-TO-GTD \((\lambda)\)
    Initialization:
    Choose \(\boldsymbol{\theta}_{0}, \mathbf{w}_{0}, u_{0} \geq 0, \eta \geq 0, \beta \geq 0\)
    Set \(\mathbf{u}_{0}=u_{0} \mathbf{1}, \mathbf{v}_{0}=\mathbf{0}, \mathbf{e}_{-1}=\mathbf{e}_{-1}^{\nabla}=\mathbf{e}_{-1}^{\mathbf{w}}=\mathbf{0}, \rho^{\prime}=0\)
    for \(t=0,1, \cdots\) do
        receive \(\phi_{t}, \rho_{t}, \gamma_{t}, \lambda_{t}, R_{t+1}, \phi_{t+1}, \gamma_{t+1}, \lambda_{t+1}\)
        \(\mathbf{u}_{t+1}=\left(\mathbf{1}-\eta \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\right) \circ \mathbf{u}_{t}+\rho_{t} \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\)
                \(+\left(\rho_{t}-1\right) \gamma_{t} \lambda_{t}\left(\mathbf{1}-\eta \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\right) \circ \mathbf{v}_{t}\)
        \(\mathbf{v}_{t+1}=\gamma_{t} \lambda_{t} \rho_{t}\left(\mathbf{1}-\eta \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\right) \circ \mathbf{v}_{t}+\rho_{t} \boldsymbol{\phi}_{t} \circ \boldsymbol{\phi}_{t}\)
        \(\boldsymbol{\alpha}_{t+1}=\mathbf{1} \oslash \mathbf{u}_{t+1}\)
        \(\mathbf{e}_{t} \quad=\rho_{t} \boldsymbol{\alpha}_{t+1} \circ \boldsymbol{\phi}_{t}\)
            \(+\gamma_{t} \lambda_{t} \rho_{t}\left(\mathbf{e}_{t-1}-\rho_{t}\left(\boldsymbol{\alpha}_{t+1} \circ \boldsymbol{\phi}_{t}\right) \boldsymbol{\phi}_{t}^{\top} \mathbf{e}_{t-1}\right)\)
        \(\mathbf{e}_{t}^{\nabla}=\rho_{t}\left(\gamma_{t} \lambda_{t} \mathbf{e}_{t-1}+\boldsymbol{\phi}_{t}\right)\)
        \(\mathbf{e}_{t}^{\mathbf{w}}=\gamma_{t} \lambda_{t} \rho^{\prime} \mathbf{e}_{t-1}^{\mathbf{w}}+\beta\left(1-\gamma_{t} \lambda_{t} \rho^{\prime} \boldsymbol{\phi}_{t}^{\top} \mathbf{e}_{t-1}^{\mathbf{w}}\right) \boldsymbol{\phi}_{t}\)
        \(\delta_{t}=R_{t+1}+\gamma_{t+1} \boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t+1}-\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}\)
        \(\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\delta_{t} \mathbf{e}_{t}+\left(\mathbf{e}_{t}-\boldsymbol{\alpha}_{t+1} \circ \rho_{t} \boldsymbol{\phi}_{t}\right)\left(\boldsymbol{\theta}_{t}-\boldsymbol{\theta}_{t-1}\right)^{\top} \boldsymbol{\phi}_{t}\)
            \(-\boldsymbol{\alpha}_{t+1} \circ \gamma_{t+1}\left(1-\lambda_{t+1}\right)\left(\mathbf{w}_{t}^{\top} \mathbf{e}_{t}^{\nabla}\right) \boldsymbol{\phi}_{t+1}\)
        \(\mathbf{w}_{t+1}=\mathbf{w}_{t}+\rho_{t} \delta_{t} \mathbf{e}_{t}^{\mathbf{w}}-\beta\left(\mathbf{w}_{t}^{\top} \boldsymbol{\phi}_{t}\right) \boldsymbol{\phi}_{t}\)
        \(\rho^{\prime}=\rho_{t}\)
    end for
```

```
Algorithm 4 U-TD \((\lambda)\)
    Initialization:
    Choose \(\boldsymbol{\theta}_{0}, u_{0} \geq 0, \eta \geq 0\)
    Set \(\mathbf{u}_{0}=u_{0} \mathbf{1},, \mathbf{e}_{-1}=\mathbf{0}\)
    for \(t=0,1, \cdots\) do
        receive \(\phi_{t}, \gamma_{t}, \lambda_{t}, R_{t+1}, \phi_{t+1}, \gamma_{t+1}, \lambda_{t+1}\)
        \(\mathbf{u}_{t+1}=\left(\mathbf{1}-\eta \phi_{t} \circ \phi_{t}\right) \circ \mathbf{u}_{t}+\phi_{t} \circ \phi_{t}\)
        \(\boldsymbol{\alpha}_{t+1}=\mathbf{1} \oslash \mathbf{u}_{t+1}\)
        \(\mathbf{e}_{t}=\gamma_{t} \lambda_{t} \mathbf{e}_{t-1}+\boldsymbol{\phi}_{t}\)
        \(\delta_{t}=R_{t+1}+\gamma_{t+1} \boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t+1}-\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}\)
        \(\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\boldsymbol{\alpha}_{t+1} \circ \delta_{t} \mathbf{e}_{t}\)
```

 end for
    ```
Algorithm 5 U-TO-TD \((\lambda)\)
    Initialization:
    Choose \(\boldsymbol{\theta}_{0}, u_{0} \geq 0, \eta \geq 0\)
    Set \(\mathbf{u}_{0}=u_{0} \mathbf{1}, \mathbf{e}_{-1}=\mathbf{0}\)
    for \(t=0,1, \cdots\) do
        receive \(\phi_{t}, \gamma_{t}, \lambda_{t}, R_{t+1}, \phi_{t+1}, \gamma_{t+1}, \lambda_{t+1}\)
        \(\mathbf{u}_{t+1}=\left(\mathbf{1}-\eta \phi_{t} \circ \phi_{t}\right) \circ \mathbf{u}_{t}+\phi_{t} \circ \phi_{t}\)
        \(\boldsymbol{\alpha}_{t+1}=\mathbf{1} \oslash \mathbf{u}_{t+1}\)
        \(\mathbf{e}_{t}=\boldsymbol{\alpha}_{t+1} \circ \boldsymbol{\phi}_{t}+\gamma_{t} \lambda_{t}\left(\mathbf{e}_{t-1}-\left(\boldsymbol{\alpha}_{t+1} \circ \boldsymbol{\phi}_{t}\right) \boldsymbol{\phi}_{t}^{\top} \mathbf{e}_{t-1}\right)\)
        \(\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\boldsymbol{\alpha}_{t+1} \circ\left(\boldsymbol{\theta}_{t-1}^{\top} \boldsymbol{\phi}_{t}-\boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t}\right) \boldsymbol{\phi}_{t}\)
            \(+\left(R_{t+1}+\gamma_{t+1} \boldsymbol{\theta}_{t}^{\top} \boldsymbol{\phi}_{t+1}-\boldsymbol{\theta}_{t-1}^{\top} \boldsymbol{\phi}_{t}\right) \mathbf{e}_{t}\)
    end for
```

