
Appendix

A.1 Proof of Theorem 1

Theorem 1 (Backward consistency of U-SGD with sample average). If the feature representation is tabular, the vectors u
and ✓ are initially set to zero, and 0  ⌘ < 1, then U-SGD defined by (5)-(7) degenerates to the recency-weighted average
estimator defined by (3) and (4), in the sense that each component of the parameter vector ✓

t+1 of U-SGD becomes the
recency-weighted average estimator of the corresponding input.

Proof. Consider that t samples have been observed and among them t
x

samples correspond to input x. Hence,
P

x2X t
x

=

t. Let Y
x,k

denote the kth output corresponding to input x. Then the recency-weighted average estimator of v(x) given
overall data up to t can be equivalently redefined in the following way:

˜V
t

x

+1
.
=

P
t

x

k=1(1� ⌘)tx�kY
x,kP

t

x

k=1(1� ⌘)tx�k

=

˜V
t

x

+

1

˜U
t

x

+1

⇣
Y
x,t

x

� ˜V
t

x

⌘
;

˜V1 = 0,

˜U
t

x

+1
.
= (1� ⌘) ˜U

t

x

+ 1;

˜U1 = 0.

Consider that the ith feature corresponds to input x. Then it is equivalent to prove that [✓
t+1]i =

˜V
t

x

+1, where [·]
i

denotes
the ith component of a vector.

We prove by induction. First we show that [u
t+1]i =

˜U
t

x

+1. By assumption, [u1]i =

˜U1 = 0. Now, consider that
[u

t

]

i

=

˜U(t�1)
x

+1. Then the ith component of u
t+1 can be written as

[u

t+1]i = (1� ⌘[�
t

]

2
i

)[u

t

]

i

+ [�
t

]

2
i

.

If the tth input is not x, then t
x

= (t � 1)

x

and [�
t

]

i

= 0. Hence

[u

t+1]i = (1� 0)

˜U(t�1)
x

+1 + 0 =

˜U(t�1)
x

+1 =

˜U
t

x

+1.

On the other hand, if the tth input is x, then t
x

= (t � 1)

x

+ 1 and [�
t

]

i

= 1. Hence,

[u

t+1]i = (1� ⌘) ˜U(t�1)
x

+1 + 1 = (1� ⌘) ˜U
t

x

+ 1 =

˜U
t

x

+1.

Hence, [↵
t+1]i =

1
Ũ

t

x

+1
, if t

x

> 0, or [↵
t+1]i = 0, otherwise.

Now, by assumption, [✓1]i = ˜V1 = 0. Consider [✓
t

]

i

=

˜V(t�1)
x

+1 and t
x

> 0. Then the ith component of ✓
t+1 can be

written as

[✓
t+1]i = [✓

t

]

i

+ [↵
t+1]i

�
Y
t

� ✓>
t

�
t

�
[�

t

]

i

=

˜V(t�1)
x

+1 +
1

˜U
t

x

+1

�
Y
t

� ✓>
t

�
t

�
[�

t

]

i

.

If the tth input is not x, then [✓
t+1]i =

˜V(t�1)
x

+1 + 0 =

˜V
t

x

+1.

On the other hand, if the tth input is x, then Y
t

= Y
x,t

x

and

[✓
t+1]i =

˜V(t�1)
x

+1 +
1

˜U
t

x

+1

⇣
Y
x,t

x

� ˜V(t�1)
x

+1

⌘

=

˜V
t

x

+

1

˜U
t

x

+1

⇣
Y
x,t

x

� ˜V
t

x

⌘
=

˜V
t

x

+1.

The only case that is left is when t
x

= 0. In this case, the tth input cannot be x, and ˜V
t

x

+1 =

˜V(t�1)
x

+1 = · · · = ˜V1 = 0.
Then

[✓
t+1]i = [✓

t

]

i

+ [↵
t+1]i

�
Y
t

� ✓>
t

�
t

�
[�

t

]

i

=

˜V(t�1)
x

+1 + 0 ·
�
Y
t

� ✓>
t

�
t

�
· 0

= 0 =

˜V
t

x

+1.

A.2 Proof of Theorem 2

Theorem 2 (Backward consistency of WIS-SGD-1 with WIS). If the feature representation is tabular, the vectors u and ✓
are initially set to zero, and 0  ⌘ < 1, then WIS-SGD-1 defined by (10)-(12) degenerates to recency-weighted WIS defined
by (8) and (9) with Y

k

.
= Gt+1

k

and W
k

.
= ⇢t+1

k

, in the sense that each component of the parameter vector of WIS-SGD-1
✓t+1
t+1 becomes the recency-weighted WIS estimator of the corresponding input.

Proof. The proof is similar to that of Theorem 1.

Consider that data is available up to time t + 1, among which state s was visited on t
s

steps. Let Gt+1
s,k

denote the kth flat
truncated return originated from state s and ⇢t+1

s,k

its corresponding importance-sampling ratio. Then the recency-weighted
WIS estimator of v(s) given overall data up to t + 1 can be equivalently redefined in the following way:

¯V t+1
t

s

+1
.
=

¯V t+1
t

s

+

⇢t+1
s,t

s

¯U t+1
t

s

+1

�
Gt+1

s,t

s

� ¯V t+1
t

s

�
;

¯V t+1
0 = 0,

¯U t+1
t

s

+1
.
= (1� ⌘) ¯U t+1

t

s

+ ⇢t+1
s,t

s

;

¯U t+1
0 = 0.

Consider that the ith feature corresponds to input s. Then it is equivalent to prove that
⇥
✓t+1
t+1

⇤
i

=

¯V t+1
t

s

+1, where [·]
i

denotes
the ith component of a vector. By abuse of notation, we drop all the t+1 from superscripts, as it is redundant in this proof.

We prove by induction. First we show that [u
t+1]i =

¯U
t

s

+1. By assumption, [u0]i =

¯U0 = 0. Considering [u

t

]

i

=

¯U(t�1)
s

+1. Then the ith component of u
t+1 can be written as

[u

t+1]i = (1� ⌘[�
t

]

2
i

)[u

t

]

i

+ ⇢
t

[�
t

]

2
i

.

If the state at time t is not s, then t
s

= (t � 1)

s

and [�
t

]

i

= 0. Hence

[u

t+1]i = (1� 0)

¯U(t�1)
s

+1 + 0 =

¯U(t�1)
s

+1 =

¯U
t

s

+1.

On the other hand, if the state at time t is s, then t
s

= (t � 1)

s

+ 1, [�
t

]

i

= 1 and ⇢
t

= ⇢t+1
s,t

s

. Hence,

[u

t+1]i = (1� ⌘) ¯U(t�1)
s

+1 + ⇢t+1
s,t

s

= (1� ⌘) ¯U
t

s

+ ⇢t+1
s,t

s

=

¯U
t

s

+1.

Hence, [↵
t+1]i =

1
Ū

t

s

+1
, if t

s

> 0, or [↵
t+1]i = 0, otherwise.

Now, by assumption, [✓0]i = ¯V0 = 0. Considering [✓
t

]

i

=

¯V(t�1)
s

+1 and t
s

> 0, the ith component of ✓
t+1 can be written

as

[✓
t+1]i = [✓

t

]

i

+ [↵
t+1]i⇢t

�
G

t

� �>
t

✓
t

�
[�

t

]

i

=

¯V(t�1)
s

+1 +
⇢
t

¯U
t

s

+1

�
G

t

� �>
t

✓
t

�
[�

t

]

i

.

If the state at time t is not s, then [✓
t+1]i =

¯V(t�1)
s

+1 + 0 =

¯V
t

s

+1.

If the state at time t is not s, then ⇢
t

= ⇢
s,t

s

, G
t

= G
s,t

s

and

[✓
t+1]i =

¯V(t�1)
s

+1 +
⇢
s,t

s

¯U
t

s

+1

⇣
G

s,t

s

� ¯V(t�1)
s

+1

⌘

=

¯V
t

s

+

⇢
s,t

s

¯U
t

s

+1

�
G

s,t

s

� ¯V
t

s

�
=

¯V
t

s

+1.

The only case that is left is when t
s

= 0. In this case, the the state at time t cannot be s, and ¯V
t

s

+1 =

¯V(t�1)
s

+1 = · · · =
¯V0 = 0. Then

[✓
t+1]i = [✓

t

]

i

+ [↵
t+1]i⇢t

�
G

t

� ✓>
t

�
t

�
[�

t

]

i

=

¯V(t�1)
s

+1 + 0 · ⇢
t

�
G

t

� ✓>
t

�
t

�
· 0

= 0 =

¯V
t

s

+1.

A.3 Proof of Theorem 3

Theorem 3 (Online equivalence technique). Consider any forward view that updates toward an interim scalar target Y t

k

with

✓t+1
k+1

.
= F

k

✓t+1
k

+ Y t+1
k

w

k

+ x

k

, 0  k < t + 1,

where ✓t

0
.
= ✓0 for some initial ✓0, and both F

k

2 Rn⇥n and w

k

2 Rn can be computed using data available at k. Assume
that the temporal difference Y t+1

k

� Y t

k

at k is related to the temporal difference at k + 1 as follows:

Y t+1
k

� Y t

k

= d
k+1

�
Y t+1
k+1� Y t

k+1

�
+ b

t

g
k

t�1Y

j=k+1

c
j

, 0  k < t,

where b
k

, c
k

, d
k

and g
k

are scalars that can be computed using data available at time k. Then the final weight ✓
t+1=̇✓t+1

t+1

can be computed through the following backward-view update, with e�1
.
= 0, d0

.
= 0, and t � 0:

e

t

.
= w

t

+ d
t

F

t

e

t�1,

✓
t+1

.
= F

t

✓
t

+ (Y t+1
t

� Y t

t

)e

t

+ Y t

t

w

t

+ b
t

F

t

d

t

+ x

t

,

d

t+1
.
= c

t

F

t

d

t

+ g
t

e

t

.

Proof. We can write the difference between two consecutive estimates as

✓t+1
t+1 � ✓t

t

= F

t

✓t+1
t

� ✓t

t

+ Y t+1
t

w

k

+ x

t

= F

t

�
✓t+1
t

� ✓t

t

�
+ Y t+1

t

w

k

+ (F

t

� I)✓t

t

+ x

t

.

Now let us expand ✓t+1
t

� ✓t

t

:

✓t+1
t

� ✓t

t

= F

t�1✓
t+1
t�1 + Y t+1

t�1 wt�1 + x

t�1

� F

t�1✓
t

t�1 � Y t

t�1wt�1 � x

t�1

= F

t�1

�
✓t+1
t�1 � ✓t

t�1

�
+

�
Y t+1
t�1 � Y t

t�1

�
w

t�1

= F

t�1 · · ·F0(✓
t+1
0 � ✓t

0) +

t�1X

k=0

F

t�1 · · ·Fk+1(Y
t+1
k

� Y t

k

)w

k

=

t�1X

k=0

F

t�1 · · ·Fk+1(Y
t+1
k

� Y t

k

)w

k

=

t�1X

k=0

F

t�1 · · ·Fk+1

0

@d
k+1(Y

t+1
k+1 � Y t

k+1) + b
t

g
k

t�1Y

j=k+1

c
j

1

A
w

k

=

t�1X

k=0

F

t�1 · · ·Fk+1

d
k+1

d
k+2(Y

t+1
k+2 � Y t

k+2)

+ b
t

g
k+1

t�1Y

j=k+2

c
j

!
+ b

t

g
k

t�1Y

j=k+1

c
j

!
w

k

=

t�1X

k=0

F

t�1 · · ·Fk+1

d
k+1dk+2(Y

t+1
k+2 � Y t

k+2)

+ b
t

g
k+1dk+1

t�1Y

j=k+2

c
j

+ b
t

g
k

t�1Y

j=k+1

c
j

!
w

k

=

t�1X

k=0

F

t�1 · · ·Fk+1

tY

j=k+1

d
j

(Y t+1
t

� Y t

t

)

+ b
t

t�1X

n=k

g
n

nY

i=k+1

d
i

t�1Y

j=n+1

c
j

!
w

k

= d
t

(Y t+1
t

� Y t

t

)

t�1X

k=0

F

t�1 · · ·Fk+1

t�1Y

j=k+1

d
j

w

k

| {z }
e
t�1

+ b
t

t�1X

k=0

F

t�1 · · ·Fk+1

t�1X

n=k

g
n

nY

i=k+1

d
i

t�1Y

j=n+1

c
j

w

k

| {z }
d

t

= (Y t+1
t

� Y t

t

)d
t

e

t�1 + b
t

d

t

.

The vectors e
t

and d

t

can be incrementally updated as follows:

e

t

=

tX

k=0

F

t

· · ·F
k+1

tY

j=k+1

d
j

w

k

= w

t

+ d
t

F

t

t�1X

k=0

F

t�1 · · ·Fk+1

t�1Y

j=k+1

d
j

w

k

= w

t

+ d
t

F

t

e

t�1,

d

t

=

t�1X

k=0

F

t�1 · · ·Fk+1

t�1X

n=k

g
n

nY

i=k+1

d
i

t�1Y

j=n+1

c
j

w

k

=

t�1X

k=0

F

t�1 · · ·Fk+1

0

@
t�2X

n=k

g
n

nY

i=k+1

d
i

t�1Y

j=n+1

c
j

w

k

+ g
t�1

t�1Y

j=k+1

d
j

w

k

1

A

=

t�1X

k=0

F

t�1 · · ·Fk+1

t�2X

n=k

g
n

nY

i=k+1

d
i

t�1Y

j=n+1

c
j

w

k

+ g
t�1

t�1X

k=0

F

t�1 · · ·Fk+1

t�1Y

j=k+1

d
j

w

k

= c
t�1Ft�1

t�2X

k=0

F

t�1 · · ·Fk+1

t�2X

n=k

g
n

nY

i=k+1

d
i

t�2Y

j=n+1

c
j

w

k

+ g
t�1et�1

= c
t�1Ft�1dt�1 + g

t�1et�1.

Then plugging back in

✓t+1
t+1 = ✓t

t

+ F

t

�
✓t+1
t

� ✓t

t

�
+ Y t+1

t

w

t

+ (F

t

� I)✓t

t

+ x

t

= ✓t

t

+ d
t

F

t

e

t�1(Y
t+1
t

� Y t

t

) + b
t

F

t

d

t

+ Y t+1
t

w

t

+ (F

t

� I)✓t

t

+ x

t

= F

t

✓t

t

+ (e

t

�w

t

)(Y t+1
t

� Y t

t

) + Y t+1
t

w

t

+ b
t

F

t

d

t

+ x

t

= F

t

✓t

t

+ (Y t+1
t

� Y t

t

)e

t

+ Y t

t

w

t

+ b
t

F

t

d

t

+ x

t

.

A.4 Proof of Theorem 4

Theorem 4 (Generality of the new equivalence technique). The online equivalence technique by van Hasselt, Mahmood
and Sutton (2014, Theorem 1) can be retrieved as a special case from the online equivalence technique given in Theorem
3.

Proof. We describe the online equivalence technique by van Hasselt et al. (2014) in the following.

Consider any forward view that updates toward an interim scalar target Y t

k

with

✓t+1
k+1 = ✓t+1

k

+ µ
k

�
Y t+1
k

� �>
k

✓t+1
k

�
�

k

+ x

k

, 0  k < t,

where ✓t

0 = ✓0 for some initial ✓0. Assume that the temporal difference Y t+1
k

�Y t

k

at k is related to the temporal difference
at k + 1 as follows:

Y t+1
k

� Y t

k

= d
k+1(Y

t+1
k+1 � Y t

k+1), 0  k < t,

where d
k

is a scalar that can be computed using data available at time k. Then the final weight ✓
t+1=̇✓t+1

t+1 can be computed
through the following backward-view update, with e�1 = 0 and t � 0:

e

t

= µ
t

�
t

+ d
t

(I� µ
t

�
t

�>
t

)e

t�1,

✓
t+1 = ✓

t

+ (Y t+1
t

� Y t

t

)e

t

+ µ
t

(Y t

t

� �>
t

✓
t

)�
t

+ x

t

.

The above equivalence technique can be obtained from Theorem 3 as a special case by substituting F

k

= I � µ
k

�
k

�>
k

,
w

k

= µ
k

�
k

and b
k

= 0 .

A.5 Proof of Theorem 5

Theorem 5 (Backward view update for ↵
t

of WIS-TD(�)). The step-size vector ↵
t

computed by the following backward-
view update and the forward-view update defined by (18) – (20) are equal at each step t:

u

t+1
.
= (1� ⌘�

t

� �
t

) � u
t

+ ⇢
t

�
t

� �
t

+ (⇢
t

� 1)�
t

�
t

(1� ⌘�
t

� �
t

) � v
t

, (22)
v

t+1
.
= �

t

�
t

⇢
t

(1� ⌘�
t

� �
t

) � v
t

+ ⇢
t

�
t

� �
t

, (23)
↵

t+1
.
= 1↵ u

t+1. (24)

Proof. First, note that the component-wise vector multiplication in (19) can be written equivalently as a matrix-vector
multiplication in the following way:

(1� ⌘�
k

� �
k

) � ut+1
k

= (I� ⌘Diag (�
k

� �
k

))u

t+1
k

,

where Diag(v) 2 R|v|⇥|v| is a diagonal matrix with the components of v in its diagonal.

In Theorem 3, we substitute ✓t+1
k

= u

t+1
k

, F
k

= (I� ⌘Diag (�
k

� �
k

)), x
k

= 0, w
k

= �
k

� �
k

and Y t+1
k

= ⇢̃t+1
k

.

Now, ⇢̃t+1
k

can be recursively in t written as follows

⇢̃t+1
k

= ⇢
k

tX

i=k+1

Ci�1
k

(1� �
i

�
i

) + ⇢
k

Ct

k

= ⇢
k

t�1X

i=k+1

Ci�1
k

(1� �
i

�
i

) + ⇢
k

Ct�1
k

(1� �
t

�
t

) + ⇢
k

Ct

k

= ⇢
k

t�1X

i=k+1

Ci�1
k

(1� �
i

�
i

) + ⇢
k

Ct�1
k

+ ⇢
k

Ct�1
k

⇢
t

�
t

�
t

� ⇢
k

Ct�1
k

�
t

�
t

= ⇢̃t
k

+ (⇢
t

� 1)�
t

�
t

⇢
k

Ct�1
k

.

Hence, it proves that

Y t+1
k

� Y t

k

= d
k+1

�
Y t+1
k+1� Y t

k+1

�
+ b

t

g
k

t�1Y

j=k+1

c
j

, 0  k < t,

with d
i

= 0, b
i

= (⇢
i

� 1)�
i

�
i

, g
i

= ⇢
i

and c
i

= �
i

�
i

⇢
i

, 8i.

Inserting these substitutes in Theorem 3 yields us the backward-view defined by (22) – (24).

A.6 Proof of Theorem 6

Theorem 6 (Backward view update for ✓t

t

of WIS-TD(�)). The parameter vector ✓
t

computed by the following backward-
view update and the parameter vector ✓t

t

computed by the forward-view update defined by (17) and (21) are equal at every
time step t:

e

t

.
= ⇢

t

↵
t+1 � �t

+ �
t

�
t

⇢
t

�
e

t�1 � ⇢
t

(↵
t+1 � �t

)�>
t

e

t�1

�
, (25)

✓
t+1

.
= ✓

t

+↵
t+1 � ⇢

t

�
✓>
t�1�t

� ✓>
t

�
t

�
�

t

+ (R
t+1 + �

t+1✓
>
t

�
t+1 � ✓>

t�1�t

)e

t

+ (⇢
t

� 1)�
t

�
t

�
d

t

� ⇢
t

(↵
t+1 � �t

)�>
t

d

t

�
, (26)

d

t+1
.
= �

t

�
t

⇢
t

�
d

t

� ⇢
t

(↵
t+1 � �t

)�>
t

d

t

�
+

�
R

t+1 + ✓>
t

�
t+1 � ✓>

t�1�t

�
e

t

. (27)

Proof. First, we redefine (21) for convenience:

✓t+1
k+1

.
= ✓t+1

k

+↵
k+1 � ⇢

k

⇣
⇣⇢
k,t+1� �>

k

✓t+1
k

⌘
�

k

, (28)

where G⇢

k,t+1 = ⇢
k

⇣⇢
k,t+1. Hence, ⇣⇢

k,t+1 can be given by:

⇣⇢
k,t+1

.
= Ct

k

⇣
(1� �

t+1)G
t+1
k

+ �
t+1

�
Gt+1

k

+ �>
t+1✓t

�⌘
+

tX

i=k+1

Ci�1
k

⇣
(1� �

i

)Gi

k

+ �
i

(1� �
i

)

�
Gi

k

+ �>
i

✓
i�1

�⌘

�

Ct

k

+

tX

i=k+1

Ci�1
k

(1� �
i

�
i

)� 1

!
�>

k

✓
k�1.

In Theorem 3, we substitute F

k

= I � ⇢
k

(↵
k+1 � �

k

)�>
k

, w
k

= ⇢
k

↵
k+1 � �

k

, Y t+1
k

= ⇣⇢
k,t+1 and x

k

= 0, 8k, to get
(28). Now, the next step is to establish a recursive relation for ⇣⇢ both in k and t. For that, we use the following identities:

Gk+1
k

= R
k+1,

Gt+1
k

=

tX

i=k

R
i+1 = R

k+1 + Gt+1
k+1.

First we establish the recurrence relation in k:

⇣⇢
k,t+1 = Ct

k

⇣
(1� �

t+1)G
t+1
k

+ �
t+1

�
Gt+1

k

+ �>
t+1✓t

�⌘
+

tX

i=k+1

Ci�1
k

⇣
(1� �

i

)Gi

k

+ �
i

(1� �
i

)

�
Gi

k

+ �>
i

✓
i�1

�⌘

�

Ct

k

+

tX

i=k+1

Ci�1
k

(1� �
i

�
i

)� 1

!
�>

k

✓
k�1

= Ct

k

⇣
(1� �

t+1)
�
R

k+1 + Gt+1
k+1

�
+ �

t+1

�
R

k+1 + Gt+1
k+1 + �>

t+1✓t
�⌘

+

⇣
(1� �

k+1)G
k+1
k

+ �
k+1(1� �

k+1)
�
Gk+1

k

+ �>
k+1✓k

�⌘

+

tX

i=k+2

Ci�1
k

⇣
(1� �

i

)

�
R

k+1 + Gi

k+1

�
+ �

i

(1� �
i

)

�
R

k+1 + Gi

k+1 + �>
i

✓
i�1

�⌘

�

Ct

k

+

tX

i=k+1

Ci�1
k

(1� �
i

�
i

)� 1

!
�>

k

✓
k�1

= ⇢
k+1�k+1�k+1C

t

k+1

�
(1� �

t+1)G
t+1
k+1 + �

t+1(G
t+1
k+1 + �>

t+1✓t)
�

+ ⇢
k+1�k+1�k+1

tX

i=k+2

Ci�1
k+1

⇣
(1� �

i

)Gi

k+1 + �
i

(1� �
i

)

�
Gi

k+1 + �>
i

✓
i�1

�⌘

� ⇢
k+1�k+1�k+1

Ct

k+1 +

tX

i=k+2

Ci�1
k+1(1� �

i

�
i

)� 1

!
�>

k+1✓k

+

Ct

k

+

tX

i=k+2

Ci�1
k

(1� �
i

�
i

)� ⇢
k+1�k+1�k+1

!
�>

k+1✓k

+ Ct

k

R
k+1 + (1� �

k+1�k+1)Rk+1 + �
k+1(1� �

k+1)�
>
k+1✓k

+ R
k+1

tX

i=k+2

Ci�1
k

(1� �
i

�
i

)

�

Ct

k

+

tX

i=k+1

Ci�1
k

(1� �
i

�
i

)� 1

!
�>

k

✓
k�1

= ⇢
k+1�k+1�k+1⇣

⇢

k+1,t+1 +

Ct

k

+

tX

i=k+1

Ci�1
k

(1� �
i

�
i

)� 1

!
�
R

k+1 + �>
k+1✓k � �>

k

✓
k�1

�

+ R
k+1 + �>

k+1✓k � ⇢
k+1�k+1�k+1�

>
k+1✓k + �

k+1(1� �
k+1)�

>
k+1✓k � (1� �

k+1�k+1)�
>
k+1✓k

= ⇢
k+1�k+1�k+1⇣

⇢

k+1,t+1 +

Ct

k

+

tX

i=k+1

Ci�1
k

(1� �
i

�
i

)� 1

!
�
R

k+1 + �>
k+1✓k � �>

k

✓
k�1

�

+ R
k+1 + �

k+1 (1� ⇢
k+1�k+1)�

>
k+1✓k.

Then the recurrence in t can be established by subtracting ⇣⇢
k,t

from ⇣⇢
k,t+1:

⇣⇢
k,t+1 � ⇣⇢

k,t

.
= ⇢

k+1�k+1�k+1⇣
⇢

k+1,t+1 +

Ct

k

+

tX

i=k+1

Ci�1
k

(1� �
i

�
i

)� 1

!
�
R

k+1 + �>
k+1✓k � �>

k

✓
k�1

�

+ R
k+1 + �

k+1 (1� ⇢
k+1�k+1)�

>
k+1✓k

� ⇢
k+1�k+1�k+1⇣

⇢

k+1,t �

Ct�1
k

+

t�1X

i=k+1

Ci�1
k

(1� �
i

�
i

)� 1

!
�
R

k+1 + �>
k+1✓k � �>

k

✓
k�1

�

� R
k+1 + �

k+1 (1� ⇢
k+1�k+1)�

>
k+1✓k

= ⇢
k+1�k+1�k+1

⇣
⇣⇢
k+1,t+1 � ⇣⇢

k+1,t

⌘

+

�
Ct

k

� Ct�1
k

+ Ct�1
k

(1� �
t

�
t

)

� �
R

k+1 + �>
k+1✓k � �>

k

✓
k�1

�

= ⇢
k+1�k+1�k+1

⇣
⇣⇢
k+1,t+1 � ⇣⇢

k+1,t

⌘
+ (⇢

t

� 1)�
t

�
t

Ct�1
k

�
R

k+1 + �>
k+1✓k � �>

k

✓
k�1

�
.

The above recurrence relation establishes

Y t+1
k

� Y t

k

= d
k+1

�
Y t+1
k+1� Y t

k+1

�
+ b

t

g
k

t�1Y

j=k+1

c
j

, 0  k < t,

with d
i

= ⇢
i

�
i

�
i

, b
i

= (⇢
i

� 1)�
i

�
i

, g
i

= R
i+1 + �>

i+1✓i � �>
i

✓
i�1 and c

i

= �
i

�
i

⇢
i

, 8i. Inserting these substitutes in
Theorem 3 yields us the backward-view defined by (25) – (27).

A.7 Description of WIS-TD(�), WIS-GTD(�), WIS-TO-GTD(�), U-TD(�) and U-TO-TD(�)

Algorithm 1 WIS-TD(�)
Initialization:
Choose ✓0, u0 � 0, ⌘ � 0

Set u0 = u01,v0 = 0, e�1 = 0,d0 = 0

for t = 0, 1, · · · do
receive �

t

, ⇢
t

, �
t

, �
t

, R
t+1,�t+1, �t+1, �t+1

u

t+1 = (1� ⌘�
t

� �
t

) � u
t

+ ⇢
t

�
t

� �
t

+(⇢
t

� 1)�
t

�
t

(1� ⌘�
t

� �
t

) � v
t

v

t+1 = �
t

�
t

⇢
t

(1� ⌘�
t

� �
t

) � v
t

+ ⇢
t

�
t

� �
t

↵
t+1 = 1↵ u

t+1

e

t

= ⇢
t

↵
t+1 � �t

+�
t

�
t

⇢
t

�
e

t�1 � ⇢
t

(↵
t+1 � �t

)�>
t

e

t�1

�

✓
t+1 = ✓

t

+↵
t+1 � ⇢

t

�
✓>
t�1�t

� ✓>
t

�
t

�
�

t

+(R
t+1 + �

t+1✓>
t

�
t+1 � ✓>

t�1�t

)e

t

+(⇢
t

�1)�
t

�
t

�
d

t

� ⇢
t

(↵
t+1 � �t

)�>
t

d

t

�

d

t+1 = �
t

�
t

⇢
t

�
d

t

� ⇢
t

(↵
t+1 � �t

)�>
t

d

t

�

+

�
R

t+1 + ✓>
t

�
t+1 � ✓>

t�1�t

�
e

t

end for

Algorithm 2 WIS-GTD(�)
Initialization:
Choose ✓0,w0, u0 � 0, ⌘ � 0, � � 0

Set u0 = u01,v0 = 0, e�1 = 0

for t = 0, 1, · · · do
receive �

t

, ⇢
t

, �
t

, �
t

, R
t+1,�t+1, �t+1, �t+1

u

t+1 = (1� ⌘�
t

� �
t

) � u
t

+ ⇢
t

�
t

� �
t

+(⇢
t

� 1)�
t

�
t

(1� ⌘�
t

� �
t

) � v
t

v

t+1 = �
t

�
t

⇢
t

(1� ⌘�
t

� �
t

) � v
t

+ ⇢
t

�
t

� �
t

↵
t+1 = 1↵ u

t+1

e

t

= ⇢
t

(�
t

�
t

e

t�1 + �
t

)

�
t

= R
t+1 + �

t+1✓>
t

�
t+1 � ✓>

t

�
t

✓
t+1 = ✓

t

+↵
t+1 � �

t

e

t

�↵
t+1 � �

t+1(1� �
t+1)(e

>
t

w

t

)�
t+1

w

t+1 = w

t

+ �
⇥
�
t

e

t

� (w

>
t

�
t

)�
t

⇤

end for

Algorithm 3 WIS-TO-GTD(�)
Initialization:
Choose ✓0,w0, u0 � 0, ⌘ � 0, � � 0

Set u0 = u01,v0 = 0, e�1 = e

r
�1 = e

w
�1 = 0, ⇢0 = 0

for t = 0, 1, · · · do
receive �

t

, ⇢
t

, �
t

, �
t

, R
t+1,�t+1, �t+1, �t+1

u

t+1 = (1� ⌘�
t

� �
t

) � u
t

+ ⇢
t

�
t

� �
t

+(⇢
t

� 1)�
t

�
t

(1� ⌘�
t

� �
t

) � v
t

v

t+1 = �
t

�
t

⇢
t

(1� ⌘�
t

� �
t

) � v
t

+ ⇢
t

�
t

� �
t

↵
t+1 = 1↵ u

t+1

e

t

= ⇢
t

↵
t+1 � �t

+�
t

�
t

⇢
t

�
e

t�1 � ⇢
t

(↵
t+1 � �t

)�>
t

e

t�1

�

e

r
t

= ⇢
t

(�
t

�
t

e

t�1 + �
t

)

e

w
t

= �
t

�
t

⇢0ew
t�1 + �

�
1� �

t

�
t

⇢0�>
t

e

w
t�1

�
�

t

�
t

= R
t+1 + �

t+1✓>
t

�
t+1 � ✓>

t

�
t

✓
t+1 = ✓

t

+�
t

e

t

+(e

t

�↵
t+1�⇢

t

�
t

)(✓
t

�✓
t�1)

>�
t

�↵
t+1 � �

t+1(1� �
t+1)(w

>
t

e

r
t

)�
t+1

w

t+1 = w

t

+ ⇢
t

�
t

e

w
t

� �(w>
t

�
t

)�
t

⇢0 = ⇢
t

end for

Algorithm 4 U-TD(�)
Initialization:
Choose ✓0, u0 � 0, ⌘ � 0

Set u0 = u01, , e�1 = 0

for t = 0, 1, · · · do
receive �

t

, �
t

, �
t

, R
t+1,�t+1, �t+1, �t+1

u

t+1 = (1� ⌘�
t

� �
t

) � u
t

+ �
t

� �
t

↵
t+1 = 1↵ u

t+1

e

t

= �
t

�
t

e

t�1 + �
t

�
t

= R
t+1 + �

t+1✓>
t

�
t+1 � ✓>

t

�
t

✓
t+1 = ✓

t

+↵
t+1 � �

t

e

t

end for

Algorithm 5 U-TO-TD(�)
Initialization:
Choose ✓0, u0 � 0, ⌘ � 0

Set u0 = u01, e�1 = 0

for t = 0, 1, · · · do
receive �

t

, �
t

, �
t

, R
t+1,�t+1, �t+1, �t+1

u

t+1 = (1� ⌘�
t

� �
t

) � u
t

+ �
t

� �
t

↵
t+1 = 1↵ u

t+1

e

t

= ↵
t+1 ��t

+�
t

�
t

�
e

t�1�(↵t+1 � �t

)�>
t

e

t�1

�

✓
t+1 = ✓

t

+↵
t+1 �

�
✓>
t�1�t

� ✓>
t

�
t

�
�

t

+(R
t+1 + �

t+1✓>
t

�
t+1 � ✓>

t�1�t

)e

t

end for

	Weighted importance sampling for off-policy Monte Carlo estimation
	Sample averages and stochastic gradient descent
	WIS and off-policy SGD
	A new online equivalence technique
	A new off-policy TD() based on WIS
	Extending existing algorithms based on the new adaptive step size
	Experimental results
	Discussion and Conclusions

