
Appendix

A.1 Proof of Theorem 1

Theorem 1 (Backward consistency of U-SGD with sample average). If the feature representation is tabular, the vectors u
and ✓ are initially set to zero, and 0  ⌘ < 1, then U-SGD defined by (5)-(7) degenerates to the recency-weighted average
estimator defined by (3) and (4), in the sense that each component of the parameter vector ✓

t+1 of U-SGD becomes the
recency-weighted average estimator of the corresponding input.
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A.2 Proof of Theorem 2

Theorem 2 (Backward consistency of WIS-SGD-1 with WIS). If the feature representation is tabular, the vectors u and ✓
are initially set to zero, and 0  ⌘ < 1, then WIS-SGD-1 defined by (10)-(12) degenerates to recency-weighted WIS defined
by (8) and (9) with Y
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t+1 becomes the recency-weighted WIS estimator of the corresponding input.

Proof. The proof is similar to that of Theorem 1.
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A.3 Proof of Theorem 3

Theorem 3 (Online equivalence technique). Consider any forward view that updates toward an interim scalar target Y t
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A.4 Proof of Theorem 4

Theorem 4 (Generality of the new equivalence technique). The online equivalence technique by van Hasselt, Mahmood
and Sutton (2014, Theorem 1) can be retrieved as a special case from the online equivalence technique given in Theorem
3.

Proof. We describe the online equivalence technique by van Hasselt et al. (2014) in the following.
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A.5 Proof of Theorem 5

Theorem 5 (Backward view update for ↵
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Hence, it proves that
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Inserting these substitutes in Theorem 3 yields us the backward-view defined by (22) – (24).

A.6 Proof of Theorem 6
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Proof. First, we redefine (21) for convenience:
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Theorem 3 yields us the backward-view defined by (25) – (27).



A.7 Description of WIS-TD(�), WIS-GTD(�), WIS-TO-GTD(�), U-TD(�) and U-TO-TD(�)

Algorithm 1 WIS-TD(�)
Initialization:
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Algorithm 2 WIS-GTD(�)
Initialization:
Choose ✓0,w0, u0 � 0, ⌘ � 0, � � 0

Set u0 = u01,v0 = 0, e�1 = 0
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Algorithm 3 WIS-TO-GTD(�)
Initialization:
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Algorithm 4 U-TD(�)
Initialization:
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Algorithm 5 U-TO-TD(�)
Initialization:
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