A DERIVATION OF $\beta(\mathbf{x})$

Equation 5 introduces $\beta(\mathbf{x})$ in order to allow the single optimization problem approximating $\log Z$,
$\max _{i=1}^{k} \max _{\mathbf{x} \in S_{i}} \theta \phi(\mathbf{x})-\log \gamma\left(\mathbf{x}, q_{i}\right)$
to be written in the form
$\theta \phi(\mathbf{x})+\beta(\mathbf{x}) \forall \mathbf{x} \in C$
This reformulation is needed because, more generally, the cutting-planes technique requires that the lower-bound of $\log Z$ be written in the form
$\log Z(\theta) \geq \max _{\mathbf{x} \in C} f(\theta, g(\mathbf{x}))$
i.e. as the maximization over a set C of variable configurations \mathbf{x} of a term which is linear in the parameter vector θ and which contains some (possibly nonlinear) function of \mathbf{x} (the term must be linear in θ in order for Equation 5 to be a linear program). If the lower bound is expressed in such a form, it can then be equivalently represented by linear constraints of the form
$\alpha \geq f(\theta, g(\mathbf{x})) \forall \mathbf{x} \in C$
This section completes the derivation of Equation 5 from Equation 4 by showing how Equation 4 can be written as a maximization over configurations \mathbf{x}.
Proposition 3. There exists a set C and function $\beta(\boldsymbol{x})$ such that $\log Z \geq \theta \phi(\boldsymbol{x})+\beta(\boldsymbol{x}) \forall \boldsymbol{x} \in C$.

Proof. From Equation 4,

$$
\begin{gathered}
\log Z(\theta) \geq \max _{i=1}^{k} \max _{\mathbf{x} \in S_{i}}\left(\theta \phi(\mathbf{x})-\log \gamma\left(\mathbf{x}, q_{i}\right)\right) \\
=\max _{\mathbf{x} \in \bigcup_{i=1}^{k} S_{i}}\left(\theta \phi(\mathbf{x})+\max _{i \mid \mathbf{x} \in S_{i}}\left(-\log \gamma\left(\mathbf{x}, q_{i}\right)\right)\right) \\
=\max _{\mathbf{x} \in C}(\theta \phi(\mathbf{x})+\beta(\mathbf{x}))
\end{gathered}
$$

Where $\beta(\mathbf{x})=\beta\left(\mathbf{x}, q_{1}, \ldots, q_{k}\right)=\max _{i \mid \mathbf{x} \in S_{i}} \log \gamma\left(\mathbf{x}, q_{i}\right)$ and C is the union of all \mathbf{x} in each sampled set $S_{i} \sim q_{i}$. Intuitively, given any configuration of variables $\mathbf{x}, \beta(\mathbf{x})$ represents the maximum scale factor (importance weight) of \mathbf{x} for all set-proposal distributions q_{i}. For multiple $S_{i}^{t} \sim q_{i}, t=1, \ldots, T$, it is necessary once again that
$\log Z(\theta) \geq \max _{i=1}^{k} \operatorname{median}_{t=1, \ldots, T} \max _{\mathbf{x} \in S_{i}^{t}}\left(\theta \phi(\mathbf{x})-\log \gamma\left(\mathbf{x}, q_{i}\right)\right)$
be written in the form
$\theta \phi(\mathbf{x})+\beta(\mathbf{x}) \forall \mathbf{x} \in C$
Taking the same approach,

$$
\begin{aligned}
& \log Z(\theta) \geq \max _{i=1}^{k} \operatorname{median}_{t=1, \ldots, T} \max _{\mathbf{x} \in S_{i}^{t}}\left(\theta \phi(\mathbf{x})-\log \gamma\left(\mathbf{x}, q_{i}\right)\right) \\
& =\max _{\mathbf{x} \in \bigcup_{i=1}^{k} \bigcup_{t=1}^{T} S_{i}^{t}}\left(\theta \phi(\mathbf{x})+\max _{i \mid \mathbf{x} \in \bigcup_{t=1}^{T} S_{i}^{t}} \operatorname{median}_{t=1, \ldots, T}\left(-\log \gamma\left(\mathbf{x}, q_{i}\right)\right)\right.
\end{aligned}
$$

In practice it also works well to replace the median with the max, as Corollary 3 proves an approximate lower bound and the bound is made tighter by taking the max over T samples. Making this substitution,

$$
\begin{gathered}
\log Z(\theta) \geq \max _{i=1}^{k} \max _{t=1}^{T} \max _{\mathbf{x} \in S_{i}^{t}}\left(\theta \phi(\mathbf{x})-\log \gamma\left(\mathbf{x}, q_{i}\right)\right) \\
=\max _{\mathbf{x} \in \bigcup_{i=1}^{k} \bigcup_{t=1}^{T} S_{i}^{t}}\left(\theta \phi(\mathbf{x})+\max _{i \mid \mathbf{x} \in \bigcup_{t=1}^{T} S_{i}^{t}}\left(-\log \gamma\left(\mathbf{x}, q_{i}\right)\right)\right) \\
=\max _{\mathbf{x} \in C}(\theta \phi(\mathbf{x})+\beta(\mathbf{x}))
\end{gathered}
$$

