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1 C-SBL Algorithm Summary

Algorithm 1 Clustered Sparse Bayesian Learning Algorithm (C-SBL)
Input: Sensing matrices Φj , j = 1...L, measurement matrix Y = [y1,y2, ...yL], β ≥ 0.
Initialize: W , Λk ∀k, and ν.
for halting criterion false do

Γj ←
[∑

k wj,kΛ
−1
k

]−1
, ∀j.

zj ← diag
[(∑

k wj,kΛ
−1
k + 1

νΦ
T
j Φj

)−1
]
, ∀j.

xj ← ΓjΦ
T
j

(
νI +ΦjΓjΦ

T
j

)−1

yj , ∀j.

λi,k ←
∑

j wj,k(x2
i,j+zi,j)∑

j wj,k
, ∀i, k.

wj,k ← exp

(
1
β

[
−
∑M

i=1

(
x2
i,j

λi,k
+ log λi,k +

zi,j
λi,k

)]
− 1

)
, ∀j, k.

wj,k ←
wj,k∑
k wj,k

, ∀j, k.

ν ← 1
LN

∑L
j=1

[
tr
(
1
ν I + (ΦjΓjΦ

T
j )

−1
)
+ ∥yj −Φjxj∥22

]
.

end for
return
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2 Full Image Reconstruction Results (64× 64 Images)

We present the complete image reconstruction results described in Section 6 of our submission followed by the
corresponding clustering information (heat-maps) from the estimated W matrix. Further explanations below.

Figure 1: Reconstructions of 64× 64 images from dynamic scene 1, cluster size 5. From left to right: Original
image, C-SBL, DP, MMV. Sampling rate is N/M = 0.38.
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Figure 2: Reconstructions of 64× 64 images from dynamic scene 2, cluster size 3. From left to right: Original
image, C-SBL, DP, MMV. Sampling rate is N/M = 0.38.

Figure 3: Reconstructions of 64× 64 images from dynamic scene 3, cluster size 3. From left to right: Original
image, C-SBL, DP, MMV. Sampling rate is N/M = 0.38.
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Figure 4: Reconstructions of 64× 64 images from dynamic scene 4, cluster size 4. From left to right: Original
image, C-SBL, DP, MMV. Sampling rate is N/M = 0.38.
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Figure 5: Reconstructions of 64× 64 images from dynamic scene 5, cluster size 4. From left to right: Original
image, C-SBL, DP, MMV. Sampling rate is N/M = 0.38.
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(a) Oracle (b) CSBL

(c) DP (d) MMV

Figure 6: Heat-map of W matrices for 64 × 64 image reconstructions. (a) Oracle case (cluster patterns are
known), (b) C-SBL, (c) DP, and (d) MMV.

Figure 6 displays the clustering information of the respective algorithms with respect to ground truth as
revealed through heat-maps of the estimated cluster matrices W . Here column permutations are irrelevant
as the column labels are arbitrary; more important is that tasks within the same group (as partitioned by the
oracle) have nonzeros along the same columns of W . Note that because the MMV algorithm assumes a single
cluster, it is implicitly associated with the degenerate W matrix shown in the figure. In contrast, DP learns
only two clusters, errantly merging many distinct categories together, which is arguably a primary contributor
to its reconstruction error. Meanwhile C-SBL correctly learns the five correct clusters and achieves the best
performance, both in terms of MSE (as reported in our submission) and visual inspection.

In terms of the underlying representations, unlike DP, C-SBL uses multiple bases Λk to model many of the
clusters (scenes) as evidenced by multiple nonzeros in the rows of W . However, this is just an artifact of many
different Λk fusing together within a true cluster, and all of these bases within a cluster must eventually share
the same support (and typically magnitudes as well) by virtue of the support intersection property described in
our submission. In contrast, DP seems to prematurely allocate its corresponding wj,k values to a single basis
per task, eventually becoming trapped at suboptimal extrema.

Finally, we should mention that in certain more challenging problems with sparse innovation components
C-SBL can potentially overestimate the number of clusters. However, often unnecessary splits do not actually
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affect the corresponding reconstruction error because the within cluster row-sparsity estimation of C-SBL is still
extremely effective. In other words, while superfluous cluster splits can often be compensated for, unwarranted
cluster merging as demonstrated by DP typically cannot be.

3 Higher Resolution Full Image Reconstruction Results (128× 128 Images)

This section demonstrates analogous image reconstruction performance at a higher resolution. We sample
128 × 128 versions of the same 19 images again in the wavelet domain and using 19 distinct sensing matrices
Φj , j = 1...L as before. Because of the higher resolution, the images now become sparser in the wavelet
domain. We correspondingly reduce the sampling rate to N/M = 0.33 in order to challenge the estimation
capability of all the learning approaches. The improvement afforded by C-SBL is more notably apparent in
images having text.
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Figure 7: Reconstructions of 128×128 images from dynamic scene 1, cluster size 5. From left to right: Original
image, C-SBL, DP, MMV. Sampling rate is N/M = 0.33.
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Figure 8: Reconstructions of 128 × 128 images from dynamic scenes 2, cluster size 3. From left to right:
Original image, C-SBL, DP, MMV. Sampling rate is N/M = 0.33.

Figure 9: Reconstructions of 128×128 images from dynamic scene 3, cluster size 3. From left to right: Original
image, C-SBL, DP, MMV. Sampling rate is N/M = 0.33.
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Figure 10: Reconstructions of 128 × 128 images from dynamic scene 4, cluster size 4. From left to right:
Original image, C-SBL, DP, MMV. Sampling rate is N/M = 0.33.
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Figure 11: Reconstructions of 128 × 128 images from dynamic scene 5, cluster size 4. From left to right:
Original image, C-SBL, DP, MMV. Sampling rate is N/M = 0.33.
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(a) Oracle (b) CSBL

(c) DP (d) MMV

Figure 12: Heat-map of W matrices for 128× 128 image reconstructions. (a) Oracle case (cluster patterns are
known), (b) C-SBL, (c) DP, and (d) MMV.
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Figure 13: MSE versus iteration for image reconstructions at resolution 128× 128.

4 Proof of Theorem 2

Here we present the proof of Theorem 2; a few relatively inconsequential technical details are omitted for
brevity. Under the stipulated conditions, we are concerned with stationary points of

Lk(Λk) = tr
[
YΩk

Y ⊤
Ωk

(Σk)
−1
]
+ |Ωk| log |Σk|, (1)

where Σk = νI+ΦΛkΦ
⊤, in the limit when ν → 0. At any such point, YΩk

must be an element of span[ΦΛ1/2
k ]

or the cost will be driven to infinity. (This occurs for the same reason that [1/x + log x] → ∞ as x → 0.) In
this regard we will first assume that ΦΛkΦ

⊤ is invertible, which also allows us to simply assume that ν = 0 in
(1).

Let Φ̄ be the collection of columns of Φ which correspond with nonzero rows of X∗
Ωk

, so it follows that
YΩk

= Φ̄X̄∗
Ωk

. Near any candidate stationary point Λk, we may express (1) as

L(a, b) = |Ωk| log |aΣk + bΦ̄∆2Φ̄⊤|+ tr
[
Y ⊤
Ωk

(
aΣk + bΦ̄∆2Φ̄⊤

)−1
YΩk

]
, (2)

where Σk = ΦΛkΦ
⊤ and ∆ is an arbitrary positive diagonal matrix. If Λk is a stationary point, then it must be

that

∂L(a, b)
∂a

∣∣∣∣
a=1,b=0

= 0,
∂L(a, b)

∂b

∣∣∣∣
a=1,b=0

≥ 0, (3)

otherwise we could alter a (up or down) or increase b from zero to decrease (1). Let Z ≡ z(a, b) , aΣk +
bΦ̄∆2Φ̄⊤. Then

∂L(a, b)
∂a

= |Ωk|tr
[
Z−1Σk

]
− tr

[
Y ⊤
Ωk

Z−1ΣkZ
−1YΩk

]
∂L(a, b)

∂b
= |Ωk|tr

[
Z−1Φ̄∆2Φ̄⊤

]
− tr

[
Y ⊤
Ωk

Z−1Φ̄∆2Φ̄⊤Z−1YΩk

]
.

Since z(1, 0) = Σk,

∂L(a, b)
∂a

∣∣∣∣
a=1,b=0

= |Ωk|tr [IN ]− tr
[
Y ⊤
Ωk

Σ−1
k YΩk

]
, (4)

∂L(a, b)
∂b

∣∣∣∣
a=1,b=0

= |Ωk|tr
[
Σ−1
k Φ̄∆2Φ̄⊤

]
− tr

[
W∆2W⊤

]
, (5)
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where W , Y ⊤
Ωk

Σ−1
k Φ̄. Equating the first gradient equation to zero gives tr

[
Y ⊤
Ωk

Σ−1
k YΩk

]
= N |Ωk|. For the

second we first demonstrate that we may assume X̄∗
Ωk

is invertible without loss of generality. To see this, note
that the condition

min
Ψ>0

κ(ΨX̄∗
Ωk

(X̄∗
Ωk

)⊤Ψ) <
N

D
(6)

cannot be satisfied unless X̄∗
Ωk

is full row rank, and hence we must have D ≤ |Ωk|. Additionally, if D < |Ωk|,
we can convert (1) to an equivalent objective function with the value of |Ωk| reduced to D such that w.l.o.g.
X̄∗

Ωk
is now a D × D full rank matrix. This is possible since (1) only depends on Φ̄X̄∗

Ωk
through the outer-

product YΩk
Y ⊤
Ωk

= Φ̄X̄∗
Ωk

(X̄∗
Ωk

)⊤Φ̄⊤, which can always be reparameterized such that X̄∗
Ωk

is a D × D full
rank matrix.

Consequently, the righthand side of (5) is equivalent to

|Ωk|tr
[
X̄∗

Ωk
(X̄∗

Ωk
)−1∆2(X̄∗

Ωk
)−⊤(X̄∗

Ωk
)⊤Φ̄⊤Σ−1

k Φ̄
]
− tr

[
X̄∗

Ωk
(X̄∗

Ωk
)−1∆2(X̄∗

Ωk
)−⊤(X̄∗

Ωk
)⊤W⊤W

]
= |Ωk|tr

[
(X̄∗

Ωk
)−1∆2(X̄∗

Ωk
)−⊤Y ⊤

Ωk
Σ−1
k YΩk

]
− tr

[
(X̄∗

Ωk
)−1∆2(X̄∗

Ωk
)−⊤Y ⊤

Ωk
Σ−1
k YΩk

Y ⊤
Ωk

Σ−1
k YΩk

]
≤ |Ωk|λmax

[
(X̄∗

Ωk
)−1∆2(X̄∗

Ωk
)−⊤

]
tr
[
Y ⊤
Ωk

Σ−1
k YΩk

]
− λmin

[
(X̄∗

Ωk
)−1∆2(X̄∗

Ωk
)−⊤

]
tr
[(

Y ⊤
Ωk

Σ−1
k YΩk

)2]

=
|Ωk|tr

[
Y ⊤
Ωk

Σ−1
k YΩk

]
λmin

[
∆−1X̄∗

Ωk
(X̄∗

Ωk
)⊤∆−1

] − tr
[(

Y ⊤
Ωk

Σ−1
k YΩk

)2]
λmax

[
∆−1X̄∗

Ωk
(X̄∗

Ωk
)⊤∆−1

] , (7)

where the inequality comes from the fact that λmin(A)tr(B) ≤ tr(AB) ≤ λmax(A)tr(B) for any positive semi-
definite matrices A and B. (Here λmin(A) and λmax(A) correspond with the smallest and largest eigenvalue
of A respectively.)

Now let λ1, · · · , λD denote the the eigenvalues of Y ⊤
Ωk

Σ−1
k YΩk

(where D = |Ωk| for the reasons given

above), such that tr
[
Y ⊤
Ωk

Σ−1
k YΩk

]
=
∑D

i=1 λi = N |Ωk| = ND. Also define A , ∆−1X̄∗
Ωk

(X̄∗
Ωk

)⊤∆−1.
Then the upper bound from (7) can be modified to

D

∑D
i=1 λi

λmin(A)
−
∑D

i=1 λ
2
i

λmax(A)
≤ ND2∥A−1∥2 −

N2D

∥A∥2
, (8)

where the inequality comes from the fact that
∑D

i=1 λ
2
i ≥ N2D given that

∑D
i=1 λi = ND.

To summarize then, for a stationary point to occur, it must be that

ND2∥A−1∥2 −
N2D

∥A∥2
≥ ∂L(a, b)

∂b

∣∣∣∣
a=1,b=0

≥ 0. (9)

However, if κ(A) < N
D , then ND2∥A−1∥2 − N2D

∥A∥2 < 0, which means Λk cannot be a stationary point. Since
∆ can be an arbitrary positive diagonal matrix, we choose ∆ = argmin∆ κ(A) to form the strongest bound.
This rules out as a stationary point any Λk such that the corresponding Σk is full rank. Note that for simplicity
we have defined Ψ , ∆−1 in the original theorem statement as ∆ is invertible and the actual parameterization
is irrelevant.

We now only need consider the rare Λk ̸= Λ∗
k values such that both YΩk

is an element of span[ΦΛ1/2
k ] and

the corresponding Σk is not full rank. Technically, if Σk is not full rank, the cost function (1) is not defined.
It is here that careful consideration of the limit of ν → 0, where the limit is take outside of the minimization,
ameliorates the problem. With this in mind, it is straightforward to collapse the problem by projecting YΩk

and
Φ to a lower-dimensional space such that the resulting Σk is now full rank. We may then follow the recipe from
above in the resulting lower-dimensional space arriving at a similar conclusion. Hence the only stationary point
is a Λ∗

k that is maximally row sparse with Λ∗
kΦ

⊤(ΦΛ∗
kΦ

⊤)†YΩk
= X∗

Ωk
.
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