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Figure 9: Factor graph corresponding to Figure 2

A APPENDIX

A.1 MESSAGE PASSING EQUATIONS FOR
BIPARTITE GRAPH

We use message passing for inference in the factor graph
shown in Figure 10 where at time step t T1, T2, . . . , Tr are
observed. In the following description of message passing
at time step t we sometimes omit the t subscript for nota-
tional conveniences.

For each Si, the message νSi→Si,Rj to the factor f(Si, Rj)
is

νSi→Si,Rj = µSi,Xt,Tr→Si
∏

1≤J≤r
J 6=j

µSi,RJ→Si (21)

the message µSi,Rj→Si from the factor f(Si, Rj) is

µSi,Rj→Si =
∑
Rj

f(Si, Rj) νRj→Si,Rj (22)

the message νSi→Si,Xt,Tr to the factor f(Si, Xt, Tr) is

νSi→Si,Xt,Tr =
∏

1≤J≤r

µSi,RJ→Si (23)

the message µSi,Xt,Tr→Si from the factor f(Si, Xt, Tr) is

µSi,Xt,Tr→Si = (24)∫
f(Si, Xt, Tr) νXt→Si,Xt,TrνTr→Si,Xt,Tr dXt (25)

For each Rj , the message νRj→Si,Rj to the factor

R1,t R2,t Rrt,t. . .

T1,t T2,t Trt,t

XtXt−1 Xt+1

S1,t S2,t Sst,t. . .

. . .

Figure 10: A factor graph representing the distribution of r
earliest arriving signals in the bipartite model

f(Si, Rj) is

νRj→Si,Rj = (26)

µR1,R2,...,Rr,N→RjµTj ,Rj ,Xt→Rj
∏

1≤I≤s
I 6=i

µSI ,Rj→Rj (27)

the message µSi,Rj→Rj from the factor f(Si, Rj) is

µSi,Rj→Rj =
∑
Si

f(Si, Rj) νSi→Si,Rj (28)

the message νRj→Tj ,Rj ,Xt to the factor f(Tj , Rj , Xt) is

νRj→Tj ,Rj ,Xt = µR1,R2,...,Rr,N→Rj

∏
1≤I≤s

µSI ,Rj→Rj

(29)
the message µTj ,Rj ,Xt→Rj from the factor f(Tj , Rj , Xt)
is

µTj ,Rj ,Xt→Rj =
∫
f(Tj , Rj , Xt) νXt→Tj ,Rj ,Xt dXt

(30)
the message νRj→R1,R2,...,Rr,N to the factor
f(R1, R2, . . . , Rr, N) is

νRj→R1,R2,...,Rr,N = µTj ,Rj ,Xt→Rj
∏

1≤I≤s

µSI ,Rj→Rj

(31)



the message µR1,R2,...,Rr,N→Rj from the factor
f(R1, R2, . . . , Rr, N) is

µR1,R2,...,Rr,N→Rj = (32)∑
{R1,...,Rr}\{Rj}

∑
N

f(R1, . . . , Rr, N) (33)

νN→R1,...,Rr,N

∏
1≤J≤r
J 6=j

νRJ→R1,...,Rr,N

(34)

For N , the message νN→N to the factor N is

νN→N = µR1,R2,...,Rr,N→NµN,Tr→N (35)

the message µN→N from the factor N is

µN→N =
∑
N

f(N) (36)

the message νN→R1,R2,...,Rr,N to the factor
f(R1, R2, . . . , Rr, N) is

νN→R1,R2,...,Rr,N = µN→NµN,Tr→N (37)

the message µR1,R2,...,Rr,N→N from the factor
f(R1, R2, . . . , Rr, N) is

µR1,R2,...,Rr,N→N = (38)∑
R1,...,Rr

f(R1, . . . , Rr, N)
∏

1≤J≤r

νRJ→R1,...,Rr,N (39)

the message νN→N,Tr to the factor f(N,Tr) is

νN→N,Tr = µN→NµR1,R2,...,Rr,N→N (40)

the message µN,Tr→N from the factor f(N,Tr) is

µN,Tr→N =
∑
N

f(N,Tr) (41)

For Xt, the message νXt→Xt−1,Xt to the factor
f(Xt−1, Xt) is

νXt→Xt−1,Xt = (42)

µXt,Xt+1→Xt

∏
1≤I≤s

µSI ,Xt,Tr→Xt
∏

1≤J≤r

µTJ ,RJ ,Xt→Xt

(43)

the message µXt−1,Xt→Xt from the factor f(Xt−1, Xt) is

µXt−1,Xt→Xt =
∫
f(Xt−1, Xt) νXt−1→Xt−1,Xt dXt−1

(44)
the message νXt→Xt,Xt+1 to the factor f(Xt, Xt+1) is

νXt→Xt,Xt+1 = (45)
µXt−1,Xt→Xt (46)∏
1≤I≤s

µSI ,Xt,Tr→Xt
∏

1≤J≤r

µTJ ,RJ ,Xt→Xt

(47)

the message µXt→Xt,Xt+1 from the factor f(Xt, Xt+1) is

µXt→Xt,Xt+1 =
∫
f(Xt, Xt+1) νXt+1→Xt,Xt+1 dXt+1

(48)
the message νXt→Si,Xt,Tr to the factor f(Si, Xt, Tr) is

νXt→Si,Xt,Tr = (49)
µXt−1,Xt→XtµXt,Xt+1→Xt (50)∏
1≤I≤s
I 6=i

µSI ,Xt,Tr→Xt
∏

1≤J≤r

µTJ ,RJ ,Xt→Xt

(51)

the message µSi,Xt,Tr→Xt from the factor f(Si, Xt, Tr) is

µSi,Xt,Tr→Xt =
∑
Si

f(Si, Xt, Tr) νSi→Si,Xt,Tr (52)

the message νXt→Tj ,Rj ,Xt to the factor f(Tj , Rj , Xt) is

νXt→Tj ,Rj ,Xt = (53)
µXt−1,Xt→XtµXt,Xt+1→Xt (54)∏
1≤I≤s

µSI ,Xt,Tr→Xt
∏

1≤J≤r
J 6=j

µTJ ,RJ ,Xt→Xt

(55)

the message µTj ,Rj ,Xt→Xt from the factor f(Tj , Rj , Xt)
is

µTj ,Rj ,Xt→Xt =
∑
Rj

f(Tj , Rj , Xt) νRj→Tj ,Rj ,Xt (56)

A.2 MESSAGE PASSING FOR HIGH ORDER min
FACTORS

Recall that the factor fj(Tj , t1, t2, . . . , ts) is given by

fj(Tj , t1, t2, . . . , ts) = δ(Tr − tk) (57)

where tk is the jth minimum element of {t1, t2, . . . , ts}.
We denote this factor by fj .

Direct computation of messages in this high order factor
graph would require computing an s− 1-dimensional inte-
gral. However, our fj , which correspond to the j-th mini-
mum function, can be rewritten as a sum of products as,

fj =
s∑

k=1

δ(tk − Tj)∑
(A,B)∈Sk

∏
a∈A

1(ta < Tj)
∏
b∈B

1(tb > Tj) (58)

where Sk = {(A,B) ⊆ [s]× [s] : A ∪B = [s] \ {k}, A ∩
B = ∅, |A| = j − 1, |B| = s− j} and [s] = {1, 2, . . . , s}
The outer sum represents the s different cases where each



element of {t1, t2, . . . , ts} can be the jth smallest. Suppose
tk is the jth smallest and is equal to Tj . Then, the remaining
{tl|l 6= k} are partitioned into 2 sets, where every tl in one
set is smaller than tk and while each tl in the other is larger.
There are

(
s−1
j−1

)
such partitions. Thus the fj corresponds

to a sum of products of O(s
(
s−1
j−1

)
) terms.

The message µfj→ti(ti) from the factor fj(1 ≤ j ≤ r) to
the variable ti(1 ≤ i ≤ s) is given by:

µfj→ti(ti) =
∫  ∏

1≤l≤s
l 6=i

νtl→fj (tl)


f(Tj , t1, t2, . . . , ts) d . . . t︸ ︷︷ ︸

except dti

(59)

=
∫  ∏

1≤l≤s
l 6=i

νtl→fj (tl)

 δ(Tj − tk) d . . . t︸ ︷︷ ︸
except dti

(60)

where tk is the jth smallest element of {t1, t2, . . . , ts}, and
νtl→fj (tl) is the message from tl to fj .

For computing µfj→ti(ti), fj can be written as the sum of
the following terms:

fj = δ(ti − Tj)
∑
A,B

∏
a∈A

1(ta < Tj)
∏
b∈B

1(tb > Tj)

(61)

+
∑
k 6=i

δ(tk − Tj)
∑
A,B

∏
a∈A

1(ta < Tj)
∏
b∈B

1(tb > Tj)

(62)

Then, the multidimensional integral can be written as sum
of products of unidimensional integrals. The final compu-
tation of the message requires a sum of O(s

(
s−1
j−1

)
) terms

as,

µfj→ti(ti) = δ(ti − Tj)h1(Tj)
+ 1(ti < Tj)h2(Tj) + 1(ti > Tj)h3(Tj) (63)

where

h1(Tj) =
∑
A,B

∏
a∈A

(∫ Tj

−∞
νta→fj (ta) dta

)
(64)∏

b∈B

(∫ +∞

Tj

νtb→fj (tb) dtb

)
(65)

h2(Tj) =
∑

A,B,i∈A

∏
a∈A,a6=i

(∫ Tj

−∞
νta→fj (ta) dta

)
(66)∏

b∈B

(∫ +∞

Tj

νtb→fj (tb) dtb

)
(67)

h3(Tj) =
∑

A,B,i∈B

∏
a∈A

(∫ Tj

−∞
νta→fj (ta) dta

)
(68)∏

b∈B,b6=i

(∫ +∞

Tj

νtb→fj (tb) dtb

)
(69)

For r such factors fj , if messages are computed di-
rectly, each iteration of message passing will require
O(
∑r
j=1

(
s
j

)
) computation. Note that only 2s unidimen-

sional integrals need to be computed, and the remainder
of the computation corresponds to computing the value
of elementary symmetric polynomials, which corresponds
to sums of all combinations. To compute a symmetric
polynomial

∑
A∈{1,2,...,n}
|A|=k

∏
a∈A ca which sums over all

k-combinations of {c1, c2, . . . , cn}, we can use dynamic
programming to find the coefficient of xk in

∏n
i=1(x+ ci),

and this can be done in O(n2) time.

A.2.1 FULL MODEL WITH CLUTTER

We handle two kinds of systematic noise in this model:
losses from the sender and clutter. Losses are handled by
m1,m2, . . . ,ms in Figure 9.

Clutter can be incorporated in this model through the factor
f ′k(Tk, t1, t2, . . . , ts, J1, J2, . . . , Jk) as

f ′k(.) =

{
δ(Tr − tl) if Jk = 0
1 if Jk = 1

(70)

where tl is the (k −
∑
i Ji)

th minimum element of
{t1, t2, . . . , ts}. This is identical to f from the previous
section if the Ji are all zero. If Jk = 1, i.e. the current
message is clutter, then we assume a uniform distribution
over Tk. If some previous received message was clutter, Tk
will take a lower minimum value.



Then, the factor can be written down in terms
of the factors f , from the previous section, as
f ′k(Tk, t1, t2, . . . , ts, J1, J2, . . . , Jk):

f ′k(.) = fk−
P
i Ji

(Tk, t1, t2, . . . , ts) (71)

Then, the messages from fk to ti can be written as:

ν′f ′k→ti
=
∑
Ji

νfk−Pi Ji→tiπlµJl→f ′k (72)

where the summation is over the values 0 or 1 for each Ji.

Messages from f ′k to Jl can be written as:

ν′f ′k→ti
=
∑
Ji,i6=l

∫
fk−

P
i Ji

dt1 . . . dts (73)

Thus, we can precompute the messages for fk in polyno-
mial time, and we can compute these messages in O(2r)
additional time.

A.3 ADDITIONAL EXPERIMENTAL RESULTS
FOR RAFOS FLOAT DATA

Here we present more additional experimental results for
tracking RAFOS floats using our proposed method. When
there are at least three actual signal arrival times at each
time step, such as float #767 and float #811 (Figure 1), it is
possible to estimate a unique track for the float over the en-
tire period of the float’s mission (Figure 7 and 8). However,
if at some point during a float’s mission that there are only
two actual signal arrival times for a certain period, then nei-
ther using hand labeled data nor our proposed method can
uniquely determine the float’s location.

An example for float #759 is given here. The signal arrival
times for float #759 are shown in Figure 11, where there ex-
ists periods of time during float #759’s mission when only
at most two signal arrivals are available. As shown in Fig-
ure 12, we get different results in different runs of the sim-
ple particle filter algorithm using hand labeled data (blue),
and our proposed algorithm agrees with hand labeled data
when there are at least three signal arrival times available.
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Figure 11: Observed signal arrival times for float #759 over
the entire tracking period
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Figure 12: Results of different runs of the simple particle
filter algorithm using hand labeled data (blue) versus our
proposed algorithm (red) for float #759


