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A Proof of Theorem 3

For convenience, we restate the theorem in the following.
Theorem 3. Given ✏ 2 (0, 1), � 2 (0, 1) and r > 0, select integers t0 � 2��1

(r2 + r)/(2✏/3 � ✏2/9)2 and t �
18✏�1

[

p
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p
8 log(6p/�)]2 log(6r/�). Let �sparse 2 Rt0⇥p be a t0 ⇥ p sparse embedding matrix and let �srht 2 Rt⇥t0 be

a t⇥ t0 SRHT matrix. Then the product S = �srht�sparse is an (r, �, ✏)-OSE.

Proof. By Theorem 1, �sparse 2 Rt0⇥p is an (r, �/2, ✏/3)-OSE. Similarly, by Theorem 2, �srht 2 Rt0⇥t is also an
(r, �/2, ✏/3)-OSE.

Now fix an arbitrary matrix M 2 Rp⇥m of rank r. Since �sparse is an (r, �/2, ✏/3)-OSE, by Definition 1, we have
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holds for all z 2 Rm simultaneously with probability at least 1 � �/2. Eq. (18) also implies that rank(�sparseM) =

rank(M) = r. Now, conditioning on the event that Eq. (18) holds, and using the fact that �srht is an (r, �/2, ✏/3)-OSE, we
have
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holds for all z 2 Rm simultaneously with probability at least 1� �/2. When both Eq. (18) and Eq. (19) hold, we have, for
any z 2 Rm,
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where we have used Eq. (18), Eq. (19) and the fact that ✏ < 1. The other direction: k�srht(�sparseMz)k
2
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can be proved using the same method. Now, notice that, by union bound, the probability that both Eq. (18) and Eq. (19)
hold simultaneously for any z is at least 1� �. This concludes our proof.

B Proof of Theorem 6

Proof. Let ˜b = A˜x denote the prediction using approximated ˜x returned by Algorithm 1. Let b⇤
= Ax⇤ denote the

prediction using optimal solution x⇤ of Eq. (1). Define b
0

= Ax
0

. Let the thin SVD of A be A = U⌃VT .

Using the classical bias-variance decomposition [4], for any ˆb 2 Rn, we have

risk(

ˆb) = bias(

ˆb) + var(

ˆb), (21)
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as the bias component and the variance component, respectively.

By Lemma 3, we have x⇤
= VG�1UTb, where G = �⌃�1

+ ⌃. And by Lemma 4, we have ˜x = V ˜G�1UTb,
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T
(SV). Also notice that
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= ⇢2. Using these definition, we first bound the variance

component var(˜b). We have
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where we have repeatedly used the cyclic property of trace of matrix product. Similarly, one can show that
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Now we recall the definition R = G�1

(

˜G�G) and write ˜G�1
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where Eq. (22) follows from Woodbury matrix identity, Eq. (23) follows from triangle inequality and Eq. (24) follows from
Lemma 5, the fact that S is an (r, �, ✏/4)-OSE and the definition that ⇢ =
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F

.

Now, we can bound var(

˜b) as follows
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where Eq. (25) follows from the definition ⇢ =
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Next, we bound the bias component bias(˜b). We can simplify bias(

˜b) as follows
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where we have dropped U which does not change l
2

norms. Using the same method, bias(b⇤
) can be simplified as
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It is easy to see that
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and we can bound it as follows
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where Eq. (27) follows from matrix inversion lemma, Eq. (28) is the triangle inequality and Eq. (29) follows from Lemma 5
and that S is an (r, �, ✏/4)-OSE. Now, dividing both sides of the above inequality Eq. (30) by
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Finally, we obtain the following bound on bias(
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where Eq. (31) holds since k⌃k
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The theorem follows immediately from Eq. (21), Eq. (26), Eq. (32) and the fact that ✏ < 1.

C Proof of Theorem 7

We first prove a generalization of Lemma 1 as follows.
Lemma 7. Given A 2 Rn⇥p of rank r, B 2 Rn⇥m and � > 0. Suppose that S 2 Rt⇥p is an (r, �, ✏/4)-OSE for ✏ 2 (0, 1)
and � 2 (0, 1). Then, with probability 1� �, we have
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where ˜X is given by Eq. (16) and X⇤ is the optimal solution to multiple response ridge regression Eq. (14).



Proof. Let the thin SVD of A be A = U⌃VT . Fix an arbitrary i 2 [m], consider the column vectors ˜X(i) and X⇤(i). By
definition, we can see that X⇤(i)
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+ ⌃. Now, we can regard B(i) as the target vector and then
apply Lemma 3 on X⇤(i) and Lemma 4 on ˜X(i), respectively. This shows that X⇤(i)
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where Eq. (33) follows from matrix inversion lemma and Eq. (34) follows from Lemma 5 and the fact that S is an (r, �, ✏/4)-
OSE.

Then, Theorem 7 is an immediate consequence of Lemma 7.

Proof of Theorem 7. The bound on
��� ˜X�X

���
F

follows immediately from Lemma 7 and Theorem 3 which shows that
S = �srht�sparse is an (r, �, ✏/4)-OSE. And the running time analysis is similar to the one given in Section 3.

D Structured Ridge Regression: Algorithm Details and Analysis

In this part, we supplement the details of the relative-error approximation algorithm for structured ridge regression.

First, we compute the sketched matrix '(A)ST , where S = �srht�sparse. Next, we compute the approximate solution ˜x as
follows
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T
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)

†T
(�('(A)ST

)

†T
+ '(A)ST

)
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The following theorem shows that the ˜x obtained by Eq. (36) is a relative-error approximation of x⇤.
Theorem 8. Given A 2 Rn⇥p, b 2 Rn, � > 0, q 2 N+, parameter ✏ 2 (0, 1) and � 2 (0, 1). Select integers t0, t such
that t0 � 2��1
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�sparse 2 Rt0⇥pq is a sparse embedding matrix and �srht 2 Rt⇥t0 is an SRHT matrix. Then, with probability at least 1� �,
we have
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where ˜x is given by Eq. (36) and x⇤ is the optimal solution to structured ridge regression Eq. (17). In addition, the total
time complexity of computing '(A)ST and ˜x is O(nnz(A) log
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(q) + n3q log2(q)/✏2 + n3

log(
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).

In order to prove Theorem 8, we only need to calculate the running time of Eq. (36), since the relative error approximation
guarantee directly comes from Theorem 4. To analyze the running time, we use the following result of Avron et al. [3].
Lemma 8. [3, Lemma 9, 10, 11] Let A 2 Rn⇥p, y 2 Rn, z 2 Rpq . Let 'q : Rp ! Rpq be the kernel expansion function
such that 'q(a) = {aj�1

i }
(i,j)2[p]⇥[q] for all a 2 Rp. Let �sparse 2 Rt0⇥pq be a sparse embedding matrix.



Then, there exists a fast matrix-vector multiplication algorithm such that yT'q(A) and 'q(A)z can be computed in
O(nnz(A) log

2

(q) + nq log2(q)) time. And therefore the product 'q(A)�T
sparse can be computed in O(nnz(A) log
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(q) +
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Proof of Theorem 8. From Theorem 3 we knows that S = �srht�sparse is an (n, �, ✏/4) OSE. The bound on k˜x� xk
2

follows immediately from Lemma 1.

From Lemma 8 we know the time cost to compute 'q(A)�T
sparse is O((nnz(A) + qn3/✏2) log2(q)). Therefore, the total

time complexity of computing 'q(A)ST and ˜x is O(nnz(A) log
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E Argument and Counterexample for the Proof of [22, Theorem 1]

In this section, we show a counterexample of a claim used in [22, Theorem 1]. For clarity, we will use the notations in [22].

The risk inflation bound of [22] is based on the claim that the following function

B(M) = n�2zT (M+ n�In)
�2z

is non-increasing in M for any positive semi-definite matrix M 2 Rn⇥n and z 2 Rn. It is easy to see that this claim is
equivalent to the claim that for any positive definite matrices M
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However, this claim is not true and we can construct following counterexample.
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be the following 2⇥ 2 matrices.
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. This issue also propagates to other parts of their proof. Hence
their bound [22, Theorem 1] may be flawed.


