Optimal Algorithms for Learning Bayesian Network Structures: Introduction and Heuristic Search

Changhe Yuan

UAI 2015 Tutorial
Sunday, July $12^{\text {th }}, 8: 30-10: 20 a m$
http://auai.org/uai2015/tutorialsDetails.shtml\#tutorial_1

About tutorial presenters

- Dr. Changhe Yuan (Part I)
- Associate Professor of Computer Science at Queens College/City University of New York
- Director of the Uncertainty Reasoning Laboratory (URL Lab).
- Dr. James Cussens (Part II)
- Senior Lecturer in the Dept of Computer Science at the University of York, UK
- Dr. Brandon Malone (Part I and II)
- Postdoctoral researcher at the Max Planck Institute for Biology of Ageing

Bayesian networks

- A Bayesian Network is a directed acyclic graph (DAG) in which:
- A set of random variables makes up the nodes in the network.
- A set of directed links or arrows connects pairs of nodes.
- Each node has a conditional probability table that quantifies the effects the parents have on the node.

Learning Bayesian networks

- Very often we have data sets
- We can learn Bayesian networks from these data

100	100	100	90	390	97.5%
100	95	100	80	375	93.8%
100	100	100	90	390	97.5%
80	95	100	90	365	91.3%
100	100	100	100	400	100.0%
100	100	100	100	400	100.0%
90	95	100	90	375	93.8%
90	95	100	90	375	93.8%
100	100	100	90	390	97.5%
100	100	100	100	400	100.0%
100	90	100	90	380	95.0%
95	90	100	80	365	91.3%
100	95	100	80	375	93.8%
100	95	100	80	375	93.8%
100	100	100	100	400	100.0%

Major learning approaches

- Score-based structure learning
- Find the highest-scoring network structure
» Optimal algorithms (FOCUS of TUTORIAL)
» Approximation algorithms
- Constraint-based structure learning
- Find a network that best explains the dependencies and independencies in the data
- Hybrid approaches
- Integrate constraint- and/or score-based structure learning
- Bayesian model averaging
- Average the prediction of all possible structures

Score-based learning

- Find a Bayesian network that optimizes a given scoring function

- Two major issues
- How to define a scoring function?
- How to formulate and solve the optimization problem?

Scoring functions

- Bayesian Dirichlet Family (BD)
- K2
- Minimum Description Length (MDL)
- Factorized Normalized Maximum Likelihood (fNML)
- Akaike's Information Criterion (AIC)
- Mutual information tests (MIT)
- Etc.

Decomposability

- All of these are expressed as a sum over the individual variables, e.g.

$$
\begin{array}{|l}
\hline \text { BDeu } \sum_{i}^{n} \sum_{j}^{q_{i}} \log \frac{\Gamma\left(\alpha_{i j}\right)}{\Gamma\left(\alpha_{i j}+N_{i j}\right)}+\sum_{k}^{r_{i}} \log \frac{\Gamma\left(\alpha_{i j k}+N_{i j k}\right)}{\Gamma\left(\alpha_{i j k}\right)} \\
\hline \text { MDL } \\
\sum_{i}^{n}-L L\left(X_{i} \mid P A_{i}\right)+\frac{\log N}{2}\left(r_{i}-1\right) q_{i} \\
\hline \text { fNML } \sum_{i}^{n} \sum_{j}^{q_{i}} \sum_{k}^{r_{i}}-N_{i j k} \log \frac{N_{i j k}}{N_{i j}}-C\left(r_{i}, N_{i j}\right) \\
\hline
\end{array}
$$

- This property is called decomposability and will be quite important for structure learning.

$$
\operatorname{Score}(G)=\sum_{i}^{n} \operatorname{Score}\left(X_{i} \mid P A_{i}\right)
$$

Querying best parents

$$
\begin{aligned}
& \operatorname{BestScore}(X, \boldsymbol{U})=\min _{P A_{X} \subseteq \mathbf{U} \backslash\{X\}} \operatorname{Score}\left(X \mid P A_{X}\right) \\
& \text { e.g., BestScore }\left(X_{1},\left\{X_{2}, X_{4}\right\}\right)=\min _{P A_{X_{1}} \leq\left(X_{2}, X_{4}\right\}} \operatorname{Score}\left(X_{1} \mid P A_{X_{1}}\right)
\end{aligned}
$$

Naive solution: Search through all Solution: Propagate optimal of the subsets and find the best scores and store as hash table.

BestScore $\left(X_{1} \mid P A_{1}\right)$

Score pruning

- Theorem: Say $\mathrm{PA}_{\mathrm{i}} \subset \mathrm{PA}_{\mathrm{i}}^{\prime}$ and $\operatorname{Score}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{PA}_{\mathrm{i}}\right)<\operatorname{Score}\left(\mathrm{X} \mid \mathrm{PA}_{\mathrm{i}}^{\prime}\right)$. Then $\mathrm{PA}_{\mathrm{i}}^{\prime}$ is not optimal for X_{i}.
- Ways of pruning:
- Compare $\operatorname{Score}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{PA}_{\mathrm{i}}\right)$ and $\operatorname{Score}\left(\mathrm{X} \mid \mathrm{PA}_{\mathrm{i}}^{\prime}\right)$
- Using properties of scoring functions without computing scores (e.g., exponential pruning)
- After pruning, each variable has a list of possibly optimal parent sets (POPS)
- The scores of all POPS are called local scores

[Teyssier and Koller 2005, de Campos and Ji 2011, Tian 2000]

Number of POPS

The number of parent sets and their scores stored in the full parent graphs ("Full"), the largest layer of the parent graphs in memory-efficient dynamic programming ("Largest Layer"), and the possibly optimal parent sets ("Sparse").

Practicalities

- Empirically, the sparse AD-tree data structure is the best approach for collecting sufficient statistics.
- A breadth-first score calculation strategy maximizes the efficiency of exponential pruning.
- Caching significantly reduces runtime.
- Local score calculations are easily parallelizable.

Graph search formulation

- Formulate the learning task as a shortest path problem
- The shortest path solution to a graph search problem corresponds to an optimal Bayesian network
[Yuan, Malone, Wu, IJCAI-11]

Search graph (Order graph)

Search graph (Order graph)

A* algorithm

A* search: Expands the nodes in the order of quality: $f=g+h$

$$
\begin{aligned}
& g(U)=\operatorname{Score}(U) \\
& h(U)=\text { estimated distance to goal }
\end{aligned}
$$

Notation:

$g:$	g-cost
$h:$	-cost
Red shape-outlined:	open nodes
No outline:	closed nodes

[Yuan, Malone, Wu, IJCAI-11]

A* algorithm

A* search: Expands the nodes in the order of quality: $f=g+h$
$g(U)=\operatorname{Score}(U)$
$h(U)=$ estimated distance to goal

Notation:

$g:$	g-cost
$h:$	h-cost
Red shape-outlined:	open nodes
No outline:	closed nodes

[Yuan, Malone, Wu, IJCAI-11]

A* algorithm

A* search: Expands the nodes in the order of quality: $f=g+h$
$g(U)=$ Score(U)
$h(U)=$ estimated distance to goal

Notation:

$g:$	g-cost
$h:$	h-cost
Red shape-outlined:	open nodes
No outline:	closed nodes

[Yuan, Malone, Wu, IJCAI-11]

A* algorithm

A* search: Expands the nodes in the order of quality: $f=g+h$
$g(U)=$ Score (U)
$h(U)=$ estimated distance to goal

Notation:

$g:$	g-cost
$h:$	h-cost
Red shape-outlined:	open nodes
No outline:	closed nodes

[Yuan, Malone, Wu, IJCAI-11]

A* algorithm

A* algorithm

A* algorithm

Simple heuristic

A* search: Expands nodes in order of quality: $f=g+h$

$$
\begin{aligned}
& g(U)=\operatorname{Score}(U) \\
& h(U)=\sum_{X \in И U} \operatorname{BestScore}(X, И\{X\})
\end{aligned}
$$

$h(\{1,3\})$:

[Yuan, Malone, Wu, IJCAI-11]

Properties of the simple heuristic

- Theorem: The simple heuristic function h is admissible
- Optimistic estimation: never overestimate the true distance
- Guarantees the optimality of A*
- Theorem: \boldsymbol{h} is also consistent
- Satisfies triangular inequality, yielding a monotonic heuristic
- Consistency => admissibility
- Guarantees the optimality of g cost of any node to be expanded

BFBnB algorithm

BFBnB algorithm

Breadth-first branch and bound search (BFBnB):

- Motivation:

Exponential-size order\&parent graphs

- Observation:

Natural layered structure

- Solution:

Search one layer at a time
[Malone, Yuan, Hansen, UAI-11]

BFBnB algorithm

[Malone, Yuan, Hansen, UAI-11]

Pruning in BFBnB

- For pruning, estimate an upper bound solution before search
- Can be done using anytime window A*
- Prune a node when f-cost $>$ upper bound

[Malone, Yuan, Hansen, UAI-11]

Performance of A* and BFBnB

A comparison of the total time (in seconds) for GOBNILP, A*, and BFBnB. An " X " means that the corresponding algorithm did not finish within the time limit (7,200 seconds) or ran out of memory in the case of A^{*}.

Drawback of simple heuristic

- Let each variable to choose optimal parents from all the other variables
- Completely relaxes the acyclic constraint
Bayesian network Heuristic estimation

Potential solution

- Breaking cycles to obtain a tighter heuristic

Static k-cycle conflict heuristic

- Also called static pattern database
- Calculate joint costs for all subsets of non-overlapping static groups by enforcing acyclicity within a group:

$$
\{1,2,3,4,5,6\} \Rightarrow\{1,2,3\},\{4,5,6\}
$$

[Yuan, Malone, UAI-12]

Computing heuristic value using static PD

- Sum costs of pattern databases according to static grouping

[Yuan, Malone, UAI-12]

Properties of static k-cycle conflict heuristic

- Theorem: The static k-cycle conflict heuristic is admissible
- Theorem: The static k-cycle conflict heuristic is consistent

Enhancing A* with static k-cycle conflict heuristic

A comparison of the search time (in seconds) for GOBNILP, A^{*}, BFBnB, and A^{*} with pattern database heuristic. An " X " means that the corresponding algorithm did not finish within the time limit (7,200 seconds) or ran out of memory in the case of A^{*}.

Learning decomposition

- Potentially Optimal Parent Sets (POPS)
- Contain all parent-child relations

variable	POPS				
X_{1}	$\left\{X_{2}\right\}$	$\}$			
X_{2}	$\left\{X_{1}\right\}$	$\}$			
X_{3}	$\left\{X_{1}, X_{2}\right\}$	$\left\{X_{2}, X_{6}\right\}$	$\left\{X_{1}, X_{6}\right\}$	$\left\{X_{2}\right\}$	$\left\{X_{6}\right\}$

- Observation: Not all variables can possibly be ancestors of the others.
- E.g., any variables in $\left\{X_{3}, X_{4}, X_{5}, X_{6}\right\}$ can not be ancestor of X_{1} or X_{2}

POPS Constraints

- Parent Relation Graph
- Aggregate all the parent-child relations in POPS Table
- Component Graph
- Strongly Connected Components (SCCs)
- Provide ancestral constraints

[Fan, Malone, Yuan, UAI-14]

POPS Constraints

- Decompose the problem
- Each SCC corresponds to a smaller subproblem
- Each subproblem can be solved independently.

POPS Constraints

- Recursive POPS Constraints
- Selecting the parents for one of the variables has the effect of removing that variable from the parent relation graph.

[Fan, Malone, Yuan, UAI-14]

Evaluating POPS and recursive POPS constraints

Evaluating POPS and recursive POPS constraints

Evaluating POPS and recursive POPS constraints

Grouping in static k-cycle conflict heuristic

- Tightness of the heuristic highly depends on the grouping
- Characteristics of a good grouping
- Reduce directed cycles between groups
- Enforce as much acyclicity as possible

Existing grouping methods

- Create an undirected graph as skeleton
- Parent grouping: connecting each variable to potentials parents in the best POPS
- Family grouping: use Min-Max Parent Child (MMPC) [Tsarmardinos et al. 06]
- Use independence tests in MMPC to estimate edge weights
- Partition the skeleton into balanced subgraphs
- by minimizing the total weights of the edges between the subgraphs

Advanced grouping

- The potentially optimal parent sets (POPS) capture all possible relations between variables

var:	POPS			
X_{1}	$\left\{X_{2}\right\}$	$\left\{X_{5}\right\}$		
X_{2}	$\left\{X_{1}\right\}$			
X_{3}	$\left\{X_{1}, X_{5}\right\}$	$\left\{X_{1}, X_{2}\right\}$	$\left\{X_{2}, X_{4}\right\}$	$\left\{X_{1}\right\}$
X_{4}	$\left\{X_{3}\right\}$	$\left\{X_{6}\right\}$	$\left\{X_{7}\right\}$	
X_{5}	$\left\{X_{1}, X_{3}\right\}$	$\left\{X_{3}\right\}$		
X_{6}	$\left\{X_{2}, X_{7}\right\}$	$\left\{X_{7}\right\}$		
X_{7}	$\left\{X_{8}\right\}$	$\left\{X_{6}, X_{4}\right\}$		
X_{8}	$\left\{X_{6}\right\}$	$\left\{X_{7}\right\}$		

- Observation: Directed cycles in the heuristic originate from the POPS

Parent relation graphs from all POPS

[Fan, Yuan, AAAI-15]

Parent relation graph from top-K POPS

[Fan, Yuan, AAAI-15]

Component grouping

- γ : the size of the largest pattern database that can be created
- Use parent grouping if the largest SCC in top-1 graph is already larger than γ
- Otherwise, use component grouping
- For K = 1 to max $_{i} \mid$ POPS $\left.\right|_{i}$
» Use top-K POPS of each variable to create a parent relation graph
» If the graph has only one SCC or a too large SCC, return
» Divide the SCCs into two or more groups by using a Prim-like algorithm
- Return feasible grouping of largest K

Parameter K

The running time and number of expanded nodes
[Fan, Yuan, AAAI-15] needed by A* to solve Soybeans with different K.

Comparing grouping methods

Summary

- Formulation:
- learning optimal Bayesian networks as a shortest path problem
- Standard heuristic search algorithms applicable, e.g., A*, BFBnB
- Design of upper/lower bounds critical for performance
- Extra information extracted from data enables
- Creating ancestral graphs for decomposing the learning problem
- Creating better grouping for the static k-cycle conflict heuristic
- Take home message: Methodology and data work better as a team!
- Open source software available from
- http://urlearning.org

Acknowledgements

- NSF CAREER grant, IIS-0953723
- NSF IIS grant, IIS-1219114
- PSC-CUNY Enhancement Award
- The Academy of Finland (COIN, 251170)

References

- Xiannian Fan, Changhe Yuan. An Improved Lower Bound for Bayesian Network Structure Learning. In Proceedings of the 29th AAAI Conference (AAAI-15). Austin, Texas. 2015.
- Xiannian Fan, Brandon Malone, Changhe Yuan. Finding Optimal Bayesian Networks Using Constraints Learned from Data. In Proceedings of the 30th Annual Conference on Uncertainty in Artificial Intelligence (UAI-14). Quebec City, Quebec. 2014.
- Xiannian Fan, Changhe Yuan, Brandon Malone. Tightening Bounds for Bayesian Network Structure Learning. In Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI-14). Quebec City, Quebec. 2014.
- Changhe Yuan, Brandon Malone. Learning Optimal Bayesian Networks: A Shortest Path Perspective. Journal of Artificial Intelligence Research (JAIR). 2013.
- Brandon Malone, Changhe Yuan. Evaluating Anytime Algorithms for Learning Optimal Bayesian Networks. In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI-13). Seattle, Washington. 2013.
- Brandon Malone, Changhe Yuan. A Depth-first Branch and Bound Algorithm for Learning Optimal Bayesian Networks. IJCAI-13 Workshop on Graph Structures for Knowledge Representation and Reasoning (GKR'13). Beijing, China. 2013.
- Changhe Yuan, Brandon Maone. An Improved Admissible Heuristic for Learning Optimal Bayesian Networks. In Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence (UAI-12). Catalina Island, CA. 2012.
- Brandon Malone. Learning optimal Bayesian networks with heuristic search. PhD Dissertation. Department of Computer Science and Engineering, Mississippi State University. July, 2012.
- Brandon Malone, Changhe Yuan. A Parallel, Anytime, Bounded Error Algorithm for Exact Bayesian Network Structure Learning. In Proceedings of the Sixth European Workshop on Probabilistic Graphical Models (PGM-12). Granada, Spain. 2012.
- Changhe Yuan, Brandon Malone and Xiaojian Wu. Learning Optimal Bayesian Networks Using A* Search. 22nd International Joint Conference on Artificial Intelligence (IJCAI-11). Barcelona, Catalonia, Spain, July 2011.
- Brandon Malone, Changhe Yuan, Eric Hansen and Susan Bridges. Memory-Efficient Dynamic Programming for Learning Optimal Bayesian Networks, 25th AAAI Conference on Artificial Intelligence (AAAI-11). San Francisco, CA. August 2011.
- Brandon Malone, Changhe Yuan, Eric Hansen and Susan Bridges. Improving the Scalability of Optimal Bayesian Network Learning with Frontier Breadth-First Branch and Bound Search, 27th Conference on Uncertainty in Artificial Intelligence (UAI-11). Barcelona, Catalonia, Spain, July 2011.

