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Complexity theory

I Many computations on Bayesian networks are NP-hard
I Meaning (no more, no less) that we cannot hope for poly

time algorithms that solve all instances
I A better understanding of complexity allows us to

I Get insight in what makes particular instances hard
I Understand why and when computations can be tractable
I Use this knowledge in practical applications

I Why go beyond NP-hardness to find exact complexity
classes etc.?

I For exactly the reasons above!
I See lecture notes for detailed background at
www.socsci.ru.nl/johank/uai2015

Johan Kwisthout and Cassio P. de Campos Radboud University Nijmegen / Queen’s University Belfast

Computational Complexity of Bayesian Networks Slide #1



Today’s menu

I We assume you know something about complexity theory
I Turing Machines
I Classes P, NP; NP-hardness
I polynomial-time reductions

I We will build on that by adding the following concepts
I Probabilistic Turing Machines
I Oracle Machines
I Complexity class PP and PP with oracles
I Fixed-parameter tractability

I We will demonstrate complexity results of
I Inference problem (compute Pr(H = h | E = e))
I MAP problem (compute arg maxh Pr(H = h | E = e))

I We will show what makes hard problems easy
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Notation

I We use the following notational conventions
I Network: B = (GB,Pr)
I Variable: X , Sets of variables: X
I Value assignment: x , Joint value assignment: x
I Evidence (observations): E = e

I Our canonical problems are SAT variants
I Boolean formula φ with variables X1, . . . ,Xn, possibly

partitioned into subsets
I In this context: quantifiers ∃ and MAJ
I Simplest version: given φ, does there exists (∃) a truth

assignment to the variables that satisfies φ?
I Other example: given φ, does the majority (MAJ) of truth

assignments to the variables satisfy φ?
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Hard and Complete

I A problem Π is hard for a complexity class C if every
problem in C can be reduced to Π

I Reductions are polynomial-time many-one reductions
I Π is polynomial-time many-one reducible to Π′ if there

exists a polynomial-time computable function f such that
x ∈ Π⇔ f (x) ∈ Π′

I A problem Π is complete for a class C if it is both in C and
hard for C.

I Such a problem may be regarded as being ‘at least as
hard’ as any other problem in C: since we can reduce any
problem in C to Π in polynomial time, a polynomial time
algorithm for Π would imply a polynomial time algorithm for
every problem in C
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P, NP, #P

I The complexity class P (short for polynomial time) is the
class of all languages that are decidable on a deterministic
TM in a time which is polynomial in the length of the input
string x

I The class NP (non-deterministic polynomial time) is the
class of all languages that are decidable on a
non-deterministic TM in a time which is polynomial in the
length of the input string x

I The class #P is a function class; a function f is in #P if
f (x) computes the number of accepting paths for a
particular non-deterministic TM when given x as input;
thus #P is defined as the class of counting problems which
have a decision variant in NP
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Probabilistic Turing Machine

I A Probabilistic TM (PTM) is similar to a non-deterministic
TM, but the transitions are probabilistic rather than simply
non-deterministic

I For each transition, the next state is determined
stochastically according to some probability distribution

I Without loss of generality we assume that a PTM has two
possible next states q1 and q2 at each transition, and that
the next state will be q1 with some probability p and q2 with
probability 1− p

I A PTM accepts a language L if the probability of ending in
an accepting state, when presented an input x on its tape,
is strictly larger than 1/2 if and only if x ∈ L. If the transition
probabilities are uniformly distributed, the machine accepts
if the majority of its computation paths accepts
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In BPP or in PP, that’s the question
I PP and BPP are classes of decision problems that are

decidable by a probabilistic Turing machine in polynomial
time with a particular (two-sided) probability of error

I The difference between these two classes is in the
probability 1/2 + ε that a Yes-instance is accepted

I Yes-instances for problems in PP are accepted with
probability 1/2 + 1/cn (for a constant c > 1)

I Yes-instances for problems in BPP are accepted with a
probability 1/2 + 1/nc

I PP-complete problems, such as the problem of
determining whether the majority of truth assignments to a
Boolean formula φ satisfies φ, are considered to be
intractable; indeed, it can be shown that NP ⊆ PP.

I The canonical PP-complete problem is MAJSAT: given a
formula φ, does the majority of truth assignments satisfy it?
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Summon the oracle!
I An Oracle Machine is a Turing Machine which is enhanced

with an oracle tape, two designated oracle states qOY and
qON , and an oracle for deciding membership queries for a
particular language LO

I Apart from its usual operations, the TM can write a string x
on the oracle tape and query the oracle

I The oracle then decides whether x ∈ LO in a single state
transition and puts the TM in state qOY or qON , depending
on the ‘yes’/‘no’ outcome of the decision

I We can regard the oracle as a ‘black box’ that can answer
membership queries in one step.

I We will writeMC to denote an Oracle Machine with access
to an oracle that decides languages in C

I E.g., the class of problems decidable by a nondeterministic
TM with access to an oracle for problems in PP is NPPP
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Fixed Parameter Tractability

I Sometimes problems are intractable (i.e., NP-hard) in
general, but become tractable if some parameters of the
problem can be assumed to be small.

I A problem Π is called fixed-parameter tractable for a
parameter κ if it can be solved in time O(f (κ) · |x |c) for a
constant c > 1 and an arbitrary computable function f .

I In practice, this means that problem instances can be
solved efficiently, even when the problem is NP-hard in
general, if κ is known to be small.

I The parameterized complexity class FPT consists of all
fixed parameter tractable problems κ−Π.
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INFERENCE
Have a look at these two problems:

EXACT INFERENCE

Instance: A Bayesian network B = (GB,Pr), where V is
partitioned into a set of evidence nodes E with a joint value
assignment e, a set of intermediate nodes I, and an explanation
set H with a joint value assignment h.
Output: The probability Pr(H = h | E = e).

THRESHOLD INFERENCE

Instance: A Bayesian network B = (GB,Pr), where V is
partitioned into a set of evidence nodes E with a joint value
assignment e, a set of intermediate nodes I, and an explanation
set H with a joint value assignment h. Let 0 ≤ q < 1.
Question: Is the probability Pr(H = h | E = e) > q?

What is the relation between both problems?
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THRESHOLD INFERENCE is PP-complete

I Computational complexity theory typically deals with
decision problems

I If we can solve THRESHOLD INFERENCE in poly time, we
can also solve EXACT INFERENCE in poly time (why?)

I In this lecture we will show that THRESHOLD INFERENCE is
PP-complete, meaning

I THRESHOLD INFERENCE is in PP, and
I THRESHOLD INFERENCE is PP-hard

I In the Lecture Notes we show that EXACT INFERENCE is
#P-hard and in #P modulo a simple normalization

I #P is a counting class, outputting the number of accepting
paths on a Probabilistic Turing Machine
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THRESHOLD INFERENCE is in PP

I To show that THRESHOLD INFERENCE is in PP, we argue
that THRESHOLD INFERENCE can be decided in polynomial
time by a Probabilistic Turing Machine

I For brevity we will assume no evidence, i.e., the question
we answer is: Given a network B with designated sets H
and H, and 0 ≤ q < 1, is the probability Pr(H = h) > q?

I We construct a PTMM such that, on such an input, it
arrives in an accepting state with probability strictly larger
than 1/2 if and only if Pr(h) > q.

I M computes a joint probability Pr(y1, . . . , yn) by iterating
over i using a topological sort of the graph, and choosing a
value for each variable Yi conform the probability
distribution in its CPT given the values that are already
assigned to the parents of Yi .
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THRESHOLD INFERENCE is in PP

I Each computation path then corresponds to a specific joint
value assignment to the variables in the network, and the
probability of arriving in a particular state corresponds with
the probability of that assignment.

I After iteration, we accept with probability 1/2 + (1− q) · ε, if
the joint value assignment to Y1, . . . ,Yn is consistent with
h, and we accept with probability 1/2− q · ε if the joint value
assignment is not consistent with h.

I The probability of entering an accepting state is hence
Pr(h) · (1/2 + (1− q)ε) + (1− Pr(h)) · (1/2− q · ε) =
1/2 + Pr(h) · ε− q · ε.

I Indeed the probability of arriving in an accepting state is
strictly larger than 1/2 if and only if Pr(h) > q.
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THRESHOLD INFERENCE is PP-hard

I We now show that THRESHOLD INFERENCE is PP-hard.
We do so by reducing MAJSAT, which is known to be
PP-complete, to THRESHOLD INFERENCE

I We construct a Bayesian network Bφ from a given Boolean
formula φ with n variables as follows:

I For each propositional variable xi in φ, a binary stochastic
variable Xi is added to Bφ, with possible values TRUE and
FALSE and a uniform probability distribution.

I For each logical operator in φ, an additional binary variable
in Bφ is introduced, whose parents are the variables that
correspond to the input of the operator, and whose CPT is
equal to the truth table of that operator

I The top-level operator in φ is denoted as Vφ.
I On the next slide, the network Bφ is shown for the formula
¬(x1 ∨ x2) ∨ ¬x3.
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THRESHOLD INFERENCE is PP-hard

X1 X2 X3

∨

¬
¬

Vφ∨

φ = ¬(x1 ∨ x2) ∨ ¬x3
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THRESHOLD INFERENCE is PP-hard

I Now, for an arbitrary truth assignment x to the set of all
propositional variables X in the formula φ we have that
Pr(Vφ = TRUE | X = x) equals 1 if x satisfies φ, and 0 if x
does not satisfy φ.

I Without any given joint value assignment, the prior
probability Pr(Vφ = TRUE) is #φ

2n , where #φ is the number
of satisfying truth assignments of the set of propositional
variables X.

I Note that the above network Bφ can be constructed from φ
in polynomial time.

I We reduce MAJSAT to THRESHOLD INFERENCE. Let φ be a
MAJSAT-instance and let Bφ be the network as constructed
above. Now, Pr(Vφ = TRUE) > 1/2 if and only if the majority
of truth assignments satisfy φ.
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THRESHOLD INFERENCE is PP-complete

I Given that THRESHOLD INFERENCE is PP-hard and in PP,
it is PP-complete

I It is easy to show that NP ⊆ PP and that THRESHOLD

INFERENCE is NP-hard
I Why the additional work to prove exact complexity class?

I PP is a class of a different nature than NP. This has effect
on approximation strategies, fixed parameter tractability,
etc.

I Proving completeness for ‘higher’ complexity classes will
typically also give intractability results for constrained
problems – Cassio will talk about that
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Approximation of MAP

I What does it mean for an algorithm to approximate MAP?
I Merriam-Webster dictionary: approximate: ‘to be very

similar to but not exactly like (something)’
I In CS, this similarity is typically defined in terms of value:

I ‘approximate solution A has a value that is close to the
value of the optimal solution’

I However, other notions of approximation can be relevant
I ‘approximate solution A′ closely resembles the optimal

solution’
I ‘approximate solution A′′ ranks within the top-m solutions’
I ‘approximate solution A′′′ is quite likely to be the optimal

solution’
I Note that these notions can refer to completely different

solutions
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Some formal notation

I For an arbitrary MAP instance {B,H,E, I,e}, let cansolB
refer to the set of candidate solutions to {B,H,E, I,e}, with
optsolB ∈ cansolB denoting the optimal solution (or, in
case of a draw, one of the optimal solutions) to the MAP
instance

I When cansolB is ordered according to the probability of
the candidate solutions (breaking ties between candidate
solutions with the same probability arbitrarily), then
optsol1...mB refers to the set of the first m elements in
cansolB, viz. the m most probable solutions to the MAP
instance

I For a particular notion of approximation, we refer to an
(unspecified) approximate solution as
approxsolB ∈ cansolB
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Approximation results

Definition (additive value-approximation of MAP)
Let optsolB be the optimal solution to a MAP problem. An
explanation approxsolB ∈ cansolB is defined to ρ-additive
value-approximate optsolB if
Pr(optsolB,e)− Pr(approxsolB,e) ≤ ρ.

Result (Kwisthout, 2011)
It is NP-hard to ρ-additive value-approximate MAP for
ρ > Pr(optsolB,e)− ε for any constant ε > 0.
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Approximation results

Definition (relative value-approximation of MAP)
Let optsolB be the optimal solution to a MAP problem. An
explanation approxsolB ∈ cansolB is defined to ρ-relative
value-approximate optsolB if Pr(optsolB | e)

Pr(approxsolB | e) ≤ ρ.

Result (Abdelbar & Hedetniemi, 1998)
It is NP-hard to ρ-relative value-approximate MAP for

Pr(optsolB | e)
Pr(approxsolB | e) ≤ ρ for any ρ > 1.
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Approximation results

Definition (structure-approximation of MAP)
Let optsolB be the optimal solution to a MAP problem and let
dH be the Hamming distance. An explanation
approxsolB ∈ cansolB is defined to d-structure-approximate
optsolB if dH(approxsolB,optsolB) ≤ d .

Result (Kwisthout, 2013)
It is NP-hard to d-structure-approximate MAP for any
d ≤ |optsolB| − 1.
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Approximation results

Definition (rank-approximation of MAP)
Let optsol1...mB ⊆ cansolB be the set of the m most probable
solutions to a MAP problem and let optsolB be the optimal
solution. An explanation approxsolB ∈ cansolB is defined to
m-rank-approximate optsolB if approxsolB ∈ optsol1...mB .

Result (Kwisthout, 2015)
It is NP-hard to m-rank-approximate MAP for any constant m.
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Approximation results

Definition (expectation-approximation of MAP)
Let optsolB be the optimal solution to a MAP problem and let E
be the the expectation function. An explanation
approxsolB ∈ cansolB is defined to ε-expectation-approximate
optsolB if E(Pr(optsolB) 6= Pr(approxsolB)) < ε.

Result (Folklore)
There cannot exist a randomized algorithm that
ε-expectation-approximates MAP in polynomial time for
ε < 1/2− 1/nc for a constant c unless NP ⊆ BPP.
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Summary

Approximation constraints assumption
value, additive c = 2,d = 2, |E| = 1, I = ∅ P 6= NP
value, ratio c = 2,d = 3,E = ∅ P 6= NP
structure c = 3,d = 3, I = ∅ P 6= NP
rank c = 2,d = 2, |E| = 1, I = ∅ P 6= NP
expectation c = 2,d = 2, |E| = 1, I = ∅ NP 6⊆ BPP

Table: Summary of intractability results for MAP approximations
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