Computational Complexity of Bayesian Networks

Johan Kwisthout and Cassio P. de Campos

Radboud University Nijmegen / Queen's University Belfast
UAI, 2015

Complexity theory

- Many computations on Bayesian networks are NP-hard
- Meaning (no more, no less) that we cannot hope for poly time algorithms that solve all instances
- A better understanding of complexity allows us to
- Get insight in what makes particular instances hard
- Understand why and when computations can be tractable
- Use this knowledge in practical applications
- Why go beyond NP-hardness to find exact complexity classes etc.?
- For exactly the reasons above!
- See lecture notes for detailed background at www.socsci.ru.nl/johank/uai2015

Today's menu

- We assume you know something about complexity theory
- Turing Machines
- Classes P, NP; NP-hardness
- polynomial-time reductions
- We will build on that by adding the following concepts
- Probabilistic Turing Machines
- Oracle Machines
- Complexity class PP and PP with oracles
- Fixed-parameter tractability
- We will demonstrate complexity results of
- Inference problem (compute $\operatorname{Pr}(\mathbf{H}=\mathbf{h} \mid \mathbf{E}=\mathbf{e})$)
- MAP problem (compute arg $\max _{\mathbf{h}} \operatorname{Pr}(\mathbf{H}=\mathbf{h} \mid \mathbf{E}=\mathbf{e})$)
- We will show what makes hard problems easy

Notation

- We use the following notational conventions
- Network: $\mathcal{B}=\left(\mathbf{G}_{\mathcal{B}}, \operatorname{Pr}\right)$
- Variable: X, Sets of variables: \mathbf{X}
- Value assignment: x, Joint value assignment: \mathbf{x}
- Evidence (observations): E = e
- Our canonical problems are SAT variants
- Boolean formula ϕ with variables X_{1}, \ldots, X_{n}, possibly partitioned into subsets
- In this context: quantifiers \exists and MAJ
- Simplest version: given ϕ, does there exists (\exists) a truth assignment to the variables that satisfies ϕ ?
- Other example: given ϕ, does the majority (MAJ) of truth assignments to the variables satisfy ϕ ?

Hard and Complete

- A problem Π is hard for a complexity class C if every problem in C can be reduced to Π
- Reductions are polynomial-time many-one reductions
- Π is polynomial-time many-one reducible to Π^{\prime} if there exists a polynomial-time computable function f such that $x \in \Pi \Leftrightarrow f(x) \in \Pi^{\prime}$
- A problem Π is complete for a class C if it is both in C and hard for C.
- Such a problem may be regarded as being 'at least as hard' as any other problem in C: since we can reduce any problem in C to Π in polynomial time, a polynomial time algorithm for Π would imply a polynomial time algorithm for every problem in C
- The complexity class P (short for polynomial time) is the class of all languages that are decidable on a deterministic TM in a time which is polynomial in the length of the input string x
- The class NP (non-deterministic polynomial time) is the class of all languages that are decidable on a non-deterministic TM in a time which is polynomial in the length of the input string x
- The class \#P is a function class; a function f is in \#P if $f(x)$ computes the number of accepting paths for a particular non-deterministic TM when given x as input; thus $\# \mathrm{P}$ is defined as the class of counting problems which have a decision variant in NP

Probabilistic Turing Machine

- A Probabilistic TM (PTM) is similar to a non-deterministic TM, but the transitions are probabilistic rather than simply non-deterministic
- For each transition, the next state is determined stochastically according to some probability distribution
- Without loss of generality we assume that a PTM has two possible next states q_{1} and q_{2} at each transition, and that the next state will be q_{1} with some probability p and q_{2} with probability $1-p$
- A PTM accepts a language L if the probability of ending in an accepting state, when presented an input x on its tape, is strictly larger than $1 / 2$ if and only if $x \in L$. If the transition probabilities are uniformly distributed, the machine accepts if the majority of its computation paths accepts

In BPP or in PP, that's the question

- PP and BPP are classes of decision problems that are decidable by a probabilistic Turing machine in polynomial time with a particular (two-sided) probability of error
- The difference between these two classes is in the probability $1 / 2+\epsilon$ that a Yes-instance is accepted
- Yes-instances for problems in PP are accepted with probability $1 / 2+1 / c^{n}$ (for a constant $c>1$)
- Yes-instances for problems in BPP are accepted with a probability $1 / 2+1 / n^{c}$
- PP-complete problems, such as the problem of determining whether the majority of truth assignments to a Boolean formula ϕ satisfies ϕ, are considered to be intractable; indeed, it can be shown that NP \subseteq PP.
- The canonical PP-complete problem is MAJSAT: given a formula ϕ, does the majority of truth assignments satisfy it?

Summon the oracle!

- An Oracle Machine is a Turing Machine which is enhanced with an oracle tape, two designated oracle states $q_{O_{Y}}$ and $q_{O_{N}}$, and an oracle for deciding membership queries for a particular language L_{O}
- Apart from its usual operations, the TM can write a string x on the oracle tape and query the oracle
- The oracle then decides whether $x \in L_{O}$ in a single state transition and puts the TM in state $q_{O_{Y}}$ or $q_{O_{N}}$, depending on the 'yes'/'no' outcome of the decision
- We can regard the oracle as a 'black box' that can answer membership queries in one step.
- We will write \mathcal{M}^{C} to denote an Oracle Machine with access to an oracle that decides languages in C
- E.g., the class of problems decidable by a nondeterministic TM with access to an oracle for problems in PP is NPPP

Fixed Parameter Tractability

- Sometimes problems are intractable (i.e., NP-hard) in general, but become tractable if some parameters of the problem can be assumed to be small.
- A problem Π is called fixed-parameter tractable for a parameter κ if it can be solved in time $\mathcal{O}\left(f(\kappa) \cdot|x|^{c}\right)$ for a constant $c>1$ and an arbitrary computable function f.
- In practice, this means that problem instances can be solved efficiently, even when the problem is NP-hard in general, if κ is known to be small.
- The parameterized complexity class FPT consists of all fixed parameter tractable problems $\kappa-\Pi$.

INFERENCE

Have a look at these two problems:

> Exact Inference
> Instance: A Bayesian network $\mathcal{B}=\left(\mathbf{G}_{\mathcal{B}}, \operatorname{Pr}\right)$, where \mathbf{V} is partitioned into a set of evidence nodes \mathbf{E} with a joint value assignment \mathbf{e}, a set of intermediate nodes \mathbf{I}, and an explanation set \mathbf{H} with a joint value assignment \mathbf{h}. Output: The probability $\operatorname{Pr}(\mathbf{H}=\mathbf{h} \mid \mathbf{E}=\mathbf{e})$.

Threshold Inference

Instance: A Bayesian network $\mathcal{B}=\left(\mathbf{G}_{\mathcal{B}}, \operatorname{Pr}\right)$, where \mathbf{V} is partitioned into a set of evidence nodes \mathbf{E} with a joint value assignment \mathbf{e}, a set of intermediate nodes \mathbf{I}, and an explanation set \mathbf{H} with a joint value assignment \mathbf{h}. Let $0 \leq q<1$. Question: Is the probability $\operatorname{Pr}(\mathbf{H}=\mathbf{h} \mid \mathbf{E}=\mathbf{e})>q$?

What is the relation between both problems?

Threshold Inference is PP-complete

- Computational complexity theory typically deals with decision problems
- If we can solve Threshold Inference in poly time, we can also solve EXACT InfERENCE in poly time (why?)
- In this lecture we will show that Threshold Inference is PP-complete, meaning
- ThRESHOLD INFERENCE is in PP, and
- Threshold Inference is PP-hard
- In the Lecture Notes we show that Exact Inference is \#P-hard and in \#P modulo a simple normalization
- \#P is a counting class, outputting the number of accepting paths on a Probabilistic Turing Machine

Threshold Inference is in PP

- To show that Threshold Inference is in PP, we argue that Threshold Inference can be decided in polynomial time by a Probabilistic Turing Machine
- For brevity we will assume no evidence, i.e., the question we answer is: Given a network \mathcal{B} with designated sets \mathbf{H} and \mathbf{H}, and $0 \leq q<1$, is the probability $\operatorname{Pr}(\mathbf{H}=\mathbf{h})>q$?
- We construct a PTM \mathcal{M} such that, on such an input, it arrives in an accepting state with probability strictly larger than $1 / 2$ if and only if $\operatorname{Pr}(\mathbf{h})>q$.
- \mathcal{M} computes a joint probability $\operatorname{Pr}\left(y_{1}, \ldots, y_{n}\right)$ by iterating over i using a topological sort of the graph, and choosing a value for each variable Y_{i} conform the probability distribution in its CPT given the values that are already assigned to the parents of Y_{i}.

Threshold Inference is in PP

- Each computation path then corresponds to a specific joint value assignment to the variables in the network, and the probability of arriving in a particular state corresponds with the probability of that assignment.
- After iteration, we accept with probability $1 / 2+(1-q) \cdot \epsilon$, if the joint value assignment to Y_{1}, \ldots, Y_{n} is consistent with \mathbf{h}, and we accept with probability $1 / 2-q \cdot \epsilon$ if the joint value assignment is not consistent with \mathbf{h}.
- The probability of entering an accepting state is hence $\operatorname{Pr}(\mathbf{h}) \cdot(1 / 2+(1-q) \epsilon)+(1-\operatorname{Pr}(\mathbf{h})) \cdot(1 / 2-q \cdot \epsilon)=$ $1 / 2+\operatorname{Pr}(\mathbf{h}) \cdot \epsilon-q \cdot \epsilon$.
- Indeed the probability of arriving in an accepting state is strictly larger than $1 / 2$ if and only if $\operatorname{Pr}(\mathbf{h})>q$.

Threshold Inference is PP-hard

- We now show that Threshold Inference is PP-hard. We do so by reducing MajSat, which is known to be PP-complete, to Threshold INFERENCE
- We construct a Bayesian network \mathcal{B}_{ϕ} from a given Boolean formula ϕ with n variables as follows:
- For each propositional variable x_{i} in ϕ, a binary stochastic variable X_{i} is added to \mathcal{B}_{ϕ}, with possible values TRUE and FALSE and a uniform probability distribution.
- For each logical operator in ϕ, an additional binary variable in \mathcal{B}_{ϕ} is introduced, whose parents are the variables that correspond to the input of the operator, and whose CPT is equal to the truth table of that operator
- The top-level operator in ϕ is denoted as V_{ϕ}.
- On the next slide, the network \mathcal{B}_{ϕ} is shown for the formula $\neg\left(x_{1} \vee x_{2}\right) \vee \neg x_{3}$.

Threshold Inference is PP-hard

Threshold Inference is PP-hard

- Now, for an arbitrary truth assignment \mathbf{x} to the set of all propositional variables \mathbf{X} in the formula ϕ we have that $\operatorname{Pr}\left(V_{\phi}=\right.$ TRUE $\left.\mid \mathbf{X}=\mathbf{x}\right)$ equals 1 if \mathbf{x} satisfies ϕ, and 0 if \mathbf{x} does not satisfy ϕ.
- Without any given joint value assignment, the prior probability $\operatorname{Pr}\left(V_{\phi}=\right.$ TRUE $)$ is $\frac{\#_{\phi}}{2^{n}}$, where $\#_{\phi}$ is the number of satisfying truth assignments of the set of propositional variables \mathbf{X}.
- Note that the above network \mathcal{B}_{ϕ} can be constructed from ϕ in polynomial time.
- We reduce MajSat to Threshold Inference. Let ϕ be a MAJSAT-instance and let \mathcal{B}_{ϕ} be the network as constructed above. Now, $\operatorname{Pr}\left(V_{\phi}=\right.$ TRUE $)>1 / 2$ if and only if the majority of truth assignments satisfy ϕ.

Threshold Inference is PP-complete

- Given that Threshold Inference is PP-hard and in PP, it is PP-complete
- It is easy to show that NP $\subseteq P P$ and that Threshold Inference is NP-hard
- Why the additional work to prove exact complexity class?
- PP is a class of a different nature than NP. This has effect on approximation strategies, fixed parameter tractability, etc.
- Proving completeness for 'higher' complexity classes will typically also give intractability results for constrained problems - Cassio will talk about that

Approximation of MAP

- What does it mean for an algorithm to approximate MAP?
- Merriam-Webster dictionary: approximate: 'to be very similar to but not exactly like (something)'
- In CS, this similarity is typically defined in terms of value:
- 'approximate solution A has a value that is close to the value of the optimal solution'
- However, other notions of approximation can be relevant
- 'approximate solution A^{\prime} closely resembles the optimal solution'
- 'approximate solution $A^{\prime \prime}$ ranks within the top- m solutions'
- 'approximate solution $A^{\prime \prime \prime}$ is quite likely to be the optimal solution'
- Note that these notions can refer to completely different solutions

Some formal notation

- For an arbitrary MAP instance $\{\mathcal{B}, \mathbf{H}, \mathbf{E}, \mathbf{I}, \mathbf{e}\}$, let cansol $\mathcal{B}_{\mathcal{B}}$ refer to the set of candidate solutions to $\{\mathcal{B}, \mathbf{H}, \mathbf{E}, \mathbf{I}, \mathbf{e}\}$, with optsol $_{\mathcal{B}} \in$ cansol $_{\mathcal{B}}$ denoting the optimal solution (or, in case of a draw, one of the optimal solutions) to the MAP instance
- When cansol $_{\mathcal{B}}$ is ordered according to the probability of the candidate solutions (breaking ties between candidate solutions with the same probability arbitrarily), then optsol $1_{\mathcal{B}}^{1 \ldots m}$ refers to the set of the first m elements in cansol $_{\mathcal{B}}$, viz. the m most probable solutions to the MAP instance
- For a particular notion of approximation, we refer to an (unspecified) approximate solution as $\operatorname{approxsol}_{\mathcal{B}} \in$ cansol $_{\mathcal{B}}$

Approximation results

Definition (additive value-approximation of MAP)

Let optsol $\mathcal{B}_{\mathcal{B}}$ be the optimal solution to a MAP problem. An explanation approxsol $\mathcal{B}_{\mathcal{B}} \in$ cansol $_{\mathcal{B}}$ is defined to ρ-additive value-approximate optsol $\mathcal{B}_{\mathcal{B}}$ if
$\operatorname{Pr}\left(\right.$ optsol $\left._{\mathcal{B}}, \mathbf{e}\right)-\operatorname{Pr}\left(\right.$ approxsol $\left._{\mathcal{B}}, \mathbf{e}\right) \leq \rho$.
Result (Kwisthout, 2011)
It is NP-hard to ρ-additive value-approximate MAP for
$\rho>\operatorname{Pr}\left(\right.$ optsol $\left._{\mathcal{B}}, \mathbf{e}\right)-\epsilon$ for any constant $\epsilon>0$.

Approximation results

Definition (relative value-approximation of MAP)
Let optsol $\mathcal{I}_{\mathcal{B}}$ be the optimal solution to a MAP problem. An explanation approxso $\mathcal{I}_{\mathcal{B}} \in$ cansol $_{\mathcal{B}}$ is defined to ρ-relative value-approximate optso $\mathcal{I}_{\mathcal{B}}$ if $\left.\left.\frac{\operatorname{Pr}\left(\text { optsol }_{\mathcal{B}} \mid \mathbf{e}\right)}{\operatorname{Pr}(\text { approxsol }} \mathfrak{\mathcal { B }} \right\rvert\, \mathbf{e}\right) \leq \rho$.
Result (Abdelbar \& Hedetniemi, 1998)
It is NP-hard to ρ-relative value-approximate MAP for $\frac{\operatorname{Pr}\left(\text { optso }\left.\right|_{\mathfrak{B}} \mid \mathrm{e}\right)}{\operatorname{Pr}(\text { approxsol }|\mathcal{B}| \mathrm{e})} \leq \rho$ for any $\rho>1$.

Approximation results

Definition (structure-approximation of MAP)
Let optsol $\mathcal{M}_{\mathcal{B}}$ be the optimal solution to a MAP problem and let d_{H} be the Hamming distance. An explanation approxsol $_{\mathcal{B}} \in$ cansol $_{\mathcal{B}}$ is defined to d-structure-approximate optsol $_{\mathcal{B}}$ if $d_{H}\left(\right.$ approxsol $_{\mathcal{B}}$, optsol $\left._{\mathcal{B}}\right) \leq d$.

Result (Kwisthout, 2013)
It is NP-hard to d-structure-approximate MAP for any
$d \leq \mid$ optsol $_{\mathcal{B}} \mid-1$.

Approximation results

Definition (rank-approximation of MAP)
Let optsol $\left.\right|_{\mathcal{B}} ^{1 \ldots m} \subseteq$ cansol $_{\mathcal{B}}$ be the set of the m most probable solutions to a MAP problem and let optsol $\mathcal{I}_{\mathcal{B}}$ be the optimal solution. An explanation approxsol $\mathcal{B}_{\mathcal{B}} \in$ cansol $_{\mathcal{B}}$ is defined to m-rank-approximate optsol $\mathcal{I}_{\mathcal{B}}$ if approxsol $\mathcal{I}_{\mathcal{B}} \in$ optsol $_{\mathcal{B}}^{1 \ldots m}$.
Result (Kwisthout, 2015)
It is NP-hard to m-rank-approximate MAP for any constant m.

Approximation results

Definition (expectation-approximation of MAP)
Let optsol $\mathcal{I}_{\mathcal{B}}$ be the optimal solution to a MAP problem and let \mathbb{E} be the the expectation function. An explanation approxsol $_{\mathcal{B}} \in$ cansol $_{\mathcal{B}}$ is defined to ϵ-expectation-approximate optsol $_{\mathcal{B}}$ if $\mathbb{E}\left(\operatorname{Pr}\left(\right.\right.$ optsol $\left._{\mathcal{B}}\right) \neq \operatorname{Pr}\left(\right.$ approxsol $\left.\left._{\mathcal{B}}\right)\right)<\epsilon$.

Result (Folklore)

There cannot exist a randomized algorithm that ϵ-expectation-approximates MAP in polynomial time for $\epsilon<1 / 2-1 / n^{c}$ for a constant c unless NP \subseteq BPP.

Summary

Approximation	constraints	assumption
value, additive	$c=2, d=2,\|\mathbf{E}\|=1, \mathbf{I}=\varnothing$	$\mathrm{P} \neq \mathrm{NP}$
value, ratio	$c=2, d=3, \mathbf{E}=\varnothing$	$\mathrm{P} \neq \mathrm{NP}$
structure	$c=3, d=3, \mathbf{I}=\varnothing$	$\mathrm{P} \neq \mathrm{NP}$
rank	$c=2, d=2,\|\mathbf{E}\|=1, \mathbf{I}=\varnothing$	$\mathrm{P} \neq \mathrm{NP}$
expectation	$c=2, d=2,\|\mathbf{E}\|=1, \mathrm{I}=\varnothing$	$\mathrm{NP} \nsubseteq \mathrm{BPP}$

Table: Summary of intractability results for MAP approximations

