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Model

So far we have shown how to estimate interventional distributions
separately, but no guarantee these estimates are coherent.

We also may have multiple identifying expressions: which one should
we use?

X M Y

L p(Y | do(X ))
front door?
back door?
does it matter?

We can test constraints separately, but ultimately don’t have a way
to check if the model is a good one.

Being able to evaluate a likelihood would allow lots of standard
inference techniques (e.g. LR, Bayesian).

Even better, if model can be shown smooth we get nice asymptotics
for free.

All this suggests we should define a model which we can parameterize.
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Ancestral Sets

1 2 3

U

4

44

p(x1, x2, x3, x4)

=
∑
u

p(u) p(x1) p(x2 | x1, u) p(x3 | x2) p(x4 | x3, u)

=
∑
u

p(u) p(x1) p(x2 | x1, u) p(x3 | x2)
∑
x4

p(x4 | x3, u)

=
∑
u

p(u) p(x1) p(x2 | x1,u) p(x3 | x2)

= p(x1) p(x3 | x2)
∑
u

p(u) p(x2 | x1,u)

= p(x1) p(x3 | x2) p(x2 | x1)

.

Density has form corresponding to ancestral sub-graph.
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Factorization into Districts
District is a maximal set connected by latent variables / bidirected edges:

1

2

3

4

5

u
v

∑
u,v

p(u) p(x1 | u) p(x2 | u) p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

=
∑
u

p(u) p(x1 | u) p(x2 | u)
∑
v

p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

= q12(x1, x2) · q34(x3, x4 | x1, x2) · q5(x5 | x3) .

=
∏
i

qDi (xDi | xpa(Di )\Di
)

Each qD piece should come from the model based on district subgraph
and its parents (G[D]).
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Axiomatic Approach

We use these two rules to define our model.

Say (conditional) probability distribution p recursively factorizes
according to CADMG G and write p ∈ N (G) if:

1. Ancestrality. ∑
xv

p(xV | xW ) ∈ N (G−v )

for each childless v ∈ V .

2. Factorization into districts.

p(xV | xW ) =
∏
D

qD(xD | xpa(D)\D)

for districts D, where qD ∈ N (G[D]).

Note that one can iterate between 1 and 2.

This defines the nested Markov model N (G).
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Verma Example

1 2 3 4

4

X4 childless,

so if p ∈ N (G), then

p(x1, x2, x3) = p(x1) · p(x2 | x1) · p(x3 | x2),

and therefore X1 ⊥⊥ X3 |X2.
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Verma Example

1

1

2 3

3

4

Axiom 2:

p(x1, x2, x3, x4) = q1(x1) · q3(x3 | x2) · q24(x2, x4 | x1, x3).

Can consider the district {2, 4} and factor q24...
and then marginalize X2.

We see that X1 ⊥⊥ X3,X4 [q24].

This places a non-trivial constraint on p.
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Relationship to Fixing

Could also recursively define a model N ′ by fixing:

p ∈ N ′(G) =⇒ φv (p) ∈ N ′(φv (G))

for any v fixable in G.

The pair of operations used in recursive factorization is less rich than
those allowed by fixing, but...

Theorem
The recursive factorization and fixing models are identical:
N (G) = N ′(G).

The recursive factorization model is useful for parameterization proofs.
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Relationship to Fixing

Recall that to ‘fix’ a vertex, it must not have children in its district.
Equivalent to splitting, marginalizing, and then pasting back together.

1 2 3 4

1fix → 2 3 4

1 2

split into districts ↓

3 4

1 2 3

1
→

marginalize 2

paste ↑

3 4

1 2
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Notations
1 2 3 4

Note that we can potentially reach the same district by different
methods: e.g. marginalize 4, fix 1, 2 or reverse.

Theorem (Richardson, Shpitser, Robins, 201x)

For a positive distribution p ∈ N (G) and vertices v1, v2 that are fixable in
G,

(φv1 ◦ φv2 )(p) = (φv2 ◦ φv1 )(p).

Hence, the order of fixing doesn’t matter.

This is another way of saying that all identifying expressions for a causal
quantity will be the same.

For any reachable R this justifies the (unambiguous) notation φV\R .

For p ∈ N (G), let

G[R] ≡ φV\R(G) qR ≡ φV\R(p).
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Reachable CADMGs
Note that G[R] is always just the CADMG with:

random vertices R,

fixed vertices paG(R) \ R,

induced edges from G among R and of the form paG(R)→ R.

1

2

3

4

5

Graph shown is G[{3, 4, 5}].

Also recall that

qR(xR | xpa(R)\R) = p(xR | do(xV\R)).
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qR(xR | xpa(R)\R) = p(xR | do(xV\R)).
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Example

Y W1 W2

X Z1

Z1

Z2

Z2

p(x , y ,w1,w2, z1, z2)

qyz1 (y , z1 | x ,w1) =
qyw1z1z2 (y ,w1, z1 | x ,w2)

qyw1z1z2 (w1 | x ,w2)

and qyz1 (y | x ,w1) doesn’t depend upon x .
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Nested Markov Model
Various equivalent formulations:

Factorization into Districts.
For each reachable R in G,

qR(xR | xpa(R)\R) =
∏

D∈D(G[R])

fD(xD∪pa(D))

some functions fD .

Weak Global Markov Property.
For each reachable R in G,

A m-separated from B by C in G[R] =⇒ XA ⊥⊥ XB |XC [qR ].

Ordered Local Markov Property.
For every intrinsic S and v maximal in S under some topological ordering,

Xv ⊥⊥ XV\mbG[S](v) |XmbG[S](v) [qS ].

Theorem. These are all equivalent.
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Outline
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Heads and Tails

As established, we can factorize a graph into districts; however, finer
factorizations are possible.

1 2

3 4

In the graph above, there is a single district, but X1 ⊥⊥ X2.
So could factorize this as

p(x1, x2, x3, x4) = p(x1, x2)p(x3, x4 | x1, x2)

= p(x1)p(x2)p(x3, x4 | x1, x2).

Note that the vertices {3, 4} can’t be d-separated from one another.

17 / 59



Heads and Tails

As established, we can factorize a graph into districts; however, finer
factorizations are possible.

1 2

3 4

In the graph above, there is a single district, but X1 ⊥⊥ X2.

So could factorize this as

p(x1, x2, x3, x4) = p(x1, x2)p(x3, x4 | x1, x2)

= p(x1)p(x2)p(x3, x4 | x1, x2).

Note that the vertices {3, 4} can’t be d-separated from one another.

17 / 59



Heads and Tails

As established, we can factorize a graph into districts; however, finer
factorizations are possible.

1 2

3 4

In the graph above, there is a single district, but X1 ⊥⊥ X2.
So could factorize this as

p(x1, x2, x3, x4) = p(x1, x2)p(x3, x4 | x1, x2)

= p(x1)p(x2)p(x3, x4 | x1, x2).

Note that the vertices {3, 4} can’t be d-separated from one another.

17 / 59



Heads and Tails

As established, we can factorize a graph into districts; however, finer
factorizations are possible.

1 2

3 4

In the graph above, there is a single district, but X1 ⊥⊥ X2.
So could factorize this as

p(x1, x2, x3, x4) = p(x1, x2)p(x3, x4 | x1, x2)

= p(x1)p(x2)p(x3, x4 | x1, x2).

Note that the vertices {3, 4} can’t be d-separated from one another.

17 / 59



Heads and Tails

Definition

The recursive head associated with intrinsic set S is H ≡ S \ paG(S).
The tail is paG(S).

Recall that the Markov blanket for a fixable vertex is the whole intrinsic
set and its parents S ∪ paG(S) = H ∪ T . So the head cannot be further
divided:

p(xS | xpa(S)\S) = p(xH | xT ) · p(xS\H | xpa(S)\S).

1 2

3 4

But vertices in S \H may factorize:

p(x1, x2, x3, x4)

= p(x3, x4 | x1, x2)p(x1, x2)

= p(x3, x4 | x1, x2)p(x1)p(x2).
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Factorizations
Recursively define a partition of reachable sets as follows. If R has
multiple districts,

[R]G ≡ [D1]G ∪ · · · ∪ [Dk ]G ;

else R is intrinsic with head H, so

[R]G ≡ {H} ∪ [R \ H]G .

Theorem (Head Factorization Property)

p obeys the nested Markov property for G if and only if for every
reachable set R,

qR(xR | xpa(R)\R) =
∏

H∈[R]G

qH(xH | xT ).

Here qH ≡ qS(H) is density associated with intrinsic set for H.
(Recursive heads are in one-to-one correspondence with intrinsic sets.)
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Heads and Tails

Recall, intrinsic sets are reachable districts:

1 2

3 4

5 6

intrinsic set I {3, 4, 5, 6}
recursive head H {5, 6}
tail T {1, 2, 3, 4}

intrinsic set I {3, 4}
recursive head H {3, 4}
tail T {1, 2}

So

[{3, 4, 5, 6}]G = {{3, 4}, {5, 6}}.

Factorization:

q3456(x3456 | x12) = q56(x56 | x1234) · q34(x34 | x12)
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Heads and Tails

What if we fix 6 first?

1 2

3 4

5 6

intrinsic set I {3, 4, 5}
recursive head H {4, 5}
tail T {1, 2, 3}

intrinsic set I {3}
recursive head H {3}
tail T {1}

So

[{3, 4, 5}]G = {{3}, {4, 5}}.

Factorization:

q345(x345 | x12) = q45(x45 | x123) · q3(x3 | x1)

21 / 59



Heads and Tails

What if we fix 6 first?

1 2

3 4

5 6

intrinsic set I {3, 4, 5}
recursive head H {4, 5}
tail T {1, 2, 3}

intrinsic set I {3}
recursive head H {3}
tail T {1}

So

[{3, 4, 5}]G = {{3}, {4, 5}}.

Factorization:

q345(x345 | x12) = q45(x45 | x123) · q3(x3 | x1)

21 / 59



Heads and Tails

What if we fix 6 first?

1 2

3 4

5 6

intrinsic set I {3, 4, 5}
recursive head H {4, 5}
tail T {1, 2, 3}

intrinsic set I {3}
recursive head H {3}
tail T {1}

So

[{3, 4, 5}]G = {{3}, {4, 5}}.

Factorization:

q345(x345 | x12) = q45(x45 | x123) · q3(x3 | x1)

21 / 59



Heads and Tails

What if we fix 6 first?

1 2

3 4

5 6

intrinsic set I {3, 4, 5}
recursive head H {4, 5}
tail T {1, 2, 3}

intrinsic set I {3}
recursive head H {3}
tail T {1}

So

[{3, 4, 5}]G = {{3}, {4, 5}}.

Factorization:

q345(x345 | x12) = q45(x45 | x123) · q3(x3 | x1)

21 / 59



Heads and Tails

1

2

3

4

5

intrinsic set I {1, 2, 3, 4, 5}
recursive head H {4, 5}
tail T {1, 2, 3}

intrinsic set I {1, 2}
recursive head H {1, 2}
tail T ∅

intrinsic set I {3}
recursive head H {3}
tail T {1}

Factorization:

q12345(x12345) = q45(x45 | x123) · q3(x3 | x1) · q12(x12).
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Outline
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Parameterizations

Let M be a model (i.e. collection of probability distributions).

A parameterization is a continuous bijective map

θ :M→ Θ

with continuous inverse, where Θ is an open subset of Rd .

If θ, θ−1 are twice differentiable then this is a smooth parameterization.

We will assume all variables are binary; this extends easily to the general
categorical / discrete case.
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Factorization into Districts

1 2 4

3

We’d like a parametrization which exhibits the axioms directly.
Then all reachable subgraphs will be taken care of too.

The Game: proceed inductively to explicitly construct θ, and assume all
reachable sub-graphs can be parameterized .

If G has multiple districts D, then by Axiom 1

p(xV | xW ) =
∏

D∈D(G)

qD(xD | xpa(D)\D) ;

so parameterize each qD according to G[D] separately (parameter cut).
E.g.

p(x1, x2, x3, x4) = p(x1) · p(x2, x3, x4 | x1).

Note for a DAG this is usual CPTs.
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Marginalization

1 2 4

3

To satisfy Axiom 2, we’d like ancestral
margins of p(x234 | x1) to factorize according to CADMG.

p(x2, x3, 14 | x1) + p(x2, x3, 04 | x1) = p(x2, x3 | x1)

and p(x23 | x1) should by parameterized according to G−4.
Can use this to define probabilities where some entries of head are 1.

p(x2, x3, 14 | x1) = p(x2, x3 | x1) − p(x2, x3, 04 | x1).

Repeat until all vertices in recursive head are 0; e.g.

p(x2, 13, 14 | x1)

= p(x2 | x1) − p(x2, 03 | x1) − p(x2, 04 | x1) + p(x2, 03, 04 | x1).

So every term represents an ancestral sub-graph, except for final term
where every variable in the recursive head is 0.
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Example

1 2 4

3

Now, how to deal with p(x2, 03, 04 | x1)?
We’re now ‘stuck’ precisely when we get a full head of 0s.

We can use out finer factorization once:

p(x2, 03, 04 | x1) = p(03, 04 | x1, x2) · p(x2 | x1)

≡ θ34(x1, x2) · p(x2 | x1).

Have a collection of parameters θ34(x1, x2) associated with the head
H = {3, 4} conditional upon the tail {1, 2}.

Generally parameters are

θH(xT ) ≡ qH(0H | xT ), for all heads H, xT .
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Probabilities

1 2 4

3

Example: how do we calculate p(11, 02, 13, 14)?

First,

p(11, 02, 13, 14) = q1(11) · q234(02, 13, 14 | 11).

Then q1(11) = 1− q1(01) = 1− θ1.

For the district {2, 3, 4} get

q234(02, 13, 14 | x1)

= q234(02 | x1)− q234(023 | x1)− q234(024 | x1) + q234(0234 | x1)

= θ2(x1)− θ23(x1)− θ2(x1)θ4(02) + θ2(x1)θ34(x1, 02).

Putting this all together:

p(11, 02, 13, 14)

= {1− θ1} {θ2(1)− θ23(1)− θ2(1)θ4(0) + θ2(1)θ34(1, 0)} .
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Parameterization
Say binary distribution p parameterized according to G if1

p(xV | xW ) =
∑

O⊆C⊆V

(−1)|C\O|
∏

H∈[C ]G

θH(xT ),

for some parameters qH(xT ) where O = {v : xv = 0}.

Note: there is no need to assume that θH(xT ) ∈ [0, 1], this comes for free
if p(xV | xW ) ≥ 0.

If suitable causal interpretation of model exists,

θH(xT ) = qS(0H | xT ) = p(0H | xS\H , do(xT\S))

6= p(0H | xT ).

Theorem (Evans and Richardson, forthcoming)

p is parameterized according to G if and only if it recursively factorizes
according to G (so p ∈ N (G)).

1The definition of [·]G has to be extended to arbirary sets; see appendix.
29 / 59



Parameterization
Say binary distribution p parameterized according to G if1

p(xV | xW ) =
∑

O⊆C⊆V

(−1)|C\O|
∏

H∈[C ]G

θH(xT ),

for some parameters qH(xT ) where O = {v : xv = 0}.
Note: there is no need to assume that θH(xT ) ∈ [0, 1], this comes for free
if p(xV | xW ) ≥ 0.

If suitable causal interpretation of model exists,

θH(xT ) = qS(0H | xT ) = p(0H | xS\H , do(xT\S))

6= p(0H | xT ).

Theorem (Evans and Richardson, forthcoming)

p is parameterized according to G if and only if it recursively factorizes
according to G (so p ∈ N (G)).

1The definition of [·]G has to be extended to arbirary sets; see appendix.
29 / 59



Parameterization
Say binary distribution p parameterized according to G if1

p(xV | xW ) =
∑

O⊆C⊆V

(−1)|C\O|
∏

H∈[C ]G

θH(xT ),

for some parameters qH(xT ) where O = {v : xv = 0}.
Note: there is no need to assume that θH(xT ) ∈ [0, 1], this comes for free
if p(xV | xW ) ≥ 0.

If suitable causal interpretation of model exists,

θH(xT ) = qS(0H | xT ) = p(0H | xS\H , do(xT\S))

6= p(0H | xT ).

Theorem (Evans and Richardson, forthcoming)

p is parameterized according to G if and only if it recursively factorizes
according to G (so p ∈ N (G)).

1The definition of [·]G has to be extended to arbirary sets; see appendix.
29 / 59



Example 1

Z X Y

Intrinsic Sets Z X ,Y X

Heads Z Y X
Tails ∅ Z ,X Z

So parameterization is just

p(z = 0), p(x = 0 | z) p(y = 0 | x , z).

Model is saturated.
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Example 2

10 2 3 4

p(00, 11, 12, 03, 04) = p(00, 11, 12, 03) · q4(04 | 00, 11, 12, 03)

p(00, 11, 12, 03) = q2(12 | 11) · q013(00, 11, 03 | 12)

q013(00, 11, 03 | 12) = q03(00, 03 | 12)− q013(00, 01, 03 | 12)

= θ03(1)− θ013(1)

so

p(00, 11, 12, 03, 04) = {1− θ2(1)} {θ03(1)− θ013(1)} · θ4(0, 1, 1, 0).

31 / 59



Example 2

10 2 3 4

p(00, 11, 12, 03, 04) = p(00, 11, 12, 03) · q4(04 | 00, 11, 12, 03)

p(00, 11, 12, 03) = q2(12 | 11) · q013(00, 11, 03 | 12)

q013(00, 11, 03 | 12) = q03(00, 03 | 12)− q013(00, 01, 03 | 12)

= θ03(1)− θ013(1)

so

p(00, 11, 12, 03, 04) = {1− θ2(1)} {θ03(1)− θ013(1)} · θ4(0, 1, 1, 0).

31 / 59



Example 2

10 2 3

4

p(00, 11, 12, 03, 04) = p(00, 11, 12, 03) · q4(04 | 00, 11, 12, 03)

p(00, 11, 12, 03) = q2(12 | 11) · q013(00, 11, 03 | 12)

q013(00, 11, 03 | 12) = q03(00, 03 | 12)− q013(00, 01, 03 | 12)

= θ03(1)− θ013(1)

so

p(00, 11, 12, 03, 04) = {1− θ2(1)} {θ03(1)− θ013(1)} · θ4(0, 1, 1, 0).

31 / 59



Example 2

10 2 3

4

p(00, 11, 12, 03, 04) = p(00, 11, 12, 03) · q4(04 | 00, 11, 12, 03)

p(00, 11, 12, 03) = q2(12 | 11) · q013(00, 11, 03 | 12)

q013(00, 11, 03 | 12) = q03(00, 03 | 12)− q013(00, 01, 03 | 12)

= θ03(1)− θ013(1)

so

p(00, 11, 12, 03, 04) = {1− θ2(1)} {θ03(1)− θ013(1)} · θ4(0, 1, 1, 0).

31 / 59



Example 2

10 2 3 4

p(00, 11, 12, 03, 04) = p(00, 11, 12, 03) · q4(04 | 00, 11, 12, 03)

p(00, 11, 12, 03) = q2(12 | 11) · q013(00, 11, 03 | 12)

q013(00, 11, 03 | 12) = q03(00, 03 | 12)− q013(00, 01, 03 | 12)

= θ03(1)− θ013(1)

so

p(00, 11, 12, 03, 04) = {1− θ2(1)} {θ03(1)− θ013(1)} · θ4(0, 1, 1, 0).

31 / 59



Model

So far we have shown how to estimate interventional distributions
separately, but no guarantee these estimates are coherent.

We also may have multiple identifying expressions: which one should
we use?

X M Y

L p(Y | do(X ))
front door?
back door?
does it matter?

We can test constraints separately, but ultimately don’t have a way
to check if the model is a good one.

Being able to evaluate a likelihood would allow lots of standard
inference techniques (e.g. LR, Bayesian).

Even better, if model can be shown smooth we get nice asymptotics
for free.

All this suggests we should define a model which we can parameterize.
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Exponential Families

Theorem

Let N (G) be the collection of binary distributions that recursively
factorize according to G. Then N (G) is a curved exponential family of
dimension

d(G) =
∑

H∈H(G)

2| tail(H)|.

(This extends in the obvious way to finite discrete distributions.)

This justifies classical statistical theory:

likelihood ratio tests have asymptotic χ2-distribution;

BIC as Laplace approximation of marginal likelihood.

Can also parameterize as GLM response model (Shpitser et al., 2013).

34 / 59



Exponential Families

Theorem

Let N (G) be the collection of binary distributions that recursively
factorize according to G. Then N (G) is a curved exponential family of
dimension

d(G) =
∑

H∈H(G)

2| tail(H)|.

(This extends in the obvious way to finite discrete distributions.)

This justifies classical statistical theory:

likelihood ratio tests have asymptotic χ2-distribution;

BIC as Laplace approximation of marginal likelihood.

Can also parameterize as GLM response model (Shpitser et al., 2013).

34 / 59



Exponential Families

Theorem

Let N (G) be the collection of binary distributions that recursively
factorize according to G. Then N (G) is a curved exponential family of
dimension

d(G) =
∑

H∈H(G)

2| tail(H)|.

(This extends in the obvious way to finite discrete distributions.)

This justifies classical statistical theory:

likelihood ratio tests have asymptotic χ2-distribution;

BIC as Laplace approximation of marginal likelihood.

Can also parameterize as GLM response model (Shpitser et al., 2013).

34 / 59



Algorithms for Model Search

Can, for example, use greedy edge replacement for a score-based
approach (Evans and Richardson, 2010).

Shpitser et al. (2011) developed efficient algorithms for evaluating
probabilities in the alternating sum.

Currently no equivalent of PC algorithm for full nested model.

Can use FCI algorithm (Spirtes at al., 2000) for ordinary mixed
graphical models (conditional independences only), which is generally a
supermodel of nested (see Evans and Richardson, 2014).
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Parameterization References
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Completeness

How do we know there isn’t a ’third’ axiom we could invoke?

Theorem (Evans, 2015)

The constraints implied by the nested Markov model are algebraically
equivalent to causal model with latent variables (with suff. large latent
state-space).

‘Algebraically equivalent’ = ‘of the same dimension’.

So if the latent variable model is correct2, fitting the nested model is
asymptotically equivalent fitting the LV model.

However, there are additional inequality constraints.

Potentially unsatisfactory as may not be a causal model corresponding to
our inferred parameters.

2and we are in the relative interior of the model space.
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Getting the Picture

M

N

O

all distributions
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The IV Model

Assume four variable DAG shown, but U unobserved.

Z X Y

U

Marginalized DAG model

p(z , x , y) =

∫
p(u) p(z) p(x | z , u) p(y | x , u) du

Assume all observed variables are discrete; no assumption made about
latent variables.

Nested Markov property gives saturated model, so true model of full
dimension.
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Instrumental Inequalities

Z X

U

Y
The assumption Z 6→ Y is important.
Can we check it?

Pearl (1995) showed that if the observed variables are discrete,

max
x

∑
y

max
z

P(X = x ,Y = y |Z = z) ≤ 1. (∗)

This is the instrumental inequality, and can be empirically tested.

If Z ,X ,Y are binary, then (??) defines the marginalized DAG model
(Bonet, 2001). e.g.

P(X = x ,Y = 0 |Z = 0) + P(X = x ,Y = 1 |Z = 1) ≤ 1
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The Problem

Question
How can we determine if a
general marginalized DAG model
induces inequality constraints?

X

Z Y

U1 U2

Pearl’s proof of the instrumental inequality does not obviously generalize.

Computational linear algebra only works without adjacent latent variables.
Also very computationally intensive.

Finding complete bounds in general is currently intractably hard.
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Derivation of Inequalities

Z X

U

Y

Have: p(x , y | z) =

∫
p(u) p(x | z , u) p(y | x , u) du.

Construct a fictitious distribution p∗:

p∗(x , y | z) =

∫
p(u) p(x | z , u) p(y | x = 0, u) du.

Now Y behaves as though X = 0 regardless of X ’s actual value.
Causally, we can think of this as an intervention severing X → Y .

Can’t observe p∗ but:

Consistency: p(0, y | z) = p∗(0, y | z) for each z , y ; and

Independence: Y ⊥⊥ Z under p∗.
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Derivation of Inequalities

For each x = ξ we require p∗ξ :

pξ(ξ, y | z) = p∗ξ (ξ, y | z) for each y , z , Y ⊥⊥ Z [p∗ξ ].

Does such distributions exist?

p(ξ, y | z) = p∗ξ (ξ, y | z) ≤

p∗ξ (y | z) = p∗ξ (y)

So clearly max
z

p(ξ, y | z) ≤ p∗ξ (y)

∑
y

max
z

p(ξ, y | z) ≤ 1.

By varying ξ, the instrumental inequality follows.

We say that the probabilities p(x , y | z) are compatible with Y ⊥⊥ Z .
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Generalizing

How does this help us with other graphs?

The argument works precisely because cutting edges led to a separation:

X

Z Y

U1 U2

Z is d-separated from Y in the graph after cutting edges emanating from
X .

So by the same argument, for fixed ξ, p(ξ, y , z) must be compatible with
a (fictitious) distribution p∗ξ in which Y ⊥⊥ Z .

[Note for the IV model, the conditional distribution p(ξ, y | z) had to be
compatible.]
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Compatibility

Probabilities may not be compatible with independences.

Consider a partial probability table p(x = ξ, y , z):

Z = 0 Z = 1

Y = 0 1/3 0

Y = 1 0 1/3

There is no way to construct a joint distribution over X ,Y ,Z with these
probabilities such that Y and Z are independent.

Most likely to happen if p(x) is large for some value of x .
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A Generalization
For a DAG G and set of variables W , let GW be the graph after
removing edges pointing away from W .

Theorem (Evans, 2012)

Let p be a discrete distribution in marginalized DAG model for G.
Let X ,Y ,Z ,W be sets of variables in G.

If X and Y are d-separated by Z in GW , then for each fixed {W = ω}
the probabilities

p(x , y ,ω | z), x , y , z .

are compatible with a distribution p∗ω, in which X ⊥⊥ Y |Z [p∗ω].

If, in addition, X = (X1,X2), Y = (Y1,Y2) and X2,Y2 are not
descendants of W , then

p(x1, y1,ω | x2, y2, z) x1, x2, y1, y2, z .

are compatible with a distribution p∗ω, in which X ⊥⊥ Y |Z [p∗ω].
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Missing Edges Give Constraints

This is nice because no previous derivation of inequalities was graphical:
based on one of

computational algebra (Bonet, 2001);

algorithmic method (Kang and Tian, 2006);

or convexity arguments (Pearl, 1995).

Whereas...

Corollary

If X and Y are not joined by an edge, nor share a hidden common cause,
then a constraint is always induced on the joint distribution.
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Example 1

X Y

W Z

X and Y cannot be d-separated in this graph =⇒ no independences.

Remove edges emanating from W , see that now X ⊥⊥ Y |Z .
So p(x , y ,w | z) compatible with X ⊥⊥ Y |Z for each w .

In fact, Y not a descendant of Z , so p(x ,w | z , y) compatible.

By symmetry: p(y , z |w , x) compatible with X ⊥⊥ Y |W for each z .
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Compatibility

Can we easily determine whether distributions are ‘compatible’ with
independences?

Suppose we need p(x , y ,w | z) to be compatible with X ⊥⊥ Y |Z [p∗].

In other words, for each z ,w need a rank 1 matrix B = (bxy ) such that

bxy ≥ p(x , y ,w | z) and
∑
xy

bxy ≤ 1.

Proposition

The existence of such a matrix is a convex optimization problem.

In general, Theorem 1 gives necessary but not sufficient conditions for p
to be in the marginalized DAG model.
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Equivalence on Three Variables

The previous method doesn’t give all inequalities. This is generally an
extremely hard problem, even in specific cases.

Even Markov equivalence is hard. Using Evans (2014), find 8 Markov
equivalence classes on three variables.
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But Not on Four!

On four variables, it’s still not clear whether or not the following models
are saturated: (they are of full dimension in the discrete case)

1 2

3 4
1 2 4

3

1 2 3 4
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Outline
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Causal Effects

Z X

U

Y

So far we’ve given inequalities which ‘prove existence’ for edges.

Now we’d like to determine the strength of its causal effect.

Construct p∗ as before. Then

p(y | do(x = ξ, z)) = p∗ξ (y | z)

= p(x , y | z) +
∑
x′ 6=ξ

p∗ξ (x ′, y | z).
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Causal Bounds

This approach gives bounds on the interventional distributions (Evans,
2012) and, for example, the average controlled direct effect

ACDEZ→Y (x) ≡ p(y = 1 | do(x , z = 1))− p(y = 1 | do(x , z = 0)).

Theorem

Let X → Y , but otherwise d-separated in the graph GW . Then an
upper-bound on ACDEX→Y (w) is given by maximizing

p(y = 1, x = 1,w) + β

p(x = 1,w) + β
− p(y = 1, x = 0,w)

p(x = 0,w) + 1− p(w)− β

over 0 ≤ β ≤ 1− p(w).

This is just a quadratic equation. There is an analogous lower-bound.
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Bounds: Special Case

Theorem

Let X → Y , but otherwise d-separated in the graph GW , and that X is
not a descendant of any variable in W . Then

p(y = 0,ω | x = 0) + p(y = 1,ω | x = 1)− 1

≤ ACDE(ω) ≤
1− p(y = 0,ω | x = 1)− p(y = 1,ω | x = 0).

For the IV model, this is the tight bound given by Cai et al (2008).

If bounds exclude zero then models violate Theorem 1 compatibility.
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Summary

(Causal) DAGs with latent variables induce non-parametric
inequalities;

some can be deduced as ‘compatibility’ of probabilities with
conditional independences;

there are other inequalities, including Bell’s inequality, see Evans
(2014).

Some limitations:

Complete inequality constraints seem very complicated (though
some hope exists).

Performing inference for inequality constraints with finite samples is
non-trivial.

Not obvious how to integrate inequalities into the previous
parameterization.
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Partition Function for General Sets

Let I(G) be the intrinsic sets of G. Define a partial ordering ≺ on I(G)
by S1 ≺ S2 if and only if S1 ⊂ S2. This induces an isomorphic partial
ordering on the corresponding recursive heads.

For any B ⊆ V let

ΦG(B) = {H ⊆ B |H maximal under ≺ among heads contained in B};

φG(B) =
⋃

H∈ΦG(B)

H.

So ΦG(B) is the ‘maximal heads’ in B, φG(B) is their union.

Define (recursively)

[∅]G ≡ ∅
[B]G ≡ ΦG(B) ∪ [φG(B)]G .

Then [B]G is a partition of B.
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d-Separation

A path is a sequence of edges in the graph; vertices may not be repeated.

A path from v to w is blocked by C ⊆ V \ {v ,w} if either

(i) any non-collider is in C :

c c

(ii) or any collider is not in C , nor has descendants in C :

d d

e

Two vertices v and w are d-separated given C ⊆ V \ {v ,w} if all paths
are blocked.
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