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Abstract

Arriving at the complete probabilistic knowledge
of a domain, i.e., learning how all variables inter-
act, is indeed a demanding task. In reality, set-
tings often arise for which an individual merely
possesses partial knowledge of the domain, and
yet, is expected to give adequate answers to a
variety of posed queries. That is, although pre-
cise answers to some queries, in principle, cannot
be achieved, a range of plausible answers is at-
tainable for each query given the available partial
knowledge. In this paper, we propose the Multi-
Context Model (MCM), a new graphical model
to represent the state of partial knowledge as to a
domain. MCM is a middle ground between Prob-
abilistic Logic, Bayesian Logic, and Probabilistic
Graphical Models. For this model we discuss: (i)
the dynamics of constructing a contradiction-free
MCM, i.e., to form partial beliefs regarding a do-
main in a gradual and probabilistically consistent
way, and (ii) how to perform inference, i.e., to
evaluate a probability of interest involving some
variables of the domain.

1 INTRODUCTION

At an abstract level, an individual (also referred to as a rea-
soner) is faced with a domain where by “domain” we sim-
ply mean a collection of propositions or concepts which
are mathematically encoded as Random Variables (RVs).
To arrive at the complete probabilistic knowledge of the
domain, i.e., to learn how all RVs in the domain proba-
bilistically interact with one another, is indeed a demanding
task. In reality, an individual is often faced with a domain
for which she merely possesses partial knowledge—that
is, she only knows how some (not all) RVs in the domain
interact. To make the setting under study more tangible,
consider the following case. Suppose that the probabilis-
tic knowledge of a domain is represented by a Probabilis-

tic Graphical Model (PGM) B, e.g., a Bayesian Network
(BN). Then the reasoner comes across a new RV, say ψ,
and would like to incorporate it into B so as to achieve
the complete probabilistic knowledge of the new domain
(which now also includesψ). However, incorporation ofψ
into B would require knowledge of how ψ is probabilisti-
cally related to all the RVs already present in B; a knowl-
edge which may be, quite plausibly, unavailable to the rea-
soner. An interesting question that now arises is how to
handle situations where only partial knowledge as to how
ψ is probabilistically related to B is available. An example
would be when the reasoner merely knows howψ interacts
probabilistically with only one RV, say φ, in B.

In this paper, a graphical model, namely, the Multi-Context
Model (MCM) is proposed to represent the setting in which
only partial probabilistic knowledge of a domain is avail-
able to the reasoner. More specifically, MCM is a graphical
language to represent settings in which the Joint Probability
Distribution (JPD) over all RVs is not available, but what
is available instead is the JPDs over a collection of subsets
of RVs of the domain (referred to as sub-domains or con-
texts). These contexts are potentially overlapping, i.e., they
could share some RVs. As pointed out elegantly in (Pearl
1990), “this state of partial knowledge is more common,
because we often begin thinking about a problem through
isolated frames, paying no attention to interdependencies.”
Along the same line of thought, it is plausible to assume
that the probabilistic knowledge of the domain at the early
primitive stage consists of a collection of disjoint contexts
and as the reasoner acquires more knowledge as to how the
variables in the model are related to one another and thus
probabilistically interact, contexts gradually go through a
process very much like an evolution: contexts start to share
some variables, overlaps begin to emerge and, once enough
knowledge is obtained, a number of contexts could merge
thereby giving rise to bigger contexts. This naturally raises
the following fundamental question: How could a collec-
tion of consistent, probabilistically sound, and potentially
overlapping contexts emerge gradually over the course of
time? In an attempt to answer this question we present
a generative process of constructing a contradiction-free



MCM. Finally, we would like to note that the special case
where the whole domain is modeled as a single context cor-
responds to the conventional way of modeling the proba-
bilistic knowledge of a domain using a single PGM, e.g.,
by some BN.

Another yet crucial question which we address in this
work—which is another motivation behind the develop-
ment of the MCM—is how the task of inference (i.e., the
evaluation of some probability of interest which is here-
after referred to as query) should be carried out in a domain
which is modeled according to some MCM. A query does
not necessarily belong to any one of the contexts in partic-
ular and, in fact, may involve RVs from different contexts.

The paper is structured as follows. After introducing the
notation in Sec. 2, we define in Sec. 3 the MCM and draw-
ing on the notion of probabilistic conditioning, a genera-
tive process of constructing a contradiction-free MCM is
discussed. Then, in Sec. 4 we elaborate on the problem of
inference in a multi-context setting, i.e., in a domain whose
probabilistic knowledge is encoded as an MCM. In Sec. 5
we discuss the relevant past work and comment on the pro-
posed model. Finally, Sec. 6 concludes the paper.

2 TERMINOLOGY AND NOTATION

In this section we present the mathematical notation and the
terminology employed in this paper. Random quantities are
denoted by bold-faced letters; their realizations are denoted
by the same letter but non-bold. More specifically, RVs
are denoted by lower-case bold-faced letters, e.g., x, while
random vectors are denoted by upper-case bold letters, e.g.,
X. Val(·) denotes the set of values a random quantity can
take, e.g., Val(x) is the set of all possible realizations of the
RV x. In this paper, we assume that all random quantities
are discrete.

The JPD over the RVs x1, · · · , xn is denoted by
P(x1, · · · , xn); when x1, · · · , xn comprise a vector X then
P(X) := P(x1, · · · , xn). We will use the notation x1:n

to denote the sequence of n RVs x1, · · · , xn. To simplify
presentation and to prevent our expressions from becom-
ing cumbersome, we incur the following abuse of notation:
We denote the probability P(x = x) by P(x) for some RV
x and its realization x ∈ Val(x). Also, P(x̄) := P(x 6=
x) = 1− P(x) for some x ∈ Val(x), i.e., P(x̄) is the prob-
ability that x takes on any value other than x. For condi-
tional probabilities we will use the notation P(x|y) instead
of P(x = x|y = y). Similar notations will be used for
the case of random vectors, i.e., P(X) := P(X = X),
P(X̄) := P(X 6= X) = 1 − P(X = X) = 1 − P(X), and
P(X|Y ) := P(X = X|Y = Y ).

The subscript ↓ on a probability, e.g., P(x|y)↓, denotes
the minimum value the probability can take subject to the
constraints induced by the available probabilistic knowl-

edge. Likewise, the subscript ↑ on a probability denotes
the maximum value the probability can take. Finally, the
operator [·]+ gives the positive part of its argument, i.e.,
[a]+ := max{0, a} for any real-valued a.

3 MULTI-CONTEXT MODEL

As explained earlier, a domain is simply the set of all Ran-
dom Variables (RVs) at hand. A context comprises a col-
lection of RVs for which their JPD is precisely known, see
Fig. 1(a). In general, two contexts could be disjoint (Fig.
1(b)) or overlapping (Fig. 1(c)).
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Figure 1: Graphical representation of contexts: (a) Context
associated to P(a,b,X). (b) Two disjoint contexts associ-
ated to P(a,b) and P(Y, t). (c) Two overlapping contexts
associated to P(X,Y, t) and P(Y, z,k). The random vector
Y is referred to as the induced part in Sec. 3.

A Multi-Context Model (MCM) encodes the probabilistic
knowledge of a domain as a collection of possibly overlap-
ping contexts. This enables the handling of situations in
which comprehensive knowledge of a domain is not avail-
able, but partial information is, in the form of JPDs of some
subsets of the domain. Let us first motivate the proposed
MCM by entertaining a simple yet enlightening example.

3.1 MOTIVATING EXAMPLE

Consider a domain consisting of the RVs y, z in addition
to a set of n RVs, x1:n. A reasoner has formed a par-
tial belief as to the probabilistic connections between the
variables of the domain. More specifically, the reasoner
knows precisely the JPDs P(y, z) and P(x1:n) but not the
JPD P(y, z, x1:n). This setting is described by an MCM
that consists of two disjoint contexts, one associated to RVs
y, z and the other to x1:n, as shown in Fig. 2.

x1:n y
z

Figure 2: Problem statement as an MCM.

Assume that the following query is posed: Given the avail-
able information, what could be said about P(y|xi) for
some i = 1, · · · , n? The RVs y and xi belong to differ-
ent contexts, therefore, the JPD of y and xi, P(xi, y), is not
available. The best one can hope for is to derive the range
within which P(y|xi) varies, namely, [P(y|xi)↓,P(y|xi)↑].



Let us for the moment assume the objective is to find
P(y|xi)↓. Based on the conventional methodology, i.e., the
approach adopted by past work (cf. (Andersen and Hooker
1990; 1994; Hansen et al. 1995) and references therein)
one has to write down all the information as a list of linear
equations and solve it as a Linear Program (LP). The main
drawback of the conventional approach is that it cannot dis-
tinguish between what information is relevant and what is
irrelevant for the posed query, and hence what needs to and
what need not be considered in answering the query. The
price for this is that the number of parameters required to
merely formulate the query as an LP is exponential in n.

The key point, however, is that what information is rele-
vant (or irrelevant) depends directly on the posed query,
i.e., it is query-dependent. The main advantage of the pro-
posed MCM over previous approaches is that it enables an-
swering a query in a computationally efficient manner by
distinguishing the relevant information from the irrelevant
for the given query. This is realized thorough adopting the
notion of inference grammar; a concept which will be sys-
tematically defined later. For our example, following the
inference rule we will provide in Sec. 4.2, one can easily
get P(y|xi)↓ = [P(y)−P(x̄i)

P(xi)
]+.

The task of inference in an MCM is carried out on two dif-
ferent levels, which makes the task more computationally
efficient:

(i) High-Level Reasoning: at this level, through the use
of inference grammar, the relevant quantities are iden-
tified (e.g., P(y) and P(x̄i) in the case of our exam-
ple).

(ii) Low-Level Reasoning: the relevant quantities, identi-
fied in (i), can then be computed by employing infer-
ence algorithms which take advantage of the poten-
tially rich independence structure governing the con-
texts. For example, it could very well be the case
that for the JPD associated to x1:n a large number of
conditional independence relations hold. In that case,
stating the derivation of P(x̄i) (i.e., 1 − P(xi)) as an
LP would be computationally inefficient1 but unnec-
essary. Indeed, the task of finding P(x̄i) could be
accomplished in a computationally efficient way us-
ing one of the many inference methods developed for
probabilistic graphical models; a key point that the
previous approaches do not take advantage of.

As a final step, in order to derive the lower/upper bound to
the posed query, the quantities identified in (i) and subse-
quently calculated in (ii) are stated and solved as an LP.

The idea behind “high-level reasoning” will be explained
and clarified further in Sec. 4.2 and 4.3, while the concept

1The number of parameters required just to state the problem
as an LP is exponential in n.

of “low-level reasoning” will be discussed in Sec. 4.1.

3.2 GENERATIVE PROCESS OF
CONTRADICTION-FREE MCMS

The objective of the generative process we describe in this
section is to provide a way to consistently2 construct con-
texts, in a sequential manner, over a set of RVs. The act of
constructing a context, i.e., of assigning a JPD to a subset
of RVs, corresponds to forming a subjective3 belief over
those RVs. In this light, the act of constructing multiple
contexts corresponds to gradually forming subjective be-
liefs over a number of subsets of variables in the domain;
hence every context symbolizes an established belief over
the RVs involved in that context.

We introduce this problem by considering a simple case
shown in Fig. 3(a). Suppose there are three RVs, namely,

x

yz

x

yz

(a) (b)

P(y,z)

P
(x
,y
)

P(y,z)

P(
x,
z)

P
(x
,y
)

Figure 3: Generative process for contradiction-free Multi-
Context Model. The dash-dotted contexts cannot be freely
assigned.

x, y, and z, present in the domain and let us consider the
following question: Could one assign P(x, y) and P(y, z),
freely and gradually in a consistent manner, over the three
variables without introducing any sort of contradiction?
It is easy to verify that the answer is positive. Indeed,
one could start off by assigning P(x, y). This assignment
would, of course, induce the marginal P(y) and one can
write P(y, z) = P(y)P(z|y). Then, to complete this task,
one would just need to proceed with assigning P(z|y). This
process could be referred to as a generative process of the
assignment of P(x, y) and P(y, z) over x, y, and z without
introducing any inconsistencies, in a gradual manner. In-
deed, free-assignment refers to the act of freely assigning
the non-induced, e.g., P (z|y), part of the to-be-formed be-
lief, e.g., P (y, z). In other words, free-assignment signifies
the observation that the already-formed belief does not im-
pose any constraints on the non-induced part of the to-be-
formed belief.

2That is, without introducing any form of contradictory result
with respect to any probability assignment.

3One must not interpret the subjectivity of belief as “total dis-
connectivity from the reality.” Thus, we adopt the Bayesian inter-
pretation of probability in this section. The avid reader is referred
to (Chalmers 1976). An adherent to the frequentist interpreta-
tion of probability could think of contexts as being empirically
constructed from a collection of data and thus skip Sec. 3.2 and
proceed directly to the next section.



Let us now consider the case shown in Fig. 3(b). Could
one assign P(x, y),P(y, z), and P(x, z) freely and gradu-
ally in a consistent manner over the three variables with-
out introducing any sort of contradiction? After some in-
vestigation, one can see that the answer is negative (Pearl
1985). Not surprisingly, the reason for this has to do with
the existence of a loop in the model: once P(x, y) and
P(y, z) = P(y)P(z|y) are assigned4, then P(x, z) cannot
be assigned freely. This is due to the fact that P(x, z) has to
satisfy some non-trivial conditions imposed by the already
assigned contexts P(x, y) and P(y, z) (Pearl 1985).

In summary, whenever it comes to generating a new con-
text, the JPD associated to that context has to be sepa-
rated into two parts: (i) the part induced by the already
existing contexts, and (ii) the part containing new variables
which have never been so far associated to any context
(i.e., non-induced part). The key point in the generation of
contradiction-free MCMs is that the former part has to be
induced by some context which, itself, is already present
in the domain. That is, all the induced parts have to be
already contained within some context. Otherwise, to in-
clude the induced parts—each constrained by the context
it is already in—in a new context, the newly created con-
text would have to satisfy some nontrivial constraints and
therefore could not be freely assigned.
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P(a,b,c)

P(b,d)
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Figure 4: MCM for P(a,b, c),P(b,d), and P(b, c, e).

Let us discuss one final case to further clarify the pro-
cess. Consider the multi-context model in Fig. 4. Could
this model be constructed freely and gradually in a prob-
abilistically consistent manner? The answer is positive.
We first assign P(a,b, c), then we assign P(b, c, e) =
P(b, c)P(e|b, c) where P(b, c) is induced by our first as-
signment of P(a,b, c). Finally, we assign P(b,d) =
P(b)P(d|b) where P(b) is induced by our first assignment
of P(a,b, c). A closer look reveals that this is not the
only way we can gradually construct a contradiction-free
model in this case: we could have performed the assign-
ments in a different order5. Of course, the only thing which
would have been different would be the induced probabil-
ities. That is, if one does the assignment in the following

4P(y) is induced by the assignment of P(x, y).
5Yet, this is not always the case: suppose there are four RVs

in the domain, namely, a, b, c and d and we would like to as-
sign P(a, b),P(b, c), and P(c, d). Performing the assignments
in the order (1) − P(a, b), (2) − P(b, c), (3) − P(c, d) would
not introduce any inconsistencies, in contrast to using the order
(1)− P(a, b), (2)− P(c, d), (3)− P(b, c).

order: (1)−P(b,d), (2)−P(a,b, c), (3)−P(b, c, e) then the
first assignment of P(b,d) will induce P(b) for the sec-
ond assignment of P(a,b, c) = P(b)P(a, c|b) and the sec-
ond assignment will induce P(b, c) for the third assignment
P(b, c, e) = P(b, c)P(e|b, c).

4 INFERENCE IN MCMS

In this section we consider evidential inference problems in
multi-context settings. The objective is to evaluate (to the
extent possible) a probability of the form P(O = O|E =
E), called a query, where O and E are two mutually exclu-
sive sets of RVs. The set E is the set of evidence variables
and O is the set of RVs for which we are interested in know-
ing with what probability they take on the valueO, upon the
observation of E = E. In multi-context settings, inference
problems can be categorized into two broad classes:

• Intra-Contextual Inference Problems: For which the
sets E and O both belong to the same context.

• Inter-Contextual Inference Problems: For which the
sets E and O do not belong to a single context and,
therefore, more than one context is involved in the in-
ference problem.

In what follows, we will elaborate on these two cases.

4.1 INTRA-CONTEXTUAL INFERENCE
PROBLEM

One advantage of MCMs is that, once an inference prob-
lem is found to be an intra-contextual inference problem,
one can take advantage of the rich independence structure
potentially governing the context to accomplish the task of
inference in a computationally efficient way. For instance,
if the probabilistic knowledge of a context is presented in a
form of a BN, then one can benefit from a variety of exact
or approximate methods already developed for BNs. For a
comprehensive study of such methods the reader is referred
to (Koller and Friedman 2009). Hence, it is of great inter-
est to have contexts whose probabilistic knowledge can be
represented in some form of a PGM with sufficiently rich
independence structure for which inference problems can
be solved in a computationally efficient way. For example,
if the probabilistic knowledge of a context is to be mod-
eled according to some BN, we would like that BN to be
as sparsely connected as possible and enjoy low tree-width
to ensure computational efficiency for the task of inference
(Chandrasekaran, Srebro, and Harsha 2008).

4.2 INTER-CONTEXTUAL INFERENCE
PROBLEM: INFERENCE GRAMMAR

In this section, we turn our attention to the task of inter-
contextual inference. The RVs involved in the query for



the inter-contextual inference problem do not belong to a
single context. For this reason, the answer to the query is
inevitably in the form of an interval indicating a lower and
upper bound for the query. Since P(E|O) + P(Ē|O) = 1
we have P(E|O)↑ = 1 − P(Ē|O)↓. Therefore, we can fo-
cus our attention on the minimization problem (i.e., identi-
fying a lower bound to the probability of interest) realizing
that any maximization problem (i.e., identifying an upper
bound to the probability of nterest) could be cast as a min-
imization problem and vice versa.

First, we are going to consider some simple queries which
are posed to some example MCMs. These MCMs are de-
picted in Fig. 5(a-c). The goal here is to develop some
insight as to which variables are indeed relevant and which
are deemed irrelevant for a given query and the correspond-
ing MCM.
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Figure 5: Sample inference rules given for some inter-
contextual inference problems. The RVs involved in the
query are shown in blue.

We begin by considering a simple case: the disjoint MCM
shown in Fig. 5(a). The rule to evaluate P(X|Y )↓ is
also given in Fig. 5(a). Interestingly enough, the expres-
sion only requires the intra-contextual quantities P(X) and
P(Y ) and it does not depend on any other RV present in the
domain. In other words, as far as P(X|Y )↓ is concerned,
the MCM shown in Fig. 5(a) is equivalent to a much sim-
pler MCM: the one corresponding to having only two dis-
joint contexts described by P(X) and P(Y). Next, we take
the MCM given in Fig. 5(b) where there is an overlap be-
tween the context containing X and the one containing Y.
The overlapping part consists of the random vector Z. The
rule to evaluate P(X|Y, Z)↓ is given in Fig. 5(b). Now,
consider the MCM shown in Fig. 5(c) where we have the
same setting we had in previous case but a new random
variable t is added in the overlapping region. Notice that
the expression for P(X|Y, Z, t)↓ given in Fig. 5(c) is the
same expression given for P(X|Y,Z)↓ in Fig. 5(b) with
the substitution of Z, t instead of Z. That is, Z in Fig.
5(b) and Z, t in Fig. 5(c) are representing the same thing,
namely, “all the variables in the overlapping region”, and
in that respect, they are ultimately the same. The rules are

very much like sentences in predicate logic for which vari-
ables merely serve as place-holders.

The derivation of the rules given in Fig. 5(a-c) is not pre-
sented here. However, using the proof presented in Sec.
A-II of Appendix (to identify the relevant variables) and
subsequently following the methodology outlined in Sec.
A-III of Appendix (to visualize the partitions and reason
out the extent they overlap) it should be straightforward to
derive the presented rules.

The sample set of rules presented is by no means exhaus-
tive, nonetheless, due to the idea of context transformation
that will be discussed in Sec. 4.3, they can be applied to
a wide range of interesting inter-contextual inference prob-
lems. We would like to clarify that our ultimate objective is
not to compute and provide the complete set of rules that
can answer all possible queries and for all possible MCMs,
since simply, the set is infinite in size. What we need, there-
fore, is an algorithm, let us call it I∗, that can provide the
answer to the posed query being given an MCM as an in-
put. The presented rules provide insights and hints to the
nature of I∗ which needs to be devised to ideally handle
any arbitrary query posed to any6 MCM. In a sense, we
can get a glimpse of the nature of I∗ through analyzing the
presented rules. In other words, the derived rules serve as
a lens through which one can study I∗. In Sec. A-I of
Appendix a simple version of I∗ that can handle arbitrary
MCMs is outlined.

The motivation behind giving this sample set of rules can
now be summarized in the following.

1. To shed light on the general nature of a rule (which
reflects on the nature of I∗). More specifically, to il-
lustrate that a rule enjoys two key properties, namely:
(i) scale-invariance, (ii) resemblance to sentences in
predicate logic, in that in both cases, variables are
mere place-holders. For this resemblance we refer to
I∗ as inference grammar.

2. To demonstrate that a rule is telling us which intra-
contextual quantities are essential and which are irrel-
evant for a particular inter-contextual query.

3. To emphasize the key property that a rule derived un-
der a specific MCM remains valid for and can be ap-
plied to infinitely many other MCMs all of which are
linked through the notions of nestedness and transfor-
mation; hence generalization is achieved.

4. To lay down the foundation of transformation and
nestedness which both play crucial roles in under-
standing the underlying machinery behind I∗.

6Although we believe that the MCMs generated through the
generative process outlined in Sec. 3.2 are more cognitively plau-
sible, nonetheless, from a pure mathematical point of view, it
would be of interest to find an algorithm which could handle any
MCM.



Next, we discuss another key property of the inference
rules, namely, that of scale-invariance. Consider once
again the case in Fig. 2. Now let us derive P(xi|y)↓,
and P(X|y)↓ where X , x1:n. Using the rule given in
Fig. 5(a), one arrives at the following results: P(xi|y)↓ =

[P(xi)−P(ȳ)
P(y) ]+, and P(X|y)↓ = [P(X)−P(ȳ)

P(y) ]+. In other
words, the expressions remain the same, regardless of the
dimension of the quantity of interest, i.e., be it a single RV
or be it a random vector comprised of many RVs. In this re-
spect, once again, the inference rules resemble expressions
in predicate logic. The intuition on the scale invariance is
provided in Sec. A-III of Appendix.

It is worth noting that I∗ formulates the inter-contextual in-
ference problem as a Linear Programming (LP) optimiza-
tion (cf. Sec. A-I of Appendix). The key issues to consider
are: (i) what RVs have to be included in the LP, and (ii) the
abstraction level I∗ should choose to encode the RVs iden-
tified in step (i) for the LP, i.e., the parametrization of RVs
identified in step (i) for the LP. In what follows, the con-
cepts of nestedness and transformation are put forth. Once
the two are introduced, one could apply a single rule (e.g.,
one in Fig. 5(a)) to a much larger number of MCMs; in fact
to infinitely many MCMs.

4.3 INTER-CONTEXTUAL INFERENCE
PROBLEM: NESTEDNESS AND
TRANSFORMATION
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Figure 6: Inter-Contextual Inference Problem: Transfor-
mation and hierarchical construct. As one proceeds from
the left to the right, a more comprehensive knowledge of
domain is assumed to be available, of course hypotheti-
cally.

The nested property, or nestedness, refers to the fact that
every MCM can be considered as an element of a family
of MCMs. That family contains all MCMs which through
marginalization can produce the original MCM. In such
a case we simply say that the nested property holds be-
tween the original MCM and the family. The process of
going from the original MCM to one of the members of the
family is referred to as transformation. For example, the
MCM containing three contexts {x}, {y}, and {z} shown
in Fig. 6(a) is a member of a family of MCMs contain-
ing two contexts {x, y} and {z}, shown in Fig. 6(b), one
of which is associated to a family of JPDs over x and y
(the dash-dotted circle in Fig. 6(b)) which, if marginal-
ized, produces the same P(x) and P(y) in the original
MCM (left-most MCM). Mathematically, the set of all

JPDs over RVs x and y which, if marginalized, produce
specific marginal probability distributions P(x) and P(y) is
denoted by {P(x, y)} |= P(x) ∧ P(y). The notion of the
nested property enables us to look at one MCM as a subset
of another larger MCM. The nested property, furthermore,
enables one to sort MCMs in a hierarchical construct as il-
lustrated in Fig. 6 where moving from the left to the right
corresponds to moving from lower levels of hierarchy to
higher levels.
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Figure 7: Transformation: Sample case.

To convey the idea, consider the case illustrated in Fig.
7. Suppose the query of interest is P(x|y,R)↓. Then,
one can first transform the original (left-most) MCM into
the MCM shown in the middle, and subsequently into the
right-most MCM. Hence, using the right-most MCM and
the rule given in Fig. 5(b), one can write P(x|y,R)↓ =

[P(x|R)−P(ȳ|R)
P(y|R) ]+ = [P(x|R)−1+P(y|R)

P(y|R) ]+. If we had the
knowledge of P(y|R) then the expression given above
would have been sufficient to derive P(x|y,R)↓. However,
since P(y|R) is not known, we need to go through one more
step. This is precisely due to, and emphasizes, the fact
that by working on the right-most MCM we implicitly pre-
sumed that we were equipped with more knowledge than
we really had. Using the middle MCM and the rule given
in Fig. 5(a), one can conclude P(y|R)↓ = [P(y)−P(R̄)

P(R) ]+.

Altogether7, P(x|y,R)↓ =
(
[P(x|R)−1+P(y|R)

P(y|R) ]+
)
↓ =

[
P(x|R)−1+P(y|R)↓

P(y|R)↓
]+. It is worth noting that the same rule

would apply if instead of the random vector R we were
dealing with the random variable a, i.e., to find P(x|y, a)↓
one could use the same expression given for P(x|y,R)↓
by substituting a in place of R in all the expressions. Ar-
guments of this kind are made possible due to the idea
of transformation which enables us to analyze the trans-
formed MCM (e.g., the middle one in Fig. 7) rather than
the original MCM (the left-most one in Fig. 7). Further-
more, the concept of transformation highlights a key idea:
if a piece of information (i.e., an intra-contextual quantity)
is irrelevant in the transformed MCM for the posed query,
it must have been irrelevant in the original MCM in the
first place. This statement, once again, sheds light on what
intra-contextual quantities are relevant or irrelevant to de-
rive a posed inter-contextual query on a given MCM.

7This is due to the observation that for function f(y) = ( k+y
y

)

when k < 0, min1≥y≥t>0 f(y) = ( k+t
t
).



5 DISCUSSION

We will now discuss related work so as to build a connec-
tion between ours and previous attempts to incorporate par-
tial probabilistic knowledge of a domain in the task of in-
ference.

Attempting to combine Probabilistic Logic and BNs, the
authors in (Andersen and Hooker 1990; 1994) formulate
the inference problem as an optimization problem subject
to non-linear constraints so as to incorporate the condi-
tional independence relations embedded in the BN. How-
ever, in our proposed framework, the issue of dealing with
conditional independence relations does not arise at all, be-
cause these relations are dealt with during the derivation
process of intra-contextual probabilities.

The authors of (Hansen et al. 1995) point out that one could
avoid non-linear optimization when the value for a condi-
tional probability is at least imprecisely known. For exam-
ple, the constraint P(a|b) = P(a), if the value for P(a) is
known either precisely or imprecisely within some interval
[α, β], can be written as

P(a, b)

P(b)
= P(a) ∈ [α, β]⇔

{
P(a, b)− αP(b) > 0,
P(a, b)− βP(b) < 0.

Hence, the independence P(a|b) = P(a) can be formulated
as a number of linear constraints. However, the main draw-
back of this approach is that encoding a conditional inde-
pendence relation such as P(x|y, a1, · · · , an) = P(x|y) re-
quires a number of linear equations that is exponential in n
to be introduced into the optimization problem (Andersen
and Hooker 1994).

Drawing on the idea of Context-Specific Independence
(CSI) (Boutilier et al. 1996), the authors of (Geiger and
Heckerman 1991) propose the Bayesian Multinet model
which aims at taking advantage of the existing CSIs to
perform inference, by modeling a single BN as multiple
context-specific BNs. Translated into our multi-context set-
ting, the Bayesian Multinet model corresponds to the case
where the whole domain is modeled as a single BN, i.e.,
a single-context MCM, that can be decomposed into mul-
tiple BNs each being valid for a specific instantiation of
some RVs in the domain.

The authors of (Thone, Guntzer, and Kiebling 1992) point
out the same concerns which led us to propose MCM,
namely: (i) If unverified (in)dependencies are imposed be-
tween the variables in the domain then implausible results
may arise; (ii) PGMs require one to have complete prob-
abilistic knowledge of a domain which may not be avail-
able. Motivated by these, (Thone, Guntzer, and Kiebling
1992) gives a collection of rules to carry out inference in a
domain. Broadly speaking, this work is similar to ours in
spirit with the main distinction being the level of abstrac-
tion chosen to perform inference. In (Thone, Guntzer, and

Kiebling 1992) inference is performed in a very local and
rule-based fashion and conditional independence relations
are dealt with directly which complicates the task at hand;
a task which is futile when it comes to dealing with do-
mains of many variables. In our case, by introducing the
notion of context and encoding conditional independence
relations within contexts we avoid having to contemplate
the intra-contextual inference problem and leave this task
for the corresponding context. This way, we can take ad-
vantage of the possibly rich independence structure govern-
ing the context and carry out the intra-contextual inference
problem in a computationally efficient manner.

Finally, let us discuss some interesting aspects of the pro-
posed model.

The degree of belief is encoded mathematically in the form
of a probability distribution over the variables contained
within the context. Furthermore, in the process of partial
belief formation (which leads to the formation of contexts)
the reasoner is ignorant as to how various contexts proba-
bilistically interact (are related), except that, some contexts
may in fact share a number of variables in between and
hence overlap. Later on, in the process of the derivation of
the query posed to the reasoner, this ignorance manifests in
the uncertainty region represented by the min/max values
for the inter-contextual query of interest. In other words,
if the reasoner incurs ignorance as to the (in)dependency
structure governing the variables present in the domain,
then later on, in the process of derivation of the posed
query, the reasoner has to pay the price by merely arriv-
ing at a probability interval rather than a point probability
as an answer to the query of interest. Yet, the knowledge
of the underlying dependency structure is a fundamental
knowledge whose availability to the reasoner should not be
postulated as an inevitability but as an advantaged position.

The evolutionary process of MCM does not enforce a spe-
cific gradual expansion path, for the claim of MCM is
merely that any partial belief formation as to the domain
can be modeled in the framework depicted by MCM. That
is, the reasoner may arrive at different MCMs, depending
on the order in which the reasoner encounters different con-
cepts and also depending on her background knowledge as
to the nature of the potential connections between a collec-
tion of variables. Simply put, the order according to which
the reasoner comes about knowing the concepts or propo-
sitions of the domain does matter (cf. the discussion on the
order of belief formation in Sec. 3.2).

MCM enables one to carry out inference without having
to commit to any unjustified or uncertain independence as-
sumptions. In light of this, contexts symbolize the regions
of the domain over which an (in)dependence structure is
presumed and hence, the growth and merging of contexts
indicates the formation of new (in)dependence structures
over some parts of the domain which previously were un-



structured. In short, MCM is meant to be invoked in cir-
cumstances where the observations and the a priori knowl-
edge combined are not sufficient for the reasoner to form
the full JPD over all of the domain variables and yet, quite
crucially, the reasoner is reluctant to submit to any unjus-
tified assumptions to compensate for such inadequacy of
knowledge.

6 CONCLUSION

In an attempt to establish a middle ground between
Bayesian Logic and Probabilistic Logic (Andersen and
Hooker 1990; 1994), on one side, and PGMs8 on the other,
we proposed the Multi-Context Model to represent the state
of partial knowledge regarding a domain. The generative
process for the gradual construction of contradiction-free
MCMs was discussed. The task of Inference for MCM was
studied and, along the path, the notions of inference gram-
mar, nestedness, and transformation were introduced. A
short version of I∗ without the scale-invariance property
was provided in Appendix. It is worth noting that scale-
invariance property can be achieved with a minor change
to the last step of the proposed algorithm.

APPENDIX

A-I I∗non−scale: A short version of I∗ without
scale-invariance property

I∗ aims at minimally parameterizing the information con-
tained in an MCM so that the posed inter-contextual query
can be stated as an LP with the fewest number of parame-
ters. As pointed out earlier in Sec. 4.2, I∗ has to decide on
the following: (i) what RVs have to be included in the LP,
and (ii) the abstraction level required to minimally encode
the information on the RVs identified in step (i) for the LP,
in our case, the parametrization of the identified RVs.

In what follows, a simple algorithm, I∗non−scale, is
sketched which only performs (i) and ignores (ii). In other
words, I∗non−scale identifies the relevant RVs needed to de-
rive the exact lower/upper bound for the inter-contextual
query, however, it does not aim at minimally encoding them
into the LP9. I∗non−scale consists of three steps:

(1) Identify all the RVs involved in the posed query (e.g.,
in P (X|Y, z) these are the random vector X , random
vector Y and RV z).

(2a) If any two of the already identified RVs belong to two

8For instance, Bayesian Networks (Pearl 1986), Markov Net-
works (Koller and Friedman 2009), and Chain Graphs (Buntine
1995).

9To read more on this, the reader is referred to the discussion
on scale-invariance property in Sec. 4.2 and Sec. A-III of Ap-
pendix.

overlapping contexts, identify all the overlapping RVs
between these two contexts (e.g., in Fig. 5(b) and for
the query P (X|Y ) for which step (1) would identify
X and Y , random vector Z in the overlapping region
must be identified as well).

(2b) If any two of the already identified RVs belong to
two contexts connected through a chain of overlap-
ping contexts: identify all the RVs contained in all the
overlapping regions of the chain of contexts.

(3) Parameterize only the identified RVs in steps (1), (2a),
and (2b) (remove all the other RVs from the MCM—
there is no need to encode the information on any
other RVs not identified in steps (1), (2a), and (2b)).

�

It should be noted that whether the posed query involves
minimization or maximization does not affect which RVs
need to be identified by I∗non−scale. Finally, It is worth not-
ing that with a minor modification to step (3) of I∗non−scale,
the scale-invariance property could be achieved. The mod-
ification has to do with the question of how to minimally
encode the information on each RV identified in steps (1),
(2a), and (2b) of I∗non−scale.

To demonstrate the operation of I∗non−scale on a more com-
plicated MCM that involves loops, consider the following
example sketched in Fig. 8(a). The query of interest is
P(X|Y )↓.
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Figure 8: (a) Sample MCM. The RVs involved in the posed
query are depicted in blue. (b) In Step (1) X and Y are
identified; in step (2b) the RVs b, d as well as a, c, and e
are identified. According to step (3) of I∗non−scale all of
the information as to the RVs X, Y, b, d, a, c, and e has to
be stated as an LP to derive the query.

Next, we are going to sketch the proof for I∗non−scale. Let
us first state the claim formally and then provide the proof.

A-II Proof for I∗non−scale:

Lemma: Given a posed query and an MCM, if all the
information on the RVs identified in steps (1) to (2b) of
I∗non−scale is stated and then solved as an LP, the exact
solution (i.e., a min or max) can be derived for the posed



query; all the remaining information available in the MCM
is deemed irrelevant to the derivation of the query, hence
the sufficiency.

Proof: Our proof is constructive. In the proof we entertain
two ideas, namely (i) the idea of generative process and,
particularly, that of conditioning also used in Sec. 3.2, and
(ii) the notion we refer to as the locality of information.
Suppose that all the RVs discussed in steps (1) to (2b) of
I∗non−scale are identified. The key insight is that the infor-
mation on how the remaining RVs probabilistically interact
with each other is completely local in nature and, there-
fore, irrelevant to the derivation of the posed query. To
see this, one can start off with the identified RVs and then
in a gradual fashion add on10 the rest of the RVs (through
the idea of conditioning discussed in Sec. 3.2). Quite cru-
cially, this very process of adding the non-identified RVs to
the model can be done completely in a local fashion, i.e.,
without imposing any constraints on how the identified RVs
probabilistically interact. The mere fact that those RVs can
be added into the model: (i) subsequent to the identified
ones, and (ii) without inducing any sort of constraints on
the identified ones, deems them irrelevant to the derivation
of the query. �

A-III Scale-Invariance Property: Intuition

Here, we will provide a proof for the example on scale-
invariance property given in Sec. 4.2. Although the proof
is provided for a special query, the methodology used in
the proof provides an insightful way of visualizing an in-
ference problem. The idea behind the proof is very simple
and related to visualizing the connection of a RV to the
underlying sample space using Venn diagrams. Without
loss of generality, we assume that all the RVs present in
the domain are binary11. Random vector X = x1:n par-
titions the sample space Ω into 2n disjoint regions each
of which corresponds to a realization of X. If each real-
ization of the random vector x1:n corresponds to a binary
number (i.e., binary-coding the realizations), then one can
conclude Val(X) = {0, 1, · · · , 2n − 1}. Let us index the
partitions by their corresponding realization of X. An il-
lustrative example of an induced partitioning of the sam-
ple space Ω due to random vector X = x1:n is depicted
in Fig. 9(a), and a partitioning induced by RVs y and z
is sketched in Fig. 9(b). We note that the mere knowl-
edge of the distribution function of a random quantity does
not provide one with the knowledge of the underlying par-
titions. For this particular example, since the JPD over
X, y, z is not available, the knowledge of how the parti-
tions induced by y, z (Fig. 9(b)) and the ones induced by
X (Fig. 9(a)) interact, i.e., to what extent they overlap,

10This is based on the fundamental property that a JPD can be
expanded using the chain rule of probability in an arbitrary order.

11The generalization of the argument to non-binary RVs is
straightforward.

remains unspecified. Therefore, since P(X|y) = P(X,y)
P(y) ,

to minimize (maximize) P(X|y), the quantity P(X, y) has
to be minimized (maximized). Pictorially, the minimiza-
tion (maximization) of P(X, y) corresponds to the mini-
mization (maximization) of the overlap between the parti-
tions corresponding to the events {X = X} and {y = y};
hence, very simply, P(X, y)↓ = [P(X) + P(y) − 1]+ and
P(X, y)↑ = min{P(X),P(y)}. The key point, which
yields the scale-invariance property, is that to derive the
minimum (maximum) overlap between the partitions cor-
responding to the events {X = X} and {y = y} the in-
formation as to how the other partitions—corresponding
to the other realizations of the present RVs in the model—
interact with one another neither needs to be known nor to
be encoded into the LP; a fact which results in not requir-
ing to encode the information as to the other realizations.
Hence the only pieces of information that are required to
be encoded and then solved as an LP are P(X) and P(y).
The same line of reasoning could be adopted for P(xi|y).
The idea of scale-invariance, therefore, aims to avoid the
encoding of the information as to the partitions induced on
Ω which are yet deemed to be irrelevant to the derivation
of the posed query; hence one needs to encode solely the
relevant ones into the LP.
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Figure 9: Sample Space: (a) Partitioning induced on Ω due
to X = x1:n. The blue region corresponds to the partition
associated to the event {xi = 0} and the red one to that of
{X = i} where i ∈ Val(X). (b) Partitioning induced on
Ω due to RVs y and z. The blue region corresponds to the
partition associated to the event {y = 0}.
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