
Learning Arithmetic Circuits

Daniel Lowd and Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.

{lowd,pedrod}@cs.washington.edu

Abstract

Graphical models are usually learned without re-
gard to the cost of doing inference with them. As
a result, even if a good model is learned, it may
perform poorly at prediction, because it requires
approximate inference. We propose an alterna-
tive: learning models with a score function that
directly penalizes the cost of inference. Specifi-
cally, we learn arithmetic circuits with a penalty
on the number of edges in the circuit (in which
the cost of inference is linear). Our algorithm is
equivalent to learning a Bayesian network with
context-specific independence by greedily split-
ting conditional distributions, at each step scor-
ing the candidates by compiling the resulting
network into an arithmetic circuit, and using its
size as the penalty. We show how this can be
done efficiently, without compiling a circuit from
scratch for each candidate. Experiments on sev-
eral real-world domains show that our algorithm
is able to learn tractable models with very large
treewidth, and yields more accurate predictions
than a standard context-specific Bayesian net-
work learner, in far less time.

1 INTRODUCTION

Bayesian networks are a powerful language for probabilis-
tic modeling, capable of compactly representing very com-
plex dependences. Unfortunately, the compactness of the
representation does not necessarily translate into efficient
inference. Networks with relatively few edges per node can
still require exponential inference time. As a consequence,
approximate inference methods must often be used, but
these can yield poor and unreliable results. If the network
represents manually encoded expert knowledge, this is per-
haps inevitable. But when the network is learned from data,
the cost of inference can potentially be greatly reduced,
without compromising accuracy, by suitably directing the

learning process.

Bayesian networks can be learned using local search to
maximize a likelihood or Bayesian score, with operators
like edge addition, deletion and reversal (Heckerman et al.,
1995). Typically, the number of parameters or edges in the
network is penalized to avoid overfitting, but this is only
very indirectly related to the cost of inference. Two edge
additions that produce the same improvement in likelihood
can result in vastly difference inference costs. In this case,
it seems reasonable to prefer the edge yielding the lowest
inference cost. In this paper, we propose a learning method
that accomplishes this, by directly penalizing the cost of
inference in the score function.

Our method takes advantage of recent advances in ex-
act inference by compilation to arithmetic circuits (Dar-
wiche, 2003). An arithmetic circuit is a representation of a
Bayesian network capable of answering arbitrary marginal
and conditional queries, with the property that the cost of
inference is linear in the size of the circuit. When context-
specific independences are present, arithmetic circuits can
be much more compact than the corresponding junction
trees. We take advantage of this by learning arithmetic cir-
cuits that are equivalent to Bayesian networks with context-
specific independence, using likelihood plus a penalty on
the circuit size as the score function. Arithmetic circuits
can also take advantage of other structural properties such
as deterministic dependencies and latent variables; utiliz-
ing these in addition to context-specific independence is an
important item of future work.

Previous work on learning graphical models with the ex-
plicit goal of limiting the complexity of inference falls
into two main classes: mixture models with polynomial-
time inference (e.g.: Meila and Jordan (2000); Lowd and
Domingos (2005)) and graphical models with thin junction
trees (e.g.: Srebro (2000); Chechetka and Guestrin (2008)).
The former are limited in the range of distributions that they
can compactly represent. The latter are computationally vi-
able (at both learning and inference time) only for very low
treewidths. Our approach can flexibly and compactly learn
a wide variety of models, including models with very large



treewidth, while guaranteeing efficient inference, by taking
advantage of the properties of arithmetic circuits.

The prior work most closely related to ours is Jaeger et al.’s
(2006). Jaeger et al. define probabilistic decision graphs, a
new language related to binary decision diagrams. In con-
trast, we use standard arithmetic circuits, and our models
are equivalent to standard Bayesian networks. Jaeger et
al. speculate that learning arithmetic circuits directly from
data would be very difficult. In this paper we propose one
approach to doing this.

The remainder of our paper is organized as follows. In
Sections 2 and 3, we provide background on Bayesian net-
works and arithmetic circuits, respectively. We describe in
detail our algorithm for learning arithmetic circuits in Sec-
tion 4. Section 5 contains our empirical evaluation on three
real-world datasets, and we conclude in Section 6.

2 BAYESIAN NETWORKS

A Bayesian network encodes the joint probability distribu-
tion of a set of n variables, {X1, . . . , Xn}, as a directed
acyclic graph and a set of conditional probability distribu-
tions (CPDs) (Pearl, 1988). Each node corresponds to a
variable, and the CPD associated with it gives the probabil-
ity of each state of the variable given every possible combi-
nation of states of its parents. The set of parents of Xi, de-
noted Πi, is the set of nodes with an arc to Xi in the graph.
The structure of the network encodes the assertion that each
node is conditionally independent of its non-descendants
given its parents. The joint distribution of the variables is
thus given by P (X1, . . . , Xn) =

∏n
i=1 P (Xi|Πi).

For discrete domains, the simplest form of CPD is a condi-
tional probability table. When the structure of the network
is known, learning reduces to estimating CPD parameters.
When the structure is unknown, it can be learned by start-
ing with an empty or prior network and greedily adding,
deleting and reversing arcs to optimize some score func-
tion (Heckerman et al., 1995). The score function is usu-
ally log-likelihood plus a complexity penalty or a Bayesian
score (product of prior and marginal likelihood).

The goal of inference in Bayesian networks is to answer
arbitrary marginal and conditional queries (i.e., to compute
the marginal distribution of a set of query variables, pos-
sibly conditioned on the values of a set of evidence vari-
ables). One common method is to construct a junction tree
from the Bayesian network and pass messages from the
leaves of this tree to the root and back. A junction tree
is constructed by connecting parents of the same variable,
removing arrows, and triangulating the resulting undirected
graph (i.e., ensuring that all cycles of length four or more
have a chord). Each node in the junction tree corresponds
to a clique (maximal completely connected subset of vari-
ables) in the triangulated graph. Ordering cliques by the

highest-ranked variable they contain, each clique is con-
nected to a predecessor sharing the highest number of vari-
ables with it. The intersection of the variables in two ad-
jacent cliques is called the separator of the two cliques. A
junction tree satisfies two important properties: each vari-
able in the Bayesian network appears in some clique with
all of its parents; and if a variable appears in two cliques,
it appears in all the cliques on the path between them (the
running intersection property). The treewidth of a junction
tree is one less than the maximum clique size. The com-
plexity of inference is exponential in the treewidth. Find-
ing the minimum-treewidth junction tree is NP-hard (Arn-
borg et al., 1987). Inference in Bayesian networks is #P-
complete (Roth, 1996).

Because exact inference is intractable, approximate meth-
ods are often used, of which the most popular is Gibbs sam-
pling, a form of Markov chain Monte Carlo (Gilks et al.,
1996). A Gibbs sampler proceeds by sampling each non-
evidence variable in turn conditioned on its Markov blanket
(parents, children and parents of children). The distribution
of the query variables is then approximated by computing,
for each possible state of the variables, the fraction of sam-
ples in which it occurs. Gibbs sampling can be very slow
to converge, and many MCMC variations have been devel-
oped, but choosing and tuning one for a given application
remains a difficult, labor-intensive task. Diagnosing con-
vergence is also difficult.

2.1 LOCAL STRUCTURE

Table CPDs require exponential space in the number of
parents of the variable. A more scalable approach is to
use decision trees as CPDs, taking advantage of context-
specific independencies (i.e., a child variable is indepen-
dent of some of its parents given some values of the oth-
ers) (Boutilier et al., 1996; Friedman & Goldszmidt, 1996;
Chickering et al., 1997). The algorithm we present in this
paper learns arithmetic circuits that are equivalent to this
type of Bayesian network.

In a decision tree CPD for variable Xi, each interior node
is labeled with one of the parent variables, and each of its
outgoing edges is labeled with a value of that variable.1
Each leaf node is a multinomial representing the marginal
distribution of Xi conditioned on the parent variable values
specified by its ancestor nodes and edges in the tree.

The following two definitions will be useful in describing
our algorithm.

1In general, each outgoing edge can be labeled with any subset
of the variable’s values, as long as the sets of labels assigned to
all child edges include every variable value and are disjoint with
each other. For simplicity, we limit our discussion to the case
in which each edge has a single label, which Chickering et al.
(1997) refer to as a complete split. For Boolean variables, as in
our experiments, all types of splits are equivalent.



Definition 1. For leaf node D and k-valued variable Xj ,
the split S(D,Xj) replaces D with k new leaves, each con-
ditioned on a particular value of Xj in addition to the par-
ent values on the path to D.
Definition 2. Let D be a leaf from the tree CPD for Xi.
Split S(D,Xj) is valid iff Xj is not a descendant of Xi in
the Bayesian network and no decision tree ancestor of D is
labeled with Xj .

The first definition describes a structural update to the
Bayesian network; the second one gives the conditions nec-
essary for that update to be consistent and meaningful.

A Bayesian network can now be learned by greedily apply-
ing the best valid splits according to some criterion, such
as the likelihood of the data penalized by the number of
parameters. This is one version of Chickering et al.’s algo-
rithm (1997). A number of other methods have also been
proposed, such as merging leaves to obtain decision graphs
(Chickering et al., 1997) or searching through Bayesian
network structures and inducing decision trees conditioned
on the global structure (Friedman & Goldszmidt, 1996).

3 ARITHMETIC CIRCUITS

The probability distribution represented by a Bayesian net-
work can be equivalently represented by a multilinear func-
tion known as the network polynomial (Darwiche, 2003):

P (X1 = x1, . . . , Xn = xn)

=
∑

X

n∏

i=1

I(Xi = xi)P (Xi = xi|Πi = πi)

where the sum ranges over all possible instantiations of the
variables, I() is the indicator function (1 if the argument
is true, 0 otherwise), and the P (Xi|Πi) are the parameters
of the Bayesian network. The probability of any partial in-
stantiation of the variables can now be computed simply by
setting to 1 all indicators consistent with the instantiation,
and to 0 all others. This allows arbitrary marginal and con-
ditional queries to be answered in time linear in the size of
the polynomial.

Unfortunately, the size of the network polynomial is ex-
ponential in the number of variables, but it can be more
compactly represented using an arithmetic circuit. An
arithmetic circuit is a rooted, directed acyclic graph whose
leaves are numeric constants or variables, and whose inte-
rior nodes are addition and multiplication operations. The
value of the function for an input tuple is computed by set-
ting the variable leaves to the corresponding values and
computing the value of each node from the values of its
children, starting at the leaves. In the case of the net-
work polynomial, the leaves are the indicators and network
parameters. The arithmetic circuit avoids the redundancy
present in the network polynomial, and can be exponen-
tially more compact.

Every junction tree has a corresponding arithmetic circuit,
with an addition node for every instantiation of a separa-
tor, a multiplication node for every instantiation of a clique,
and an addition node as the root. Thus one way to compile a
Bayesian network into an arithmetic circuit is via a junction
tree. However, when the network contains context-specific
independences, a much more compact circuit can be ob-
tained. Darwiche (2003) describes one way to do this, by
encoding the network into a special logical form, factoring
the logical form, and extracting the corresponding arith-
metic circuit.

4 LEARNING ARITHMETIC CIRCUITS

4.1 SCORING AND SEARCHING

Instead of learning a Bayesian network and then compil-
ing it into a circuit, we induce an arithmetic circuit directly
from data using a score function that penalizes circuits with
more edges. The score of an arithmetic circuit C on an i.i.d.
training sample T is

score(C, T ) = log P (T |C)− kene(C)− kpnp(C)

where the first term is the log-likelihood of the training
data, P (T |C) =

∏
X∈T P (X|C), ke ≥ 0 is the per-edge

penalty, ne(C) is the number of edges in the circuit, kp ≥ 0
is the per-parameter penalty, and np(C) is the number of
parameters in the circuit. The last two allow us to easily
combine our inference-cost penalty with a more traditional
one based on model complexity.

We use this formulation for simplicity; our algorithm
would work equally well with a Bayesian Dirichlet score
(Heckerman et al., 1995), with a prior of the form
exp(−kene(C) − kpnp(C)), since the computation of the
marginal likelihood would be the same as in standard
Bayesian network learning. Aside from its practical util-
ity, a prior penalizing inference cost is meaningful if we
believe the inference task being modeled can be carried out
quickly, for example because humans do it. Either way,
the main difficulty is that the penalty (or prior) is no longer
node-decomposable, and repeatedly computing it might be
very expensive. Reducing this cost is one of the key tech-
nical issues addressed in this paper.

Arithmetic circuits can be learned in the same way as
Bayesian networks with local structure, by starting with an
empty network and greedily applying the best splits, except
that candidate structures are scored by compiling them into
arithmetic circuits. However, compiling an arithmetic cir-
cuit can be computationally costly, and doing so for every
candidate structure would be prohibitive. A better approach
is to incrementally compile the circuit as splits are applied.
Table 1 shows pseudo-code for this algorithm.

The algorithm begins by constructing the initial arithmetic



Table 1: Greedy algorithm for learning arithmetic circuits.

function LearnAC(T )
initialize circuit C as product of marginals
loop

Cbest ← C
for each valid split S(D,V ) do

C ′ ← SplitAC(C,S(D,V ))
if score(C ′, T ) > score(Cbest, T ) then

Cbest ← C ′

end if
end for
if score(Cbest, T ) > score(C, T ) then

C ← Cbest

else
return C

end if
end loop

circuit C as a product of marginal distributions:

C =
∏

i

∑

j

I(Xi = xij)P (Xi = xij)

This initial circuit is equivalent to a Bayesian network with
no edges. In each iteration, the algorithm greedily chooses
and applies the best valid split, where split validity is de-
fined according to the equivalent Bayesian network. Each
split is scored by applying it to the current circuit and
counting the edges and parameters.2 Learning ends when
the algorithm reaches a local optimum, where no valid split
improves the score.

4.2 SPLITTING DISTRIBUTIONS

The key subroutine is SplitAC, which updates an arithmetic
circuit without recompiling it from scratch. Given an arith-
metic circuit C that is equivalent to a Bayesian network B
and a valid split S(D,V ), SplitAC returns a modified cir-
cuit C ′ that is equivalent to B after applying split S(D,V ).
We will use the following notation to refer to distributions,
parameter nodes, and indicator nodes:

dj: Parameter node corresponding to the jth probability in
the multinomial distribution D.

Di: Leaf distribution resulting from split S(D,V ) that re-
places D when V = i.

dij: Parameter node corresponding to the jth probability
in Di.

vi: Indicator node I(V = i).
2All model parameters are MAP estimates, using a Dirichlet

prior with all hyperparameters αijk = 1, where k ranges over the
leaves of the decision tree for variable Xi.

Table 2: Subroutine that updates an arithmetic circuit C by
splitting distribution D on variable V .

function SplitAC(C,S(D,V ))
let M be the set of mutual ancestors of D and V
let N be the set of nodes between M and V or D
for i ∈ Domain(V ) do

create new parameter nodes dij

Ni ← copy of all nodes in N
for each n ∈ N do

let ni be the copy of n in Ni

for each child c of n do
if c = vi or c is inconsistent with vi then

skip
else if c is some parameter node dj then

insert edge from ni to dij

else if c ∈ N then
let ci be the copy of c in Ni

insert edge from ni to ci

else
insert edge from ni to c

end if
end for

end for
end for
for m ∈ M do

let nV be the child of m that is a V -ancestor
let nD be the child of m that is a D-ancestor
for i ∈ Domain(V ) do

let n′V be the copy of nV in Ni

let n′D be the copy of nD in Ni

create n×i := vi × n′V × n′D
end for
create n+ :=

∑
i n×i

replace m’s children nV and nD with n+

end for
delete unreachable nodes, including all dj

Table 2 contains pseudo-code for the splitting algorithm.
It might at first appear that to split D on V it suffices
to replace references to each dj with a sum of products,∑

i dijvi. However, the resulting circuit would then be
correct only when V is fixed to a particular value, and
summing out V would produce inconsistent results. Intu-
itively, the circuit must maintain the running intersection
property of the corresponding junction tree, so that no vari-
able can take on different values in different subcircuits.
SplitAC maintains a consistent probability distribution by
preserving three properties, analogous to those defined by
Darwiche (2002) for logical circuits.

Definition 3. For an arithmetic circuit, C:

C is smooth if, for each addition node, all children are an-
cestors of indicator nodes for the same variables and pa-



rameter nodes from distributions of the same variables.

C is decomposable if, for each multiplication node, no two
children are ancestors of indicator nodes for the same vari-
able or parameter nodes from distributions of the same
variable.

C is deterministic if, for each addition node, there is a
variable V such that each child is the ancestor of some
non-empty set of indicator nodes for V , and their sets are
disjoint.

The network polynomial for a Bayesian network contains
one term for each configuration of its variables; each term
includes exactly one indicator variable and one conditional
probability parameter per variable. Intuitively, if C is not
smooth, then some terms in the polynomial it computes
may not have an indicator variable and a conditional prob-
ability parameter for every variable. If C is not decompos-
able, then some terms in the polynomial may have more
than one indicator variable or conditional probability pa-
rameter for some variable. If C is not deterministic, then
there may be multiple terms for the same set of indicator
variables.

Definition 4. We define three special types of node in the
circuit as follows:

A D-ancestor is any leaf dj corresponding to a parameter
of D, or any parent of a D-ancestor.

A V -ancestor is any leaf vi corresponding to an indicator
of V , or any parent of a V -ancestor.

A mutual ancestor (MA) of D and V is a node that is both
a D-ancestor and a V -ancestor, and has no child that is
both a D-ancestor and a V -ancestor.

Note that every MA must be a multiplication node, or the
circuit would not be smooth. Furthermore, from decompos-
ability, each MA must have exactly one D-ancestor child,
nD, and one V -ancestor child, nV . Naively replacing dj

with
∑

i dijvi would cause both nV and nD to be ances-
tors of vi, violating decomposability.

To avoid this, SplitAC duplicates the subcircuits between
the MAs and the parameter nodes dj , and between the MAs
and the indicator nodes vi, “conditioning” each copy on a
different value of V . Each nV and nD are replaced by a
new addition node, n+, that sums over products of vi and
copies of nV and nD conditioned on vi. This duplication
of subcircuits is the reason different splits can have widely
different edge costs. We now describe the details of which
nodes are duplicated and how they are connected.

Let N be the set of all D-ancestors and V -ancestors that
are also descendants of a mutual ancestor. These are all the
nodes “in between” D and V that must agree on the value
of V . For each value i in the domain of V , SplitAC creates
a copy Ni of the nodes in N .

Let ni ∈ Ni be the copy of node n ∈ N . SplitAC inserts
edges from ni to its children as follows. If n has a child
c ∈ N , then it inserts an edge from ni to the corresponding
copy ci. If n has a child c &∈ N , then it inserts an edge
from ni to c. This minimizes node duplication by linking
to existing nodes or copies whenever possible.

A few additional changes are required for Ni to properly
depend on vi. If ni ∈ Ni has some parameter node dj

as a child, SplitAC replaces it with dij . This is how the
new leaf distributions, conditioned on V , are integrated into
the circuit. Secondly, if ni has vi as a child, it should be
omitted: every node in Ni will depend on vi, so this is
redundant. Finally, if ni has a child that is an ancestor of
some vj but not of vi, then that child is inconsistent with
conditioning on vi and must be removed.

Finally, SplitAC connects each mutual ancestor, m, to a
sum over these copies. SplitAC removes the D-ancestor,
nD, and the V -ancestor, nV , as children of m and replaces
them with an addition node with one child for each value
of V . The ith child of the addition node is a product of vi,
the copy of nD from Ni, and the copy of nV from Ni. (If
m was an ancestor of only certain values of V , the addition
node sums only over those values.)

Intuitively, the resulting circuit represents the correct prob-
ability distribution because D has been replaced with the
split distributions Di, each conditioned on vi, and because
the circuit satisfies the running intersection property, since
all nodes between V and D now depend on V .

Theorem 1. After each iteration of LearnAC, C computes
the network polynomial of a Bayesian network constructed
by starting with an empty network and applying the same
splits that were applied to C up to that iteration.

A proof sketch is in the appendix; a complete proof can be
found in (Lowd & Domingos, 2008).

4.3 OPTIMIZATIONS

We now discuss optimizations necessary to make this algo-
rithm practical for real-world datasets with many variables.

Consider once again the high-level overview in Table 1.
Scoring every possible circuit in every iteration would be
very expensive. Choosing the split that leads to the best
scoring circuit is equivalent to choosing the split that leads
to the greatest increase in score, so we can store changes
in score instead. The improvement in log-likelihood is not
affected by other splits, and so this only needs to be com-
puted once for each potential split. Unfortunately, the num-
ber of edges that a split adds to the circuit can increase or
decrease due to other splits. For convenience, we will refer
to the number of edges added by the application of a split
as its edge cost.

As a simple example, consider a chain-structured junction



tree of 5 variables: AB-BC-CD-DE-EF. If we add an arc
from A to F, then A is added to every other cluster: AB-
ABC-ACD-ADE-AEF. However, this also reduces the cost
of adding an arc from A to E, since the two variables now
appear together in a cluster. As a second example, suppose
that we instead added an arc from B to F: AB-BC-BCD-
BDE-BEF. Now the cost of adding an arc from A to F is
greatly increased, since adding a variable to a larger cluster
costs more edges than adding a variable to a smaller cluster.

Evaluating the edge cost of every potential split in every
iteration is expensive. The number of potential splits is lin-
ear in the number of splits that have been performed so far,
leading to a time complexity that is at least quadratic in the
total number of splits. Further, computing the edge cost for
a single candidate may be linear in the size of the current
circuit. With a non-zero edge cost, circuit size tends to be
linear in the number of iterations, leading to an O(n3) al-
gorithm. While this is still polynomial, it makes learning
models with thousands of splits intractable in practice.

Fortunately, most splits only change a fraction of edge
costs. Determining exactly which costs need to be updated
is difficult, but we can rule out many splits whose costs
do not need to be updated using the following conservative
rule. Applying one split may change the edge cost of an-
other split S(D,V ) if the applied split changes a node that
is an ancestor of D and not V , or of V and not D. This
covers all nodes that lie between D or V and their mutual
ancestors, and thus all nodes that are copied by the split-
ting procedure. An applied split changes a node when it
copies that node or reduces the number of children it has.
In practice, this single heuristic lets us avoid recomputing
over 95% of the edge costs.

As an alternative to this optimization, we have found a
heuristic that leads to even larger speed-ups, but at the cost
of no longer being perfectly greedy. We noticed that when
edge costs changed, they rarely decreased. If a split’s last
computed edge cost was always a valid lower bound on the
true value, then we could ignore any split whose total es-
timated score was worse than the best split found so far in
this iteration. This assumption is often not valid in practice,
but it lets us learn models that are nearly as effective in an
order of magnitude less time.

Two other optimizations combine well with either of the
above to offer further gains. First, we can reduce the num-
ber of computations by placing potential splits in order of
decreasing likelihood gain, so that we consider the splits
with the highest possible scores first. Since the likelihood
gain is an upper bound on the score gain, once the score of
the best split found so far is greater than the next likelihood
gain, this split is guaranteed to be the highest-scoring one
overall.

Second, we can exit the edge calculation procedure once
we know that the edge cost is sufficient to make the overall

Table 3: Summary of experimental datasets.

Domain Vars. Train Exs. Test Exs. Density
KDD Cup 65 199,999 34,955 0.0079
MSWeb 294 32,711 5,000 0.0102
EachMovie 500 6,117 591 0.0581

score negative. It is also possible to exit once we know that
the score of the current split will be worse than the best split
so far, but this interferes with the other optimizations. If we
only compute an upper bound on the score, we will often
have to recompute the edge cost when the next iteration
requires a slightly lower upper bound.

5 EXPERIMENTS

5.1 DATASETS

We evaluated our methods on three widely used real-
world datasets. The KDD Cup 2000 clickstream predic-
tion dataset (Kohavi et al., 2000) consists of web session
data taken from an online retailer. Using the subset of
Hulten and Domingos (2002), each example consists of
65 Boolean variables, corresponding to whether or not a
particular session visited a web page matching a certain
category. Anonymous MSWeb is visit data for 294 areas
(Vroots) of the Microsoft web site, collected during one
week in February 1998. It can be found in the UCI ma-
chine learning repository (Blake & Merz, 2000). Each-
Movie3 is a collaborative filtering dataset in which users
rate movies they have seen. We took a 10% sample of the
original dataset, focused on the 500 most-rated movies, and
reduced each variable to “rated” or “not rated”. For KDD
Cup and MSWeb, we used the training and test partitions
provided with the datasets. For EachMovie, we randomly
selected 10% of the data for the test set and used the re-
mainder for training.

Basic statistics for each dataset are shown in Table 3. Den-
sity refers to the fraction of non-zero entries across all ex-
amples and all variables.

5.2 LEARNING

For each dataset, we randomly split the training data into
tuning and validation sets, corresponding to 90% and 10%
of the training data, respectively. All parameters were
tuned by training models on the tuning data and selecting
the parameter sets that led to the highest log likelihood of
the validation set. Finally, models were retrained using the
full training set. All experiments were run on CPUs with 4
GB of RAM running at 2.8 GHz.

3Provided by Compaq at http://research.compaq.com/SRC/-
eachmovie/; no longer available for download, as of October
2004.



We used two versions of the algorithm for learning arith-
metic circuits from Section 4: AC-Greedy, which guaran-
tees that we pick the best split in each iteration, and AC-
Quick, which uses a heuristic to avoid recomputing edge
costs but may sometimes choose worse splits. We varied
the per-edge cost ke from 1.0 to 0.01. Not surprisingly,
our models were most accurate on the validation set with
low per-edge costs (0.01 or 0.02). We also tuned the per-
parameter cost kp. For KDD Cup, the best cost was 0.0; for
MSWeb and EachMovie, the best costs were 1.0 for greedy
ACs and 0.5 for quick ACs.

We used the WinMine Toolkit (Chickering, 2002) as a
baseline. WinMine implements the algorithm for learning
Bayesian networks with local structure described in Sec-
tion 2 (Chickering et al., 1997), and has a number of other
state-of-the-art features. We tuned WinMine’s multiplica-
tive per-parameter penalty κ; the best values were: 1 (no
penalty) for KDD Cup, 0.1 for MSWeb, and 0.01 for Each-
Movie. We looked into using thin junction trees as a second
baseline, but they do not scale to datasets of these dimen-
sions.

A summary of the learned models appears in Table 4. For
each dataset, we report the log-likelihood per example on
the test data, the number of edges in the arithmetic circuit,
the number of leaves across all decision trees, the average
and maximum number of parents across all variables, the
treewidth (estimated using a min-fill heuristic), the number
of edges generated by compiling the Bayesian network us-
ing c2d4, and the training time. On each model for which
c2d ran out of memory, we obtained a lower bound by com-
piling a model with fewer splits, obtained by halting the
learning process early. We varied the number of splits un-
til we found the most complex sub-model that could still
be compiled, within 10 splits. For WinMine, the chosen
sub-models had less than one quarter of the original splits.

The test-set log-likelihoods of the AC learners and Win-
Mine are very similar, with WinMine having a slight edge.
This is not surprising, given that WinMine is free to choose
expensive splits. Perhaps more remarkable is that this free-
dom translates to very little improvement in likelihood.
The difference in accuracy between quick and greedy ACs
is negligible except in the case of EachMovie, where the
greedy AC is actually less accurate because it did not con-
verge in the allowed time (72h).

Not surprisingly, WinMine is much faster than the AC
learners. It is worth noting that the cost of learning is
only incurred once, while the cost of inference is incurred
many times. Also, the AC learner directly outputs an arith-
metic circuit, while WinMine’s Bayesian network would
still have to be compiled into one, which can be very time-

4Available at http://reasoning.cs.ucla.edu/c2d/. We also tried
using the ACE package, but it does not support decision tree CPDs
and, for our models, tabular CPDs would be prohibitively large.

Table 4: Summary of Learned Models

KDD Cup AC-Greedy AC-Quick WinMine
Log-likelih. −2.16 −2.16 −2.16
Edges 382K 365K
Leaves 4574 4463 2267
Avg. parents 13.2 13.0 16.3
Max. parents 37 36 35
Treewidth 38 38 53
c2d edges >18.2M 3664k >39.5M
Time 50h 3h 3m

MSWeb AC-Greedy AC-Quick WinMine
Log-likelih. −9.85 −9.85 −9.69
Edges 204K 256K
Leaves 1353 1870 1710
Avg. parents 2.5 3.1 5.2
Max. parents 114 127 94
Treewidth 114 127 118
c2d edges >23.5M >44.6M >63.5M
Time 8h 3h 2m

EachMovie AC-Greedy AC-Quick WinMine
Log-likelih. −55.7 −54.9 −53.7
Edges 155K 372K
Leaves 4070 6521 4830
Avg. parents 5.0 6.5 8.0
Max. parents 13 17 27
Treewidth 35 54 281
c2d edges 207k 855k >27.3M
Time >72h5 22h 3m

consuming. Finally, the quick heuristic offers up to an
order-of-magnitude speedup with similar accuracy; addi-
tional heuristics might offer additional improvements.

5.3 INFERENCE

For each dataset, we used the test data to generate queries
with varied numbers of randomly selected query and evi-
dence variables. Each query asked the probability of the
configuration of the query variables in the test example
conditioned on the configuration of the evidence variables
in the same test example.

We estimate inference accuracy as the mean log probabil-
ity of the test examples’s configuration across all test ex-
amples. This is an approximation (up to an additive con-
stant) of the Kullback-Leibler divergence between the in-
ferred distribution and the true one, estimated using the
test samples. For KDD Cup and MSWeb, we generated
queries from 1000 test examples; for EachMovie, we gen-

5AC-Greedy did not finish running in the maximum allowed
time of 72h. As a result, it has fewer edges and lower log-
likelihood than AC-Quick.



Table 5: Average inference time per query.

Algorithm KDD Cup MSWeb EachMovie
AC-Greedy 194ms 91ms 62ms
AC-Quick 198ms 115ms 162ms
Gibbs-Fast 1.46s 1.89s 7.22s
Gibbs-Medium 11.3s 15.6s 42.5s
Gibbs-Slow 106s 154s 452s
Gibbs-VerySlow 1124s 1556s 3912s

erated queries from all 593 test examples.

For the arithmetic circuits, we used exact inference. For
the Bayesian networks learned using WinMine, we used
Gibbs sampling. We initialized the sampler to a random
state, ran it for a burn-in period, and then collected samples
to estimate the probability of the queried marginal or con-
ditional event. All estimates were smoothed by uniformly
distributing a count of 1 across all states of the query vari-
ables. Since convergence is difficult to diagnose and may
take prohibitively long, we ran Gibbs sampling in four sce-
narios: fast (one chain, 100 burn-in iterations, 1000 sam-
pling iterations); medium (ten chains, 100 burn-in itera-
tions, 1000 sampling iterations); slow (ten chains, 1000
burn-in iterations, 10,000 sampling iterations); and very
slow (ten chains, 10,000 burn-in iterations, 100,000 sam-
pling iterations).

Figure 1 shows the relative accuracy of the different meth-
ods on each dataset. Per-variable query log-likelihood is on
the y axis. In the graphs on the left, each query included
30% of the variables in the domain, conditioned on 0% to
50% of the domain variables as evidence. In the graphs on
the right, the number of query variables varies from 10%
to 50%, conditioned on 30% of the variables in the domain
as evidence. Inference times (averaged over all queries)
are listed in Table 5. Note that AC inference times are in
milliseconds, while Gibbs inference times are in seconds.

The ACs were roughly one order of magnitude faster than
the fastest runs of Gibbs sampling, and four orders of mag-
nitude faster than the slowest. Except when the number
of query variables is very small, the ACs also easily domi-
nate even the slowest runs of Gibbs sampling on accuracy.
Because of the approximate inference, the slightly higher
test-set log-likelihood of WinMine’s models does not trans-
late into higher accuracy in answering queries. Presumably,
given enough time Gibbs sampling will eventually catch up
with the ACs in accuracy, but by then it will be many or-
ders of magnitude slower. Further, Gibbs sampling (like
other approximate inference methods) requires tuning for
best results, and we can never be sure that it has converged.
In contrast, the AC inference is reliable, the time it takes is
predetermined, and the time is short enough for online or
interactive use.

6 CONCLUSION

In the past, work on learning and inference in graphical
models has been largely separate. This has had the some-
what paradoxical result that much effort is often expended
to learn accurate models, only to result in less accurate pre-
dictions when approximate inference becomes necessary.
Our work seeks to ameliorate this by more closely integrat-
ing learning and inference. In particular, we presented an
algorithm for learning arithmetic circuits by maximizing
likelihood with a penalty on circuit size. This ensures ef-
ficient inference while still providing great modeling flexi-
bility. In experiments on real-world domains, our algorithm
outperformed standard Bayesian network learning on both
accuracy of query answers and speed of inference.

Directions for future work include: investigating other al-
gorithms for learning arithmetic circuits; extending our ap-
proach to handle learning with missing data and hidden
variables; applying it to Markov networks, continuous do-
mains, and relational representations; etc.

Acknowledgements

The authors wish to thank Mark Chavira, Adnan Dar-
wiche, and Knot Pipatsrisawat for help applying c2d
to our Bayesian networks. This research was partly
funded by a Microsoft Research fellowship awarded to
the first author, DARPA contracts NBCH-D030010/02-
000225, FA8750-07-D-0185, and HR0011-07-C-0060,
DARPA grant FA8750-05-2-0283, NSF grant IIS-0534881,
and ONR grant N-00014-05-1-0313. The views and con-
clusions contained in this document are those of the au-
thors and should not be interpreted as necessarily repre-
senting the official policies, either expressed or implied, of
DARPA, NSF, ONR, or the United States Government.

References
Arnborg, S., Corneil, D. W., & Proskurowski, A. (1987).

Complexity of finding embeddings in a k-tree. SIAM J.
Algebraic & Discrete Methods, 8, 277–284.

Blake, C., & Merz, C. J. (2000). UCI repository of machine
learning databases. Dept. ICS, UC Irvine, CA. http://-
www.ics.uci.edu/∼mlearn/MLRepository.html.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D.
(1996). Context-specific independence in Bayesian net-
works. Proc. UAI-96 (pp. 115–123).

Chechetka, A., & Guestrin, C. (2008). Efficient principled
learning of thin junction trees. In NIPS 20.

Chickering, D., Heckerman, D., & Meek, C. (1997). A
Bayesian approach to learning Bayesian networks with
local structure. Proc. UAI-97 (pp. 80–89).

Chickering, D. M. (2002). The WinMine toolkit (Tech.
Rept. MSR-TR-2002-103). Microsoft, Redmond, WA.

Darwiche, A. (2002). A logical approach to factoring belief
networks. Proc. KR-02 (pp. 409–420).



-0.050

-0.045

-0.040

-0.035

-0.030

0% 10% 20% 30% 40% 50%

L
o
g
 p

ro
b
ab

il
it

y

Evidence variables

KDD Cup

-0.07

-0.06

-0.05

-0.04

-0.03

10% 20% 30% 40% 50%

L
o
g
 p

ro
b
ab

il
it

y

Query variables

KDD Cup

-0.11

-0.09

-0.07

-0.05

-0.03

0% 10% 20% 30% 40% 50%

L
o
g

 p
ro

b
ab

il
it

y

Evidence variables

MSWeb

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

10% 20% 30% 40% 50%

L
o
g

 p
ro

b
ab

il
it

y

Query variables

MSWeb

-0.5

-0.4

-0.3

-0.2

-0.1

0% 10% 20% 30% 40% 50%

L
o
g

 p
ro

b
ab

il
it

y

Evidence variables

EachMovie

-0.5

-0.4

-0.3

-0.2

-0.1

10% 20% 30% 40% 50%

L
o
g

 p
ro

b
ab

il
it

y

Query variables

EachMovie

-0.11

-0.09

-0.07

-0.05

-0.03

0% 10% 20% 30% 40% 50%

L
o
g

 p
ro

b
ab

il
it

y

Evidence variables

MSWeb

AC-G AC-Q Gibbs-F Gibbs-M Gibbs-S Gibbs-V

Figure 1: Conditional log probability per query variable, per query. In the legend, AC-G refers to AC-Greedy and AC-
Q refers to AC-Quick. Gibbs-F, Gibbs-M, Gibbs-S and Gibbs-V refer to the fast, medium, slow, and very slow Gibbs
sampling scenarios, respectively.



Darwiche, A. (2003). A differential approach to inference
in Bayesian networks. J. ACM, 50, 280–305.

Friedman, N., & Goldszmidt, M. (1996). Learning
Bayesian networks with local structure. Proc. UAI-96
(pp. 252–262).

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (Eds.).
(1996). Markov chain Monte Carlo in practice. Chap-
man and Hall.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995).
Learning Bayesian networks. Mach. Learn., 20, 197–
243.

Hulten, G., & Domingos, P. (2002). Mining complex
models from arbitrarily large databases in constant time.
Proc. KDD-02 (pp. 525–531).

Jaeger, M., Nielsen, J., & Silander, T. (2006). Learning
probabilistic decision graphs. Intl. J. Approx. Reasoning,
42, 84–100.

Kohavi, R., Brodley, C., Frasca, B., Mason, L., & Zheng,
Z. (2000). KDD-Cup 2000 organizers’ report: Peeling
the onion. SIGKDD Explorations, 2, 86–98.

Lowd, D., & Domingos, P. (2005). Naive Bayes models for
probability estimation. Proc. ICML-05 (pp. 529–536).

Lowd, D., & Domingos, P. (2008). Learning arithmetic cir-
cuits (Tech. Rept.). Dept. CSE, Univ. Washington, Seat-
tle, WA. http://www.cs.washington.edu/homes/∼lowd/-
lactr.pdf

Meila, M., & Jordan, M. (2000). Learning with mixtures
of trees. J. Mach. Learn. Research, 1, 1–48.

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems. Morgan Kaufmann.

Roth, D. (1996). On the hardness of approximate reason-
ing. Artif. Intel., 82, 273–302.

Srebro, N. (2000). Maximum likelihood Markov networks:
An algorithmic approach. Master’s thesis, MIT, Cam-
bridge, MA.

APPENDIX: PROOF SKETCH FOR
THEOREM 1

Lemma 2. At every iteration of LearnAC, C is smooth,
decomposable, and deterministic.

This can be proved by induction on the calls to SplitAC in
each iteration. It is easy to verify that the initial circuit is
smooth, decomposable, and deterministic. Verifying that
these properties are preserved by each call to SplitAC in-
volves a second induction over the structure of the circuit,
working up from the leaf nodes. The proof can be found in
Lowd and Domingos (2008).

Proof Sketch for Theorem 1. (By induction over the num-
ber of splits performed.) The initial circuit is a product
of marginal distributions, equivalent to a Bayesian network
with no arcs, so the base case is satisfied.

Assuming the circuit C was equivalent to a Bayesian net-
work B after the last iteration of LearnAC, we must demon-
strate that, after applying split S(D,V ), the resulting cir-
cuit C ′ is equivalent to B with the split S(D,V ).

For an arithmetic circuit, C, we can construct the logical
image of C by replacing addition with disjunction and mul-
tiplication with conjunction. In order to make the different
values of each variable mutually exclusive, we replace in-
dicator nodes vi with conjunctions of vi and the negation of
every other vj for j &= i. We apply an analogous transfor-
mation to the conditional probability parameters for each
variable.

It is straightforward to show that if C is a smooth, decom-
posable, and deterministic AC, then its logical image satis-
fies the equivalent properties of a logical circuit, as defined
by Darwiche (2002).

Let L be the logical image of C and L′ be the logical image
of C ′. From Lemma 2 and the discussion of logical images,
we know that C, C ′, L, and L′ are all smooth, determinis-
tic, and decomposable.

It can be shown inductively that the models of L are the
terms of the network polynomial for B. It can also be
shown that exactly one indicator variable vi is true for each
variable V in every model of L and L′. This means that
each logical circuit can be expressed as a disjunction over
the values of V : L = ∨i(vi∧L), L′ = ∨i(vi∧L′). In every
model of (vi ∧ L), a node that is an ancestor of vj and not
of vi is guaranteed to be false. (This can be shown using
smoothness.) We can therefore remove links in (vi ∧ L) to
any such node from nodes in between MAs and V without
affecting the truth value of the logical circuit.

We can also simplify (vi ∧ L′). For any MA in L′, the
new addition node (disjunction in L′) can be replaced with
its ith child since all other children are known to be false.
The ith child is a conjunction of vi (already assumed to be
true) and a copy of two children of the MA conditioned
on vi. Since conjunction is associative, we can simplify the
MA by linking it directly to the children of this conjunction
rather than to the conjunction.

Having performed these simplifications, we can see that:
(vi ∧ L) is logically equivalent to (vi ∧ L′), except that
parameters dj have been replaced with dij in (vi ∧ L′).
Taking the disjunction over all vi, we can conclude that
the models of L are identical to those of L′, except that
whenever dj and vi are true in a model of L, dij and vi are
true in the corresponding model of L′. This is sufficient
to demonstrate that the models of L′ are the terms of the
network polynomial for B after applying split S(D,V ).

Since L′ is smooth, deterministic, and decomposable, by
Theorem 1 from Darwiche (2002), C ′ computes the net-
work polynomial of B with the split S(D,V ).


